
SNOWFLAKE NATIVE APPS:
DEVELOPER CHEAT SHEET

Application Management

Only two major versions of an application may exist
at any point. Major versions may contain multiple
patches (up to 130).

Use a release directive (specify major version
and patch) to set the default version of the app
that consumers will install.

Update the release directive when a new version of
the app is ready to be rolled out. Updating the release
directive initiates an automated upgrade that will
update all installed instances of the previous version.

Sample code for default release directive:

ALTER APPLICATION PACKAGE hello_snowflake_package
 SET DEFAULT RELEASE DIRECTIVE
 VERSION = v1_0
 PATCH = 2;

Testing Your Application

�Install the app in your account to test it.

Sample code:

CREATE APPLICATION my_new_app FROM APPLICATION
PACKAGE app_pkg USING VERSION v1 PATCH 0;

Open and run the application.

Run again with updated version or patch values
to initiate the rollout.

Common Patterns: App Logic
and Frontend

Application Logic
•	 �Flexible directory structure can be organized

according to your preferences.

•	 �UDFs and stored procedures are defined in

the application script and bound to logic defined

in files in the application source code.

•	 �Logic can be written in SQL or any supported

language.

Frontend
•	 Defined in a Python file (for example, ui.py).

•	 �App can have one or more UI files, but one must be

designated as the default in the manifest file.

Sample UDF (with binding):

udf.py

def add(a,b):
 return a + b

setup.sql

create or replace function my_schema.add(a int,
b int)
returns int
language python
runtime_version = ‘3.8’
packages = (‘snowflake-snowpark-python’)
imports = (‘/some_path/udf.py’)
handler = ‘udf.add’;

Common Patterns:
Installation Scripts

Common Patterns: Manifest File

An installation script is required; it’s commonly
named setup.sql.
The script contains SQL that is executed when
a consumer installs the app.

The installation script typically includes definitions for:

•	 Roles (app roles)

•	 Permissions (for each role)

•	 Logic (procedures, UDFs)

•	 New objects (schemas, tables, etc.)

Sample setup.sql:

CREATE APPLICATION ROLE app_user;

CREATE OR ALTER VERSIONED SCHEMA code;
GRANT USAGE ON SCHEMA code TO APPLICATION
ROLE app_user;

CREATE OR REPLACE PROCEDURE code.do_thing() ... ;

GRANT USAGE ON PROCEDURE core.do_thing() TO
APPLICATION ROLE app_user;

CREATE SCHEMA config IF NOT EXISTS;
CREATE TABLE config.params IF NOT EXISTS (
 param_name STRING,
 param_value STRING,
 change_time TIMESTAMP,
 comment STRING,
);

What Providers Do
•	 �Author application source code and bundle it

into an application package

•	 �Publish and monetize application packages

on Snowflake Marketplace

•	 �Maintain applications via �staged rollouts of updates

What Consumers Do
•	 �Discover applications on Snowflake Marketplace

•	 �Install applications in their Snowflake account

•	 �Run applications using their compute resources

•	 �Maintain full control of the application’s permissions

When an application package depends on an external
database in the provider’s account, providers use
reference usage to share it with the consumer via
the app.

Key Concepts of Snowflake
Native Apps

Sharing Provider Data With
App Consumers

Key Components of the Snowflake
Native Application Framework

This is the core set of tools used to build a Snowflake
Native App:

•	�Snowflake accounts: Where data is stored

•	�SQL: Used for the application installation script and/

or logic

•	�Snowpark: Used for data transformations, UDFs

and stored procedures

•	�Streamlit: Used to build the frontend of

the application

UDFs, stored procedures, tasks and other Snowflake

primitives are available to use alongside this core set
of tools.

App source code lives in a Snowflake-managed stage;
an application package is created from the source code
in the stage.

An application package typically includes:

•	 �Installation script (setup.sql)

•	 �App metadata (manifest.yml)

•	 �References to objects required by the app

(manifest.yml)

•	 �Application logic with SQL and/or Snowpark

(such as udfs.py)

•	 �Application frontend with Streamlit (such as ui.py)

Sample directory structure of an app:

my_app/
 setup.sql
 manifest.yml
 src/
 udfs.py
 ui.py

Mechanics Behind a Snowflake
Native App

�A manifest file is required and must be named
manifest.yml.
�It contains metadata about the app and references
to objects required by the application.

�The manifest file typically includes:

•	 �App version

•	 �Artifact references (references to the installation

script and main UI file)

•	 �Log configuration

•	 �Object references (tables, warehouses, etc.)

and permission levels required by the app

Sample manifest.yml:

manifest_version: 1

version:
 name: v1
 label: Version One
 comment: The first version of the application

artifacts:
 setup_script: scripts/setup.sql
 default_streamlit:
app_instance_schema.streamlit

configuration:
 log_level: debug
 trace_level: off

references:
 - order_table:
 label: “Orders Table”
 description: “Select table”
 privileges:
 - SELECT
 object_type: Table
 multi_valued: false
 register_callback: app_instance_schema.
update_reference

GRANT REFERENCE_USAGE ON DATABASE provider_data TO
SHARE IN APPLICATION PACKAGE app_pkg;

Next, create a schema, create necessary views using
provider data, and add views to the schema.

Finally, grant usage on the schema and relevant
permissions on the views and share in the
application package.

GRANT USAGE ON SCHEMA schema_shared TO SHARE IN
APPLICATION PACKAGE app_pkg;

GRANT SELECT ON VIEW schema_shared.sensor_types_
view TO SHARE IN APPLICATION PACKAGE app_pkg;

https://app.snowflake.com/marketplace

