
Snowflake
 The Definitive Guide
Architecting, Designing, and Deploying
on the Snowflake Data Cloud

Joyce Kay Avila

A
vila

Compliments of

DATA

”Joyce’s book adds
insights and hands-on
knowledge that go
beyond other Snowflake
books or public resources,
unveiling new venues to
understand and explore
the art of possibilities
with Snowflake.”

—Constantin Stanca
Principal Solutions Engineer

at Snowflake

”This truly is a definitive
guide; I love every bit of
it and learned something
new on almost every
page. It’s a SELECT *
on Snowflake and a
must-read for everyone.”

—Jeno Yamma
Analytics Engineer and Snowflake

Data Superhero, Canva

Snowflake: The Definitive Guide

US $69.99 CAN $87.99
ISBN: 978-1-098-10382-8

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Snowflake’s ability to eliminate data silos and run workloads
from a single platform creates opportunities to democratize data
analytics, allowing users at all levels within an organization to
make data-driven decisions. Whether you’re an IT professional
working in data warehousing or data science, a business analyst
or technical manager, or an aspiring data professional wanting to
get more hands-on experience with the Snowflake platform, this
book is for you.

You’ll learn how Snowflake users can build modern integrated
data applications and develop new revenue streams based on
data. Using hands-on SQL examples, you’ll also discover how
the Snowflake Data Cloud helps you accelerate data science
by avoiding replatforming or migrating data unnecessarily.

You’ll be able to:
• Efficiently capture, store, and process large amounts of

data at an amazing speed
• Ingest and transform real-time data feeds in both

structured and semistructured formats and deliver
meaningful data insights within minutes

• Use Snowflake Time Travel and zero-copy cloning to
produce a sensible data recovery strategy that balances
system resilience with ongoing storage costs

• Securely share data and reduce or eliminate data
integration costs by accessing ready-to-query datasets
available in the Snowflake Marketplace

Joyce Kay Avila is a Snowflake Data Superhero and the Snowflake
practice manager for a Snowflake partner consulting firm. She’s a
certified public accountant who completed her PhD coursework
in accounting information systems; she also holds an MBA and
bachelor’s degrees in accounting and computer science.

ISBN: 978-1-098-12217-1

https://docs.snowflake.com/en/

Praise for Snowflake: The Definitive Guide

Joyce’s book adds insights and hands-on knowledge that go beyond
other Snowflake books or public resources, unveiling new venues to understand

and explore the art of possibilities with Snowflake.
—Constantin Stanca, Principal Solutions Engineer, Snowflake

This truly is a definitive guide, I love every bit of it and learned something new on
almost every page. It truly is a SELECT * on Snowflake, and a must read for everyone.

—Jeno Yamma, Analytics Engineer
and Snowflake Data Superhero, Canva

The best way to learn and get better at something is by doing. This book
is a well-written and easy-to-follow guide to everything Snowflake. But what really

sets it apart are all of the practical code examples and knowledge checks. Joyce teaches
us theory, encourages us to practice, and then tests our knowledge. Whether you are just

starting to explore Snowflake or someone who has experience I guarantee that you will
learn something from this book.

—Veronika Durgin, Data and Analytics Leader

Your first stop into the Snowflake Data Cloud. Getting started with Snowflake? Let
Snowflake Data Superhero Joyce Kay Avila guide you into the Data Cloud.

—Daan Bakboord, Data and Analytics Consultant

If you are starting your learning journey of the Snowflake Data Cloud, I highly
recommend this readable, engaging, and comprehensive book. It teaches the core

concepts through clear explanations and knowledge checks and helps you gain
hands-on experience through step-by-step instructions and code.

—Slim Baltagi, Founder, Snoable, LLC

Finally a book with everything you ever wanted to know about the Snowflake Data Cloud.
Joyce has written Snowflake: The Definitive Guide in an uncomplicated

conversational style that will appeal to a broad range of readers.
—Maja Ferle, Senior Consultant, In516ht

Joyce Kay Avila

Snowflake: The Definitive Guide
Architecting, Designing, and Deploying

on the Snowflake Data Cloud

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-12217-1

[LSI]

Snowflake: The Definitive Guide
by Joyce Kay Avila

Copyright © 2022 Joyce Kay Avila. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Michele Cronin
Production Editor: Clare Laylock
Copyeditor: Audrey Doyle
Proofreader: Justin Billing

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2022: First Edition

Revision History for the First Edition
2022-08-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098103828 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Snowflake: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher, the author, and Snowflake have used good faith efforts to ensure that the information
and instructions contained in this work are accurate and up-to-date, the publisher, the author, and Snow‐
flake disclaim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and instructions con‐
tained in this work is at your own risk. Snowflake recommends that you utilize the documentation hosted
here for the most updated Snowflake-based information. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellectual property rights of others, it
is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Snowflake. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098103828
https://docs.snowflake.com/en
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. xv

1. Getting Started. 1
Snowflake Web User Interfaces 3
Prep Work 3
Snowsight Orientation 6
Snowsight Preferences 6
Navigating Snowsight Worksheets 8

Context Setting 8
Improved Productivity 14

Snowflake Community 17
Snowflake Certifications 19
Snowday and Snowflake Summit Events 19
Important Caveats About Code Examples in the Book 19
Code Cleanup 21
Summary 21
Knowledge Check 22

2. Creating and Managing the Snowflake Architecture. 23
Prep Work 23
Traditional Data Platform Architectures 24

Shared-Disk (Scalable) Architecture 24
Shared-Nothing (Scalable) Architecture 25
NoSQL Alternatives 25

The Snowflake Architecture 26
The Cloud Services Layer 27

Managing the Cloud Services Layer 28
Billing for the Cloud Services Layer 28

The Query Processing (Virtual Warehouse) Compute Layer 29

vii

Virtual Warehouse Size 30
Scaling Up a Virtual Warehouse to Process Large Data Volumes and

Complex Queries 31
Scaling Out with Multicluster Virtual Warehouses to Maximize

Concurrency 35
Creating and Using Virtual Warehouses 38
Separation of Workloads and Workload Management 42
Billing for the Virtual Warehouse Layer 44

Centralized (Hybrid Columnar) Database Storage Layer 45
Introduction to Zero-Copy Cloning 46
Introduction to Time Travel 46
Billing for the Storage Layer 46

Snowflake Caching 46
Query Result Cache 47
Metadata Cache 48
Virtual Warehouse Local Disk Cache 49

Code Cleanup 50
Summary 50
Knowledge Check 51

3. Creating and Managing Snowflake Securable Database Objects. 53
Prep Work 54
Creating and Managing Snowflake Databases 54
Creating and Managing Snowflake Schemas 63

INFORMATION_SCHEMA 65
ACCOUNT_USAGE Schema 69
Schema Object Hierarchy 70

Introduction to Snowflake Tables 70
Creating and Managing Views 76
Introduction to Snowflake Stages: File Format Included 79
Extending SQL with Stored Procedures and UDFs 82

User-Defined Function (UDF): Task Included 84
Secure SQL UDTF That Returns Tabular Value (Market Basket Analysis

Example) 87
Stored Procedures 89

Introduction to Pipes, Streams, and Sequences 95
Snowflake Streams (Deep Dive) 96
Snowflake Tasks (Deep Dive) 102
Code Cleanup 108
Summary 108
Knowledge Check 109

viii | Table of Contents

4. Exploring Snowflake SQL Commands, Data Types, and Functions. 111
Prep Work 112
Working with SQL Commands in Snowflake 112

DDL Commands 113
DCL Commands 113
DML Commands 114
TCL Commands 114
DQL Command 114

