Apache Spark is a real-time data processing system with support for diverse data sources and programming styles. It is scalable, versatile, and capable of performing processing tasks on vast data sets, providing a framework for big data machine learning and AI.
Spark Components
The Spark ecosystem includes a combination of proprietary Spark products and various libraries that support SQL, Python, Java, and other languages, making it possible to integrate Spark with multiple workflows.
1. Apache Spark Core API
The underlying execution engine for the Spark platform. It provides in-memory computing and referencing for data sets in external storage systems.
2. Spark SQL
The interface for processing structured and semi-structured data. It enables efficient querying of databases and empowers users to import relational data, run SQL queries, and scale quickly, maximizing Spark's capabilities around data processing and analytics and optimizing performance.
3. Spark Streaming
This allows Spark to process real-time streaming data ingested from various sources such as Kafka, Flume, and Hadoop Distributed File System (HDFS) and push out to file systems, databases, and live dashboards.
4. MLlib
A collection of machine learning (ML) algorithms for classification, regression, clustering, and collaborative filtering. It also includes other tools for constructing, evaluating, and tuning ML pipelines.
5. GraphX
A library to manipulate graph databases and perform computations unifying extract, transform, and load (ETL) process, exploratory analysis, and iterative graph computation.
6. SparkR
The key element of SparkR is SparkR DataFrames, data structures for data processing in R that extend to other languages with libraries such as Pandas.
Spark Architecture
Spark distributes data across storage clusters and processes data concurrently. Spark uses master/agent architecture, and the driver communicates with executors. The relationship between the driver (master) and the executors (agents) defines the functionality. Spark can be used for batch processing and real-time processing.
What Spark Does
Spark is versatile, scalable, and fast, making the most of big data and existing data platforms.
Processing
Spark is based on the concept of the resilient distributed dataset (RDD), a collection of elements that are independent of each other and that can be operated on in parallel, saving time in reading and writing operations.
Flexibility
Spark code can be written in Java, Python, R, and Scala.
In-memory computing
Spark stores the data in RAM, allowing quick access and increasing analytics speed.
Real-time processing
Spark can process real-time streaming data, producing instant outputs.
Analytics
Spark comes with a set of SQL queries, machine learning algorithms, and other analytical functionalities.
Unified workflows
Spark can combine multiple data functions and processes in a single framework, performing numerous operations consecutively and as part of an integrated data pipeline.
Uses for Spark
Stream processing, to act on data arriving as part of simultaneous streams from multiple sources.
Machine learning, running fast, repeated queries on data stored in memory to train algorithms.
Interactive analytics, getting quick results to questions.
Data integration, consolidating ETL processes to reduce cost and time.
Spark and Snowflake
Snowflake's platform is designed to connect with Spark. The Snowflake Connector for Spark brings Snowflake into the Spark ecosystem, enabling Spark to read and write data to and from Snowflake.
Snowflake Snowpark enables data engineers and data scientists to use Scala, Python, or Java and familiar DataFrame constructs to build powerful and efficient pipelines, machine learning (ML) workflows, and data applications. Snowpark allows users to improve performance, ease of use, governance, and security while working inside Snowflake’s Data Cloud.