Skip to content
  • AT SNOWFLAKE
  • Industry solutions
  • Partner & Customer Value
  • Product & Technology
  • Strategy & Insights
Languages
  • Deutsch
  • Français
  • Português
  • Español
  • English
  • Italiano
  • 日本語
  • 한국어
  • Deutsch
  • Français
  • Português
  • Español
  • English
  • Italiano
  • 日本語
  • 한국어
  • AT SNOWFLAKE
  • Industry solutions
  • Partner & Customer Value
  • Product & Technology
  • Strategy & Insights
  • Deutsch
  • Français
  • Português
  • Español
  • English
  • Italiano
  • 日本語
  • 한국어
  • 개요
    • Why Snowflake
    • 고객 사례
    • 파트너 네트워크
    • 서비스
  • 데이터 클라우드
    • 데이터 클라우드
    • 플랫폼 개요
    • SNOWFLAKE 데이터 마켓플레이스
    • Powered by Snowflake
    • 라이브 데모
  • WORKLOADS
    • 협업
    • 데이터 사이언스&머신러닝
    • 사이버 보안
    • 애플리케이션
    • 데이터 웨어하우스
    • 데이터 레이크
    • 데이터 엔지니어링
    • 유니스토어
  • PRICING
    • Pricing Options
  • 산업별 솔루션
    • 광고, 미디어 및 엔터테인먼트
    • 금융 서비스
    • 의료 및 생명 과학
    • 제조
    • 공공 부문
    • 소매 / CPG
    • 테크놀로지
  • 리소스
    • 리소스
    • Documentation
    • 핸즈온 랩
    • 트레이닝
  • CONNECT
    • Snowflake 블로그
    • 커뮤니티
    • 이벤트
    • 웨비나
    • 팟캐스트
  • 개요
    • 회사 소개
    • 투자정보
    • 리더십 및 이사회
    • 채용
Author
Saqib Mustafa
Share
Subscribe
2016년 02월 19일

Snowflake Query Result Sets Available to Users via History

  • 제품 및 기술
    • 데이터 웨어하우스
    • 데이터 엔지니어링
Snowflake Query Result Sets Available to Users via History

As promised in the previous post from Kent Graziano, here is a deeper dive into one of the top 10 cool features from Snowflake:

#10 Result sets available via History

There are a lot of times when you want to make a small change to your large query, and want to be able to see the effect of a change quickly without rerunning the previous query. This is hard in most systems because you have to rerun the previous query, using up resources and time. Our solution allows users to view the result sets from queries that were executed previously, via history. One benefit users get is that if they had already executed a complex query that took some amount of time to execute, the user doesn’t have to run the query again to access the previous results. They can just go back to the history, and access the result set. This is also beneficial when working on a development project using the data warehouse. Developers can use the result set history to compare the effects of changes to the query or to the data set, without running the previous queries again.

How to access the Result Set History

Once you execute a query, the result set will persist in the history of the user for 24 hours. This even includes queries executed through interfaces outside the Snowflake UI, like BI tools, JDBC, ODBC, etc.

To get to these results, you can go to the History page in the Snowflake web UI:

History

Find the query you want to recall then click on the hyper-linked Query Id. This will then let you see the details about the query plus the data it pulled.

Persitant Result Set

Easy!

How does it work?

Every time a query is run in Snowflake, the query is assigned an ID. This ID along with the resulting data set is typically stored in the same place as the Metadata repository. All data is encrypted at rest and in transit. This is performed as a simultaneous operation to sending the result back to the user. In case of a large resultant data set, the results may be stored in S3. Because of the elasticity of S3 storage, this approach allows Snowflake to retain any size result set. For a query, that was run successfully, the result is kept for 24 hours, after which the results are cleaned up based on a FIFO method.

What does this mean for the user?

It may seem like a minor addition to some but it is very convenient to pull up a resultset from a previous query without having to execute the query a second time. This saves time and processing (and therefore saves $$$), another way in which Snowflake provides significant value over traditional data warehouse solutions, slashing costs, and eliminating complexity.

P.S. Keep an eye on this blog site, our Snowflake Twitter feed (@SnowflakeDB), (@kentgraziano), and (@cloudsommelier) for more Top 10 Cool Things About Snowflake.

– Kent Graziano and Saqib Mustafa

 

Share

Query Profiling

Read this deep-dive into understanding query profiling.

See how
Read More

Data Transformation

Learn about data transformation, an increasingly needed process to convert data into a compatible format for the destination data platform.

More
Read More

Fetching Query Results From Snowflake Got Faster with Apache Arrow

We took our first step toward the adoption of Apache Arrow with the release of our latest JDBC and Python clients. Fetching...

Find Out More
Read More

Patient 360: Improving Health Outcomes with the Power of Data

The patient 360 is a unified view of patient data that enables providers to gain a holistic understanding of patient information. Learn more here.

More Details
Read More
Snowflake Inc.
  • 플랫폼 개요
    • 아키텍처
    • 데이터 애플리케이션
  • 데이터 마켓플레이스
  • Snowflake 파트너 네트워크
  • 지원 및 서비스
  • 회사
    • 문의하기

Sign up for Snowflake Communications

Thanks for signing up!

  • Privacy Notice
  • Site Terms
  • Cookie Settings

© 2023 Snowflake Inc. All Rights Reserved