SQL Query Development, Syntax, and Operators in Snowflake 115
SQL Development and Management 115
Query Syntax 117
Query Operators 124
Long-Running Queries, and Query Performance and Optimization 125
Snowflake Query Limits 126

Introduction to Data Types Supported by Snowflake 126
Numeric Data Types 127
String and Binary Data Types 129
Date and Time Input/Output Data Types 130
Semi-Structured Data Types 131
Unstructured Data Types 137
How Snowflake Supports Unstructured Data Use 138

Snowflake SQL Functions and Session Variables 141
Using System-Defined (Built-In) Functions 141
Creating SQL and JavaScript UDFs and Using Session Variables 144
External Functions 144

Code Cleanup 145
Summary 145
Knowledge Check 146

5. Leveraging Snowflake Access Controls. 147
Prep Work 148
Creating Snowflake Objects 150
Snowflake System-Defined Roles 154
Creating Custom Roles 155

Functional-Level Business and IT Roles 157
System-Level Service Account and Object Access Roles 158

Role Hierarchy Assignments: Assigning Roles to Other Roles 159
Granting Privileges to Roles 162
Assigning Roles to Users 165
Testing and Validating Our Work 166
User Management 169
Role Management 176
Snowflake Multi-Account Strategy 178

Table of Contents | ix

Managing Users and Groups with SCIM 178
Code Cleanup 179
Summary 180
Knowledge Check 180

6. Data Loading and Unloading. 183
Prep Work 184
Basics of Data Loading and Unloading 184

Data Types 185
File Formats 185
Data File Compression 189
Frequency of Data Processing 189
Snowflake Stage References 190
Data Sources 191

Data Loading Tools 192
Snowflake Worksheet SQL Using INSERT INTO and INSERT ALL

Commands 192
Web UI Load Data Wizard 204
SnowSQL CLI SQL PUT and COPY INTO Commands 210
Data Pipelines 212
Third-Party ETL and ELT Tools 221

Alternatives to Loading Data 222
Tools to Unload Data 222
Data Loading Best Practices for Snowflake Data Engineers 223

Select the Right Data Loading Tool and Consider the Appropriate Data
Type Options 224

Avoid Row-by-Row Data Processing 224
Choose the Right Snowflake Virtual Warehouse Size and Split Files as

Needed 225
Transform Data in Steps and Use Transient Tables for Intermediate Results 225

Code Cleanup 225
Summary 225
Knowledge Check 226

7. Implementing Data Governance, Account Security, and Data Protection and Recovery. . 227
Prep Work 228
Snowflake Security 230

Controlling Account Access 231
Monitoring Activity with the Snowflake ACCESS_HISTORY Account

Usage View 235
Data Protection and Recovery 237
Replication and Failover 243

Democratizing Data with Data Governance Controls 244

x | Table of Contents

INFORMATION_SCHEMA Data Dictionary 245
Object Tagging 245
Classification 249
Data Masking 251
Row Access Policies and Row-Level Security 253
External Tokenization 256
Secure Views and UDFs 257
Object Dependencies 257

Code Cleanup 258
Summary 258
Knowledge Check 258

8. Managing Snowflake Account Costs. 261
Prep Work 262
Snowflake Monthly Bill 262

Storage Fees 264
Data Transfer Costs 264
Compute Credits Consumed 265

Creating Resource Monitors to Manage Virtual Warehouse Usage and
Reduce Costs 266
Resource Monitor Credit Quota 268
Resource Monitor Credit Usage 268
Resource Monitor Notifications and Other Actions 269
Resource Monitor Rules for Assignments 269
DDL Commands for Creating and Managing Resource Monitors 271

Using Object Tagging for Cost Centers 276
Querying the ACCOUNT_USAGE View 276
Using BI Partner Dashboards to Monitor Snowflake Usage and Costs 277
Snowflake Agile Software Delivery 278

Why Do We Need DevOps? 278
Continuous Data Integration, Continuous Delivery, and

Continuous Deployment 279
What Is Database Change Management? 280
How Zero-Copy Cloning Can Be Used to Support Dev/Test Environments 281

Code Cleanup 284
Summary 284
Knowledge Check 285

9. Analyzing and Improving Snowflake Query Performance. 287
Prep Work 287
Analyzing Query Performance 287

QUERY_HISTORY Profiling 288
HASH() Function 288

Table of Contents | xi

Web UI History 289
Understanding Snowflake Micro-Partitions and Data Clustering 291

Partitions Explained 291
Snowflake Micro-Partitions Explained 294

Snowflake Data Clustering Explained 299
Clustering Width and Depth 299
Choosing a Clustering Key 303
Creating a Clustering Key 305
Reclustering 306

Performance Benefits of Materialized Views 306
Exploring Other Query Optimization Techniques 308

Search Optimization Service 308
Query Optimization Techniques Compared 309

Summary 310
Code Cleanup 310
Knowledge Check 310

10. Configuring and Managing Secure Data Sharing. 313
Snowflake Architecture Data Sharing Support 314
The Power of Snowgrid 314
Data Sharing Use Cases 314
Snowflake Support for Unified ID 2.0 315
Snowflake Secure Data Sharing Approaches 316
Prep Work 317
Snowflake’s Direct Secure Data Sharing Approach 318

Creating Outbound Shares 318
How Inbound Shares Are Used by Snowflake Data Consumers 330

How to List and Shop on the Public Snowflake Marketplace 333
Snowflake Marketplace for Providers 335
Standard Versus Personalized Data Listings 337

Harnessing the Power of a Snowflake Private Data Exchange 340
Snowflake Data Clean Rooms 341
Important Design, Security, and Performance Considerations 342

Share Design Considerations 342
Share Security Considerations 343
Share Performance Considerations 343
Difference Between Database Sharing and Database Cloning 343
Data Shares and Time Travel Considerations 344
Sharing of Data Shares 344

Summary 344
Code Cleanup 345
Knowledge Check 345

xii | Table of Contents

11. Visualizing Data in Snowsight. 347
Prep Work 347
Data Sampling in Snowsight 348

Fixed-Size Sampling Based on a Specific Number of Rows 349
Fraction-Based Sampling Based on Probability 349
Previewing Fields and Data 349
Sampling Examples 352

Using Automatic Statistics and Interactive Results 353
Snowsight Dashboard Visualization 358

Creating a Dashboard and Tiles 358
Working with Chart Visualizations 361
Aggregating and Bucketing Data 363
Editing and Deleting Tiles 366

Collaboration 367
Sharing Your Query Results 368
Using a Private Link to Collaborate on Dashboards 368

Summary 369
Code Cleanup 369
Knowledge Check 370

12. Workloads for the Snowflake Data Cloud. 371
Prep Work 372
Data Engineering 372
Data Warehousing 374

Data Vault 2.0 Modeling 374
Transforming Data within Snowflake 377

Data Lake 377
Data Collaboration 378

Data Monetization 379
Regulatory and Compliance Requirements for Data Sharing 379

Data Analytics 380
Advanced Analytics for the Finance Industry 380
Advanced Analytics for the Healthcare Industry 381
Advanced Analytics for the Manufacturing Industry and Logistics Services 382
Marketing Analytics for Retail Verticals and the Communications and

Media Industry 382
Data Applications 383
Data Science 385

Snowpark 385
Streamlit 388

Cybersecurity Using Snowflake as a Security Data Lake 388
Overcoming the Challenges of a SIEM-Only Architecture 389
Search Optimization Service Versus Clustering 392

Table of Contents | xiii

Unistore 401
Transactional Workload Versus Analytical Workload 401
Hybrid Tables 402

Summary 403
Code Cleanup 403
Knowledge Check 404

A. Answers to the Knowledge Check Questions. 405

B. Snowflake Object Naming Best Practices. 423

C. Setting Up a Snowflake Trial Account. 427

Index. 431

xiv | Table of Contents

Preface

Origin of the Book
Back in April 2020, I published a video series about Snowflake on YouTube to help
people become Snowflake-certified. The response I received from the series con‐
firmed that the need for such knowledge was much greater than a video series could
meet. However, the Snowflake journey began well before this video series.

Snowflake burst onto the public scene in 2015 after three years of operating in stealth
mode. Snowflake’s customers span several different industries including the public
sector, healthcare, retail, financial services, and more. In 2017, Capital One became
Snowflake’s first Virtual Private Snowflake (VPS) customer and also invested $5 mil‐
lion in Snowflake to help further Snowflake’s ability to deliver innovative technology
to the financial services industry. In 2018, Snowflake grew its customer base by 300%,
with additions including several more financial services companies.

Around this time, in 2018, I was first introduced to Snowflake when employed by a
financial services company. In my role as a Salesforce developer, I designed and
implemented data models in Salesforce that were then built in Snowflake by other
members of the team.

I’ve always had a passion for data, a knack for data modeling, and a love of learning—
especially learning about exciting new technologies. So naturally, the more I learned
about Snowflake, the more I wanted to know. Throughout 2018 and 2019, I expanded
my knowledge of Snowflake while continuing to gain more Salesforce experience. In
late 2019, my passion for Snowflake was in full swing, and I became determined to
become certified in Snowflake.

At that time, there was no Snowflake study guide per se, and not enough resources
existed to prepare for the certification exam. So I went through every training module
in Snowflake University and read page after page of Snowflake documentation. To
help me better prepare, I made a set of study notes that grouped the content into spe‐
cific topics. These notes ultimately helped me become Snowflake certified in April

xv

2020. It just made sense to create a series of videos using those notes so that others
could benefit from them as well. I never dreamed that would be the start of an amaz‐
ing Snowflake journey.

Creating the Snowflake YouTube video series in 2020 led to me becoming a Snow‐
flake Data Superhero. From there, I was invited to speak at Snowflake events and
became more involved in the Snowflake community. My knowledge of the platform
continued to grow. At the same time, many people watching my YouTube videos
reached out to let me know how much they appreciated the content.

When the opportunity presented itself in early 2021 to author Snowflake: The Defini‐
tive Guide for O’Reilly, I committed fully to the long journey of writing the book. I’ve
been amazed at how much freedom O’Reilly gives its authors to shape the contents of
the book. With that incredible privilege comes a lot of responsibility to choose the
right topics and decide how deep to dive into any one particular area.

This book is intended to be a definitive guide, which means I needed to cover a lot of
information when writing it. Throughout the time I spent writing and rewriting, I
had to lean on others to fill in my knowledge gaps so that I could provide the best
content possible. Those folks, along with many others, were an integral part of mak‐
ing this book a reality. My acknowledgments below speak for themselves; I would be
remiss if I didn’t use the opportunity to individually thank those who have really
made a difference in how this book turned out.

Who Is This Book For?
This book is essential reading for technical practitioners working in the areas of data
warehousing, data science, and data analysis, as well as for anyone who wants to set
themselves apart as a Snowflake certified professional. There is also a lot of value in
this book for data stakeholders such as IT team leads, technical managers, and direc‐
tors of technical teams or those who want to keep current with modern data technol‐
ogies and trends.

While it is not necessary to have knowledge about nonrelational databases and other
data-related tools, you should at least be familiar with relational databases and SQL.
You’ll get the most out of this book if you have at least one-to-two years of experience
in any of the following data-related roles:

• Data architect
• Data engineer
• Data analyst

xvi | Preface

• Data scientist
• Database administrator
• Technical manager

Goals of the Book
This book was written with plenty of hands-on examples to help you build a solid
foundational knowledge of Snowflake.

By the end of this book, you will understand:

• How the unique Snowflake architecture efficiently captures, stores, and processes
large amounts of data at an amazing speed

• How to rapidly ingest and transform real-time data feeds in both structured and
semi-structured formats and deliver meaningful data insights within minutes

• How to use Time Travel and zero-copy cloning to produce a sensible data recov‐
ery strategy that balances the need for system resilience with ongoing storage
costs

• How to securely share data and how to reduce or eliminate data integration costs
by accessing fresh, ready-to-query data sets available within the Snowflake Data
Marketplace

And you’ll be able to:

• Deploy, size, and monitor virtual warehouses to maximize query performance
and throughput while also controlling cost

• Implement a role-based access control system, use dynamic data masking, and
take advantage of discretionary access control and secure views to protect and
limit data access

• Enable Snowsight to support data analysts’ ability to work even more efficiently
in the new Snowflake web interface

• Follow Snowflake best practices and avoid common pitfalls to achieve world-
class results

Navigating this Book
The order of the chapters intends to ensure that the earlier chapters provide the nec‐
essary foundational knowledge so that you can get the most value out of later chap‐
ters. That said, each chapter’s examples stand alone. The chapters begin with any prep
work needed for that chapter, then take you step-by-step through the hands-on

Preface | xvii

examples. At the end of every chapter, there are clean-up instructions. You won’t need
to complete any examples from previous chapters before starting a new chapter.

The first seven chapters are the foundational chapters. The next two chapters take
you through the details of managing Snowflake costs and improving performance.
Chapter 10 is a deep dive into secure data sharing, one of Snowflake’s key differentia‐
tors. Chapter 11 focuses on visualizing data in Snowsight. You’ll notice that, with few
exceptions, the examples in the book are completed in the new Snowsight web user
interface, although all code can be run successfully in the classic console. Chapter 12
explains all the various Snowflake workloads, including the new Unistore workload.

At the end of every chapter is a knowledge check section. The answers to those ques‐
tions can be found in Appendix A. Snowflake object naming best practices are
included in Appendix B. Finally, you can locate instructions for setting up a Snow‐
flake trial account in Appendix C.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/SnowflakeDefinitiveGuide.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Snowflake: The Defini‐
tive Guide by Joyce Kay Avila (O’Reilly). Copyright 2022 Joyce Kay Avila,
978-1-098-10382-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xviii | Preface

https://github.com/SnowflakeDefinitiveGuide
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Preface | xix

https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/snowflake-the-definitive-guide.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
The journey of writing an O’Reilly book has been a most challenging yet rewarding
experience in my life. Throughout this incredible journey, I’ve never been alone. I’ve
been fortunate to have had a village of people who have each played an important role
in delivering this book to the world.

I’ll admit that in the beginning, I didn’t have a lot of faith in how the ebb and flow of
the process would work. It was uncomfortable to share those early versions of the
manuscript, and I really didn’t want to do it. My development editor, Michele Cronin,
convinced me to trust the process. My most sincere gratitude and appreciation go to
Michele for being so supportive and patient while gently pushing me forward at
times, when needed. Michele was but one of an amazing group of folks associated
with O’Reilly Media who helped make this book a reality.

xx | Preface

https://oreilly.com
https://oreil.ly/snowflake-the-definitive-guide
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

I am grateful to Audrey Doyle, the copyeditor, and Justin Billing, the proofreader, for
the countless hours spent reading through the many pages of the book more than
once. I appreciate Kristen Brown for managing the early release process on the
O’Reilly platform to make the content available to users as quickly as possible. I’m
also thankful for the amazing cover design by Karen Montgomery, the interior design
by David Futato, and the illustrations by Kate Dullea that really bring beauty and pro‐
fessionalism to the book.

The level of quality control that an O’Reilly book undergoes is second to none. The
O’Reilly team spent countless hours combing through everything, even the smallest
of details, to make the book perfect. As such, a special thank you to Clare Jensen for a
level of effort that was nothing less than extraordinary.

Of course, my journey as an author would never have begun had it not been for Jess
Haberman, who had faith that I could use my passion for Snowflake to stay motivated
through the long days, nights, and weekends it has taken to bring this book to life. I’d
also like to thank Andy Kwan for his support of O’Reilly opportunities that coincide
with writing the book and Suzanne Huston for her efforts to help market and pro‐
mote the book. Other folks from O’Reilly who have been a part of my journey include
Cassandra Furtado, Charlotte Ames, Elizabeth Kelly, Joan Baker, and Shannon Cutt.

I’ve also had an amazing group of reviewers who went through those very early rough
drafts. Their feedback at the early stages helped shape the content of the book. Early
reviewers include Jacob Thomas and Randy Pitcher II. Special shoutout to reviewers
Veronika Durgin and Daan Bakboord for providing detailed feedback and for taking
time to actually run all the code and prevent some errors from making their way into
the final version of the book. And in two separate rounds of reviews, I received
invaluable feedback from Michael Rainey, a Snowflake Principal Solutions Architect.

I’m thankful to a number of Snowflake data superheroes, including Slim Baltagi, Maja
Ferle, and Jeno Yamma; with only a short window of time, they looked through the
full preview edition of the book and provided feedback. I’m honored to be a part of
such an amazing Snowflake data superhero group and am incredibly thankful to
every Snowflake data superhero who has lent their support. There is something truly
magical about the Snowflake data hero community led by Elsa Mayer and Howard
Lio. And it was amazing to finally meet so many people in person for the first time at
the 2022 Snowflake Summit. Thank you, Jena Donlin, for your genuine heartfelt sup‐
port. And Dash Desai, you know that I loved seeing you wear those shoes!

Anyone can see that the values of the Snowflake data hero community directly reflect
the company’s core values. “Be inclusive and collaborative, bringing people and ideas
together” is an example of one of Snowflake’s core values that has been demonstrated
to me firsthand in all my interactions with Snowflake employees, not just from the
perspective of a data superhero who is championing for Snowflake. As an author
working with the Snowflake product teams to help fill in my knowledge, I’ve been

Preface | xxi

introduced to a number of incredibly smart and talented people. For almost a year,
Aleks Todorova worked tirelessly to connect me with many different people within
the company who could help me expand my Snowflake knowledge so I could provide
better content for the book. And as a Snowflake consulting partner working with
Snowflake account executives to serve customers, I’ve also had the pleasure of getting
to know many more Snowflake employees.

For their continued support, I’d like to thank several current Snowflake employees, in
addition to Michael, Elsa, Howard, Jena, and Dash who I’ve already mentioned. The
list is long! Included here, in alphabetical order by first name, are just some of the
Snowflake employees I’d like to call out: Alex Gutow, Carl Perry, Cassie Ageno-
Wallgren, Chris Keithley, Constantin “Cristi” Stanca, Daniel Myers, Danny Shea,
Diane Elinski, Emily Dillon, Emily Lin, Eric Feng, Felicia Dorng, Felipe Hoffa, Fran‐
cis Mao, Ganesh Subramanian, Ines Marjanovic, Julian Forero, Justin Langseth, Kate
Beispel, Katie Ecklund, Kelly Huang, Leith Darawsheh, Lisa Luscap, Marilyn Tan,
Mike Miller, Nick Akincilar, Omer Singer, Patrick Cuba, Phillip Coletti, Phillip Owen,
Raanan Sayag, Ryan Aldridge, Sanjay Kattimani, Saurin Shah, Scott Teal, Seeling
Cheung, Shiyi Gu, Shravan Narayen, Tom Meacham, Travis Kaufman, William
Fuentes, and Xer Cha.

I’d also like to thank my employer, SpringML. With their support, I’ve been able to
effectively balance working a demanding full-time job with my desire to write for the
best publisher of technical books in the world. I’m very grateful for Robert Anderson,
who recruited me to SpringML and is my biggest supporter. Helping to grow the
Snowflake practice at SpringML has also afforded me the opportunity to spend time
getting to know our CTO, Girish Reddy, who never seems to tire of expanding his
knowledge of innovative technologies like Snowflake. Janeesh Jayaraj, Sriram Manda‐
dapu, Tamera Fall, Vineesh Sriramoju, and Vishal Deo are just a few more of the
amazing team members I have had the pleasure of collaborating with on Snowflake
projects. There are so many members of the SpringML team who are both excited
about Snowflake and incredibly supportive of my personal journey to become a pub‐
lished O’Reilly author. Thank you, SpringML team, for letting me share that journey
with you. I appreciate you all.

As you can imagine, completing this book would have been impossible without the
support of my family. For over fifteen months, they have picked up the slack by tak‐
ing on more household tasks every day, and they have encouraged me to keep going
when I didn’t think I could. For more than a year, my journey was their journey.

xxii | Preface

To my incredible child Alanna, you are an angel. There would be no sunshine in my
life without you. My heart is filled with hope and optimism because of your unwaver‐
ing faith in me. You continually see the best in me and that makes me want to be a
better person and a better mother. I hope you always think I’m the coolest Mom ever.
I love you, Alanna Kay Avila.

To my husband Robert, our house is a home because of you. Thank you for reading
every word of the book, often many times, and for taking on the lion’s share of
responsibilities at home so I could focus on writing. From the first draft to the first
print of the book, you were always the first person to read each chapter. With every
chapter, I trusted you to give me honest feedback and help me make it better before I
shared it with others. We continue to make a great team in everything we do. You are
my best friend, Robert, and I love you.

To our amazing dog Zelda, thank you for reminding me to take a pause. There were
lots of times this past year when you wanted me to stop and play but I couldn’t. I’m
committed to making it up to you in the coming year.

To my beautiful mother, Carolyn Kay Hare, thank you for planting the seeds long ago
to make me strong and fearless even when I’m sometimes afraid I’ll fall short. You
removed the word “can’t” from the dictionary for me, and that made all the
difference.

To the readers, thank you for choosing this book. Together, let’s #MakeItSnow
definitively!

Preface | xxiii

CHAPTER 1

Getting Started

Cloud computing is characterized by on-demand availability of data storage and
computing power. A primary benefit of cloud computing is that it doesn’t require
users to be directly or actively involved in the management of those computer system
resources. Other benefits include access to unlimited storage capacity, automatic soft‐
ware updates, instant scalability, high speed, and cost reductions. As expected, the
recent explosion of cloud computing led by AWS Redshift, Google BigQuery,
and Microsoft Azure Data Warehouse resulted in the decline of on-premises data
centers.

Many of the major data warehouse providers, such as Oracle and IBM, that were cre‐
ated as a traditionally hosted solution later adapted to the cloud environment. Unlike
those traditional solutions, Snowflake was built natively for the cloud from the
ground up. While Snowflake originated as a disruptive cloud data warehouse, it
has evolved over time, and today it is far more than an innovative modern data
warehouse.

Along the way, Snowflake earned some impressive recognition. Snowflake won first
place at the 2015 Strata + Hadoop World startup competition and was named a “Cool
Vendor” in Gartner’s Magic Quadrant 2015 DBMS report. In 2019, Snowflake was lis‐
ted as number 2 on Forbes magazine’s Cloud 100 list and was ranked number 1 on
LinkedIn’s U.S. list of Top Startups. On September 16, 2020, Snowflake became the
largest software initial public offering (IPO) in history.

Today the Snowflake Data Cloud Platform breaks down silos and enables many dif‐
ferent workloads. In addition to the traditional data engineering and data warehouse
workloads, Snowflake supports data lake, data collaboration, data analytics, data
applications, data science, cybersecurity, and Unistore workloads. Snowflake’s “Many
Data Workloads, One Platform” approach gives organizations a way to quickly derive
value from rapidly growing data sets in secure and governed ways that enable

1

companies to meet compliance requirements. Since its inception 10 years ago, Snow‐
flake has continued its rapid pace of innovation across the Data Cloud.

Snowflake’s founders first gathered in 2012 with a vision of building a data warehouse
for the cloud from the ground up that would unlock the true potential of limitless
insights from enormous amounts of varying types of data. Their goal was to build this
solution to be secure and powerful but cost-effective and simple to maintain. Just
three years later, in 2015, Snowflake’s cloud-built data warehouse became commer‐
cially available. Immediately, Snowflake disrupted the data warehousing market with
its unique architecture and cloud-agnostic approach. The disruptive Snowflake plat‐
form also made data engineering more business oriented, less technical, and less
time-consuming, which created more opportunities to democratize data analytics by
allowing users at all levels within an organization to make data-driven decisions.

To gain an appreciation for Snowflake’s unique qualities and approach, it’s important
to understand the underlying Snowflake architecture. Beginning in Chapter 2 and
carrying on throughout the book, you’ll discover the many ways that Snowflake offers
near-zero management capability to eliminate much of the administrative and man‐
agement overhead associated with traditional data warehouses. You’ll get a firsthand
look at how Snowflake works, because each chapter includes SQL examples you can
try out yourself. There are also knowledge checks at the end of each chapter.

Some of the most innovative Snowflake workloads rely on Snowflake’s Secure Data
Sharing capabilities, which were introduced in 2018. Snowflake Secure Data Sharing
enables virtually instantly secure governed data to be shared across your business
ecosystem. It also opens up many possibilities for monetizing data assets. Chapter 10
is devoted entirely to this innovative Snowflake workload.

In 2021, Snowflake introduced the ability to manage multiple accounts with ease
using Snowflake Organizations. Managing multiple accounts makes it possible to sep‐
arately maintain different environments, such as development and production envi‐
ronments, and to adopt a multicloud strategy. It also means you can better manage
costs since you can select which features you need for each separate account. We’ll
explore Snowflake Organization management in Chapter 5.

Snowflake also expanded the scope of what’s possible in the Data Cloud with the
introduction of Snowpark in June 2021. Across the industry, Snowpark is recognized
as a game changer in the data engineering and machine learning spaces. Snowpark is
a developer framework that brings new data programmability to the cloud and makes
it possible for developers, data scientists, and data engineers to use Java, Scala, or
Python to deploy code in a serverless manner.

2 | Chapter 1: Getting Started

The Security Data Lake, introduced by Snowflake in 2022, is an innovative workload
that empowers cybersecurity and compliance teams to gain full visibility into security
logs, at a massive scale, while reducing the costs of security information and event
management (SIEM) systems. Interestingly, this cybersecurity workload can be
enhanced with cybersecurity partners on the Snowflake Data Exchange who can
deliver threat detection, threat hunting, anomaly detection, and more. We’ll take a
deep dive into Snowpark and the Security Data Lake workloads in Chapter 12. We’ll
also discuss the newest Snowflake workload, Unistore (a workload for transactional
and analytical data), in Chapter 12.

This first chapter will introduce you to Snowflake and get you comfortable navigating
in Snowsight, the new Snowflake web UI. In addition, the chapter includes informa‐
tion about the Snowflake community, certifications, and Snowflake events. There is
also a section which describes caveats about code examples in the book. Taking time
to get oriented in this chapter will set you up for success as you navigate the succes‐
sive chapters.

Snowflake Web User Interfaces
Two different Snowflake web user interfaces are available: the Classic Console and
Snowsight, the new Snowflake web UI. Snowsight was first introduced in 2021 and is
now the default user interface in newly created Snowflake accounts. Snowsight is
expected to become the default user interface for all accounts in early 2023, with the
Classic Console being deprecated shortly thereafter. Unless otherwise stated, all our
hands-on examples will be completed in Snowsight.

As with all other Snowflake features and functionality, Snowsight is continually being
improved. As such, there may be times when the screenshots in the chapters deviate
slightly from what is shown in the Snowsight web UI in which you are working.

To support rapid innovation, Snowflake deploys two scheduled
releases each week and one behavior change release each month.
You can find more information about Snowflake releases in the
Snowflake documentation.

Prep Work
In the prep section of each chapter in the book, we’ll create any folders, worksheets,
and Snowflake objects that will be needed for that chapter’s hands-on examples.

You’ll need access to a Snowflake instance in order to follow along and complete the
hands-on examples while going through the chapters. You can set up a free trial
Snowflake account if you do not already have access to a Snowflake instance. If you

Snowflake Web User Interfaces | 3

https://oreil.ly/wfPch

need information on how to create a free trial Snowflake account, refer to
Appendix C.

If you have access to a Snowflake org that defaults to the Classic Console, you can
access Snowsight in one of two ways. In the Classic Console web interface, you can
click the Snowsight button in the upper-right corner of the screen (as shown in
Figure 1-1). Alternatively, you can log in to Snowsight directly.

Figure 1-1. Classic Console web interface showing the Snowsight button

Once you are inside Snowsight, Worksheets is the default tab (as shown in
Figure 1-2). You can also click some of the different tabs, including the Data tab and
the Compute tab, to see some of the available menu options. As we will see later, the
Databases subtab will display the databases available to you within your access rights.

Figure 1-2. Snowsight UI tabs with the Worksheets tab as the default

If you have been working in the Classic Console web interface before now or if this is
the first time you’re logging in, you’ll be presented the option to import your work‐
sheets when you first enter Snowsight (as shown in Figure 1-3).

4 | Chapter 1: Getting Started

https://oreil.ly/55CLH

Figure 1-3. An option to import worksheets is presented to you the first time you use
Snowsight

If you import a worksheet from the Classic Console UI, a new timestamped folder
will be created (as shown in Figure 1-4).

Figure 1-4. The folder name defaults to the day and time when you import your
worksheets

You can access Snowsight using one of the latest versions of Google Chrome, Mozilla
Firefox, or Apple Safari for macOS. After you log in, a client session is maintained
indefinitely with continued user activity. After four hours of inactivity, the current
session is terminated and you must log in again. The default session timeout policy of
four hours can be changed; the minimum configurable idle timeout value for a ses‐
sion policy is five minutes.

Prep Work | 5

Snowsight Orientation
When logging in to Snowsight, you’ll have access to your User menu and your Main
menu. The User menu is where you can see your username and your current role. By
default, you’ll be assigned the SYSADMIN role when you first sign up for a
trial account.

You’ll also notice that the Main menu defaults to the Worksheets selection. The area
to the right of the Main menu is where you have more options for your Main menu
selection. In Figure 1-5, you can see the Worksheets menu to the right of the Main
menu. Underneath the Worksheets menu are submenus specific to the Main
menu selection.

Figure 1-5. Snowsight menu options

Next, we will set our Snowsight preferences and spend a few minutes navigating the
Snowsight Worksheets area.

Snowsight Preferences
To get your preferences set up, click directly on your name, or use the drop-down
arrow beside your name to access the submenus (as shown in Figure 1-6). You’ll
notice that it is possible to switch roles here. Try switching your role to a different
role and then switch it back to SYSADMIN. This will be important throughout the
chapter exercises as we’ll periodically need to switch between roles.

6 | Chapter 1: Getting Started

You’ll also notice that Snowflake Support is available from within the User menu.
Whenever you need to submit a case, just click Support. It’s important to note that
you won’t be able to create a support case when using a free trial account.

Figure 1-6. User menu selections

Click the Profile option and the Profile submenu will be available to you (as shown in
Figure 1-7). Among other things, you’ll be able to change your preferred language
and enroll in multifactor authentication (MFA) here. This is also where you would go
if you wanted to change your password.

If you make changes to your profile, click the Save button. Otherwise, click the
Close button.

Snowsight Preferences | 7

Figure 1-7. Profile submenu

Navigating Snowsight Worksheets
As you navigate Snowsight and do the exercises in the book, you will notice that auto-
save is enabled in Snowsight. Along these lines, one of the great features in Snowsight
is versioning history; you can revert back to a previous worksheet version if
necessary.

Context Setting
Setting the context for queries is something we’ll be doing throughout our examples.
For context to be set, we need to select the virtual warehouse we’ll be using as well as

8 | Chapter 1: Getting Started

the role we want to use to execute the queries. We’ll also need to select the database
and schema we want to use for our queries.

Virtual warehouses, roles, and other Snowflake objects will be introduced in the com‐
ing chapters. For now, just know that your current role determines what data you can
see and what actions you can take within Snowflake. The current virtual warehouse
you’re using is the compute power chosen to run your queries. Most, but not all,
queries require a virtual warehouse to execute the query. If you are using a Snowflake
trial org, your default role is SYSADMIN and your default virtual warehouse is
COMPUTE_WH.

Before we set our context for upcoming queries, we’ll find out what role and virtual
warehouse we’re currently using. To do this, we’ll need to execute some SQL queries
in a worksheet. Let’s create a new folder and new worksheet where we can run our
queries. In the upper-right corner, click the ellipsis and then click New Folder (as
shown in Figure 1-8).

Figure 1-8. Clicking the ellipsis offers choices for the user, including creating a new folder

Name the new folder Chapter1 and click the Create Folder button (as shown in
Figure 1-9).

Figure 1-9. Menu to create a new folder

Navigating Snowsight Worksheets | 9

Click the + Worksheet button to create a new worksheet (as shown in Figure 1-10).

Figure 1-10. Creating a new worksheet within Snowsight by clicking the
+ Worksheet button

Once you click the + Worksheet button, a new worksheet is created in the Chapter1
folder. You’ll notice that the name of the worksheet defaults to the current date and
time (as shown in Figure 1-11) and the cursor is in the worksheet awaiting your SQL
statement. One other important thing to notice is that no database has been selected.
We’ll get around to setting the context for the database a little later.

Figure 1-11. A new worksheet created in the Chapter1 folder

Before executing any queries, though, let’s change the name of the worksheet. Click
the drop-down arrow beside the name of the worksheet and enter a new worksheet
name of Chapter1 Getting Started (as shown in Figure 1-12).

Figure 1-12. Renaming the worksheet

10 | Chapter 1: Getting Started

You are now ready to enter your first queries into the Snowsight worksheet. Enter the
following statements:

SELECT CURRENT_ROLE();
SELECT CURRENT_WAREHOUSE();

Your worksheet should look like the one shown in Figure 1-13, where there are two
statements on two separate lines and the cursor is sitting at the beginning of line 3.
The SELECT statements simply return information; they do not change your current
role or current virtual warehouse.

Figure 1-13. Cursor on line 3 of the worksheet

In the upper-right corner of your screen is a button with a blue arrow in it (as shown
in Figure 1-14). This button, which we’ll refer to from now on as the Run button, is
what you’ll click to run the queries in a worksheet.

Figure 1-14. The blue arrow button, which is the Run button in Snowflake

Making sure your cursor is at the beginning of line 3, click the Run button. You
should see the current virtual warehouse, as shown in Figure 1-15.

Figure 1-15. Query results from the worksheet

Now let’s see what happens if we put the cursor at the beginning of the worksheet, on
line 1, and then click the Run button. You’ll see the result shown in Figure 1-16.

Navigating Snowsight Worksheets | 11

Figure 1-16. Query result for showing the current role

What you’ll notice is that only the first query was executed. Now let’s try one more
way to execute these queries. Highlight both statements as in Figure 1-17, and this
time hit Ctrl + Enter rather than the Run button. Ctrl + Enter is a shortcut for the
Run button. You’ll notice that both statements were executed.

Figure 1-17. All the Snowflake statements are highlighted before executing the code

Next, let’s find out what our current database is. Execute the following code:

SELECT CURRENT_DATABASE();

When we run the preceding statement to select the current database, a null value is
returned. That is because we haven’t yet set the context for our database. We can set
the context for our database in one of two ways: by using the drop-down menu or by
executing a query with the USE command. You can use the drop-down menu if you
aren’t sure which databases you can use. The drop-down menu will list for you all the
databases your role can access. We’ll use the query this time. When we start entering
the statement, Snowflake uses its Smart Autocomplete feature to help us (as shown in
Figure 1-18).

Figure 1-18. Smart Autocomplete in action

Go ahead and execute the statement to use the Snowflake sample database:

USE DATABASE SNOWFLAKE_SAMPLE_DATA;

12 | Chapter 1: Getting Started

When you execute that query, the database context is changed. You can see the
changed context directly on the worksheet now where the drop-down menu, when
you click it, shows the current database (as shown in Figure 1-19). It also shows the
schemas accessible within that database. None of the schemas are highlighted or have
a checkmark beside them, which means no schema has been selected yet.

Figure 1-19. The current database selected is SNOWFLAKE_SAMPLE_DATA

This time, instead of executing a USE command to set the current schema, we’ll select
from the menu. Go ahead and select the schema TPCDS_SF100TCL (as shown in
Figure 1-20).

Figure 1-20. Database and schema selections

Navigating Snowsight Worksheets | 13

One of the things you’ll notice about Snowsight is that there are four buttons below
the query and just to the right of the object listings. Currently three of the buttons are
highlighted in Figure 1-21. All four buttons can’t be selected at the same time because
Results can only be selected if Chart is deselected.

Figure 1-21. Four buttons in Snowsight, just below the query

Select the Objects button. Now deselect and then reselect each of the other three but‐
tons one at a time to see what happens to your workspace area. The Objects button
determines whether you see the objects to the left of your screen. You can deselect the
Query button to get a full-screen view of the results, or you can deselect the Results
button to get a full-screen view of the worksheet queries. If you select the Chart but‐
ton, the Results button is deselected. Changing up the Snowsight viewing area allows
you to customize the Snowflake UI.

In the next section, we’ll take a look at new Snowsight features that improve user pro‐
ductivity. In Chapter 11 we’ll look at Snowsight charts and dashboards as well as
some new Snowsight collaboration features.

Improved Productivity
You’ll appreciate the many improvements that come with Snowsight if you’ve been
working in the Snowflake Classic Console web interface. Snowsight provides auto‐
matic contextual suggestions, script version history, worksheet folder structures,
shortcuts, and much more. Let’s dig into some of the features.

Using contextual suggestions from Smart Autocomplete
When we were writing our query to set the context for the database, the Snowflake
Smart Autocomplete feature gave us contextual suggestions. Indeed, Snowflake
showed us our choices before we could complete the name of the database (as shown
in Figure 1-22). If you were to begin entering a function name, Snowflake would give
you information about the parameters needed as well as link to the Snowflake docs.

14 | Chapter 1: Getting Started

Figure 1-22. Snowsight contextual suggestions from Smart Autocomplete

Formatting SQL
Snowsight gives you the ability to neatly format your SQL code. Use the drop-down
menu to select “Format query” to have your SQL query reformatted, as in
Figure 1-23.

Figure 1-23. Snowsight option to format a query

Navigating Snowsight Worksheets | 15

It is no longer necessary to spend time formatting your messy code before sharing it
with others or collaborating on your dashboards. The “Format query” option takes
care of that for you. You can use the “Format query” option to clean up any messy
formatting before you share your SQL code or collaborate on visualizations
with others.

Using shortcuts
You’ll find that there are a number of shortcut commands in Snowsight commands.
Click the drop-down arrow beside the name of the worksheet and then click “Show
shortcuts” to access those commands (as shown in Figure 1-24).

Figure 1-24. An option to show shortcuts is available in Snowsight

Accessing version history
The current worksheet is automatically saved each time a SQL statement is run in a
Snowsight worksheet. If a statement or script is executed multiple times, the version
history will be available. The various versions can be accessed by accessing the drop-
down menu on the right side of the screen, which shows the last time the worksheet
was updated (as shown in Figure 1-25).

16 | Chapter 1: Getting Started

Figure 1-25. Query history showing recent updates

As we navigate Snowsight in the coming chapters, I will point out other Snowsight
functionality. Once you’re ready to return to the Main menu, just click the House
icon in the upper-left corner of your screen (as shown in Figure 1-26).

Figure 1-26. The House icon, which returns you to the Main menu

Snowflake Community
This book will teach you about the Snowflake architecture and how to use Snowflake.
The information and lessons in the book are comprehensive; nevertheless, you may
find that you have questions about a particular topic. For this reason, I encourage you
to join and participate in the Snowflake community.

If you would like to connect with others who have a similar passion for Snowflake,
there are user groups you may be interested in joining. Some user groups hold

Snowflake Community | 17

in-person events in North America, Europe, the Middle East, and the Asia Pacific
region. You can find more information about Snowflake user groups on their website.
There are also virtual special interest groups (see Figure 1-27 for the list of them) in
addition to regional user groups. I help manage the Data Collaboration special inter‐
est group.

Figure 1-27. Snowflake special interest groups (virtual)

Snowflake user groups are just one of the ways you can get involved in the Snowflake
community. There are also community groups, a link to resources, and access to dis‐
cussions available from the Snowflake community login page. To access these groups
and resources, click Log In at the upper-right corner of the page and then click the
“Not a member?” link to create your free Snowflake community member account.

Snowflake has a special Data Superhero program for Snowflake experts who are
highly active in the community. Each person recognized as a Data Superhero receives
a custom Data Superhero character created by Francis Mao, Snowflake’s director of
corporate events. Figure 1-28 shows a gathering of some of the Snowflake Data
Superheroes, including me!

Figure 1-28. Snowflake Data Superheroes

18 | Chapter 1: Getting Started

https://oreil.ly/0K3M7
https://oreil.ly/YDOIZ

Snowflake Certifications
As you progress through the chapters in the book, you’ll find your Snowflake knowl‐
edge will grow quickly. At some point, you may want to consider earning a Snowflake
certification to demonstrate that knowledge to the community.

All Snowflake certification paths begin with the SnowPro Core certification exam.
Passing the SnowPro exam enables you to sit for any or all of the five role-based
advanced certifications: Administrator, Architect, Data Analyst, Data Engineer, and
Data Scientist. A Snowflake certificate is valid for two years, after which time a recer‐
tification exam must be passed. Passing any advanced Snowflake certification resets
the clock on the SnowPro Core certification, so you have two more years before you’ll
need to recertify. More information about Snowflake certifications can be found on
their website.

Snowday and Snowflake Summit Events
Snowflake hosts many events throughout the year, including its Data for Breakfast
events. The two Snowflake main events for new-product release information are
Snowday and Snowflake Summit. Snowday is a virtual event that happens each
November. Snowflake Summit is an in-person event held each June. Snowflake Sum‐
mit features keynotes, breakout sessions, hands-on labs, an exposition floor, and
more.

Important Caveats About Code Examples in the Book
The code examples created for each chapter in the book were designed so that they
can be completed independent of other chapters. This enables you to revisit the
examples of any particular chapter as well as perform code cleanup at the end of
each chapter.

Occasionally, I will point out how things look or function in a free trial account ver‐
sus how they look or function in a paid account. We’ll see very few differences, but it’s
important to realize that there are some ways in which the two differ.

The functionality demonstrated in the chapters assumes you have an Enterprise Edi‐
tion Snowflake instance or higher. If you are currently working in a Snowflake Stan‐
dard Edition org, you’ll want to set up a free trial account and select Enterprise
Edition. Otherwise, there will be some examples you won’t be able to complete if you
use a Standard Edition Snowflake org. More information about different Snowflake
editions can be found in Appendix C.

Snowflake Certifications | 19

https://oreil.ly/26NEu
https://oreil.ly/nyHwC

Earlier in the chapter, you saw how to use Snowsight to format your SQL statements.
The statements provided for you in this book will follow that formatting when possi‐
ble, but the format may vary slightly at times due to space limitations. Also, in some
chapters we’ll be using the Snowflake sample database that is provided with your
Snowflake account. Because the underlying data in that Snowflake sample data set
sometimes changes, the result sets included in the chapter examples may be slightly
different from your results. Alternative exercises will be made available at https://
github.com/SnowflakeDefinitiveGuide for tables or schemas in the Snowflake sample
database that later become unavailable.

In this chapter, we executed USE commands to set the context for our database.
Throughout the upcoming chapter examples, we’ll include the USE commands to set
context. You have the option of executing the USE commands or selecting the context
from the drop-down menus.

For coding examples throughout the book, we’ll be following the naming standards
best practices in Appendix B whenever we create our own Snowflake objects. Follow‐
ing best practices helps make code simpler, more readable, and easier to maintain. It
also enables the creation of reusable code and makes it easier to detect errors. In this
section, I’ll call out a few of the most important best practices.

For object names, we’ll be using all uppercase letters. We could achieve the same
results by using all lowercase letters or mixed case, because Snowflake converts
object names to uppercase. If you want to have an object name with mixed-case or all
lowercase letters, for example, you’ll need to enclose your object name in quotes. It is
also important to keep this functionality in mind when you work with third-party
tools that connect to Snowflake. Some third-party tools can’t accept whitespace or
special characters, so it’s best to avoid both of those when naming Snowflake objects.

Another important best practice is to avoid using the same name being used by a dif‐
ferent object. In later chapters you’ll learn about the different table types, including
temporary tables and permanent tables. You’ll discover that temporary tables are ses‐
sion based; thus, they are not bound by uniqueness requirements. Even though you
can create a temporary table with the same name as another table, it is not a good
practice to do so. This will be discussed in more detail in Chapter 3.

Snowflake controls access through roles, and specific roles are responsible for creat‐
ing certain types of objects. For example, the SYSADMIN role is used to create data‐
bases and virtual warehouses. We’ll learn more about roles in Chapter 5, and
whenever possible, we’ll follow best practices in our examples. Sometimes we’ll need
to diverge from best practices to keep the example simple. When that happens, I’ll
mention that we’re using a different role than the recommended role.

20 | Chapter 1: Getting Started

https://github.com/SnowflakeDefinitiveGuide
https://github.com/SnowflakeDefinitiveGuide

When creating a new object, you can use the CREATE statement alone or, optionally,
you can add either the IF NOT EXISTS or the OR REPLACE syntax to the CREATE state‐
ment. For our examples, we’ll use the CREATE OR REPLACE syntax so that you can
always go back to the beginning of the chapter exercises to start over without having
to drop objects first. In practice, though, be sure to use the CREATE IF NOT EXISTS
syntax, especially in a production environment. If you do mistakenly use the OR
REPLACE syntax in production, you have the option to use Snowflake Time Travel
capabilities to return the object to its original state. Time Travel is demonstrated in
Chapter 7.

The code examples in the book have been thoroughly tested; nevertheless, it is always
possible to have errors. If you find an error in the code or in the text, please submit
your errata to O’Reilly at https://oreil.ly/snowflake-the-definitive-guide.

Code Cleanup
We didn’t create any new Snowflake objects in this chapter, so no cleanup is needed.
It’s OK to leave the folder and worksheets we created as they don’t take up any storage
or result in any compute charges.

Summary
There is a reason why Snowflake became the largest software IPO in history, and why
Snowflake continues to innovate and enable industry disruption. The Snowflake Data
Cloud is secure, scalable, and simple to manage; its ability to eliminate data silos and
run workloads from a single platform creates opportunities to democratize data ana‐
lytics. As you make your way through each chapter in the book, you’ll see firsthand
why Snowflake is a leader in the new data economy.

In this introductory chapter, you’ve been able to familiarize yourself with Snowsight,
the Snowflake web user interface. You’ve also had an opportunity to learn about
Snowflake community events as well as Snowflake certifications. Importantly, you
learned about caveats for the code examples in this book. Most notably, with only a
few exceptions, we’ll be following the Snowflake best practices outlined in
Appendix B.

The next chapter will compare traditional data platform architectures to Snowflake.
We’ll then take a deep dive into the three distinct Snowflake layers. It’s an important
foundational chapter to help you better understand some of the more technical
aspects of Snowflake. You’ll also get hands-on experience creating new clusters of
compute resources called virtual warehouses.

Code Cleanup | 21

https://oreil.ly/snowflake-the-definitive-guide

Knowledge Check
The following questions are based on the information provided in this chapter:

1. The Snowflake free trial account allows you to use almost all the functionality of
a paid account. What are a few of the differences, though, when using a Snow‐
flake trial account?

2. What are your options if you are unable to create a support case within
Snowflake?

3. Explain what it means to set the context for your Snowflake worksheet.
4. What does “Format query” do? Specifically, does “Format query” correct your

spelling for commands or table names?
5. For how long are Snowflake certifications valid? What are two ways you can

extend the date for Snowflake certifications?
6. What are two different ways you can execute a SQL query in a Snowflake

worksheet?
7. From within a Snowflake worksheet, how do you return to the Main menu?
8. What is the reason we’ll be using all uppercase letters when naming our Snow‐

flake objects? Could we instead use mixed case? If so, explain how we would
accomplish that.

9. We’ll be using the CREATE OR REPLACE statement in future chapters to create new
Snowflake objects. Why is it better not to do this in a production environment?

10. When you create a new Snowflake worksheet, what is the default name of the
worksheet?

Answers to these questions are available in Appendix A.

22 | Chapter 1: Getting Started

CHAPTER 2

Creating and Managing the
Snowflake Architecture

A decade ago, data platform architectures lacked the scalability necessary to make it
easier for data-driven teams to share the same data simultaneously regardless of the
size of the team or their proximity to the data. The need for scalability grew and
demand increased for governed access to that data to generate actionable insights. To
meet this demand, modifications were made to existing data platform architectures.
However, this did not solve the problem given the sheer number and complexity of
the platforms and the data-intensive nature of the applications until Snowflake burst
onto the stage with a unique architecture.

Snowflake is an evolutionary modern data platform that solved the scalability prob‐
lem. Compared to traditional cloud data platform architectures, Snowflake enables
data storage and processing that is significantly faster, easier to use, and more afford‐
able. Snowflake’s Data Cloud provides users with a unique experience by combining a
new SQL query engine with an innovative architecture designed and built, from the
ground up, specifically for the cloud.

Prep Work
Create a new worksheet titled Chapter2 Creating and Managing Snowflake Architec‐
ture. Refer to “Navigating Snowsight Worksheets” on page 8 if you need help creating
a new worksheet. To set the worksheet context, make sure you are using the
SYSADMIN role and the COMPUTE_WH virtual warehouse.

23

Traditional Data Platform Architectures
In this section, we’ll briefly review some traditional data platform architectures and
how they were designed in an attempt to improve scalability. Scalability is the ability
of a system to handle an increasing amount of work. We’ll also discuss the limitations
of these architectures, and we will discover what makes the Snowflake Data Cloud
architecture so unique. Afterward, we will learn about each of the three different
Snowflake architecture layers in detail: the cloud services layer, query processing (vir‐
tual warehouse) compute layer, and centralized (hybrid columnar) database storage
layer.

Shared-Disk (Scalable) Architecture
The shared-disk architecture was an early scaling approach designed to keep data
stored in a central storage location and accessible from multiple database cluster
nodes (as shown in Figure 2-1). The data accessed by each cluster node is consistently
available because all data modifications are written to the shared disk. This architec‐
ture is a traditional database design and is known for the simplicity of its data man‐
agement. While the approach is simple in theory, it requires complex on-disk locking
mechanisms to ensure data consistency which, in turn, causes bottlenecks. Data con‐
currency, allowing many users to affect multiple transactions within a database, is also
a major problem, and adding more compute nodes only compounds the problem in a
shared-disk architecture. Therefore, the true scalability of this architecture is limited.

Figure 2-1. The shared-disk architecture, which is limited by the performance of the disk

Oracle RAC is an example of a shared-disk architecture.

24 | Chapter 2: Creating and Managing the Snowflake Architecture

Shared-Nothing (Scalable) Architecture
The shared-nothing architecture, in which storage and compute are scaled together
(as shown in Figure 2-2), was designed in response to the bottleneck created by the
shared-disk architecture. This evolution in architecture was made possible because
storage had become relatively inexpensive. However, distributed cluster nodes along
with the associated disk storage, CPU, and memory requires data to be shuffled
between nodes, which adds overhead. The way the data is distributed across the
nodes will determine the extent of the additional overhead. Striking the right balance
between storage and compute is especially difficult. Even when it is possible to resize
a cluster, it takes time to do so. Thus, organizations often overprovision shared-
nothing resources, which results in unused, unneeded resources. Examples of a
shared-nothing architecture include IBM DB2, Vertica, and Pivotal Greenplum.

Figure 2-2. The shared-nothing architecture, which is limited by the need to distribute
and query data across nodes

NoSQL Alternatives
Most NoSQL solutions rely on a shared-nothing architecture; thus, they have many of
the same limitations. However, the benefit of NoSQL solutions is that they can store
nonrelational data without first requiring transformation of the data. Additionally,
most NoSQL systems don’t require schemas. NoSQL, a term that implies “Not Only
SQL” rather than “No to SQL,” is a good choice for storing email, web links, social
media posts and tweets, road maps, and spatial data.

Traditional Data Platform Architectures | 25

There are four types of NoSQL databases: document stores, key-value (KV) stores,
column family data stores or wide column data stores, and graph databases.

Document-based NoSQL databases such as MongoDB store data in JSON objects
where each document has key-value pair–like structures. Key-value databases such as
DynamoDB are especially useful for capturing customer behavior in a specific ses‐
sion. Cassandra is an example of a column-based database where large numbers of
dynamic columns are logically grouped into column families. Graph-based databases,
such as Neo4j and Amazon Neptune, work well for recommendation engines and
social networks where they’re able to help find patterns or relationships among
data points.

A major limitation of NoSQL stores is that they perform poorly when doing calcula‐
tions involving many records, such as aggregations, window functions, and arbitrary
ordering. Thus, NoSQL stores can be great when you need to quickly create, read,
update, and delete (CRUD) individual entries in a table, but they aren’t recommended
for ad hoc analysis. Additionally, NoSQL alternative solutions require specialized skill
sets, and they aren’t compatible with most SQL-based tools.

Note that the NoSQL solutions are not database warehouse replacements. While
NoSQL alternatives can be useful for data scientists, they do not perform well
for analytics.

The Snowflake Architecture
Even the improved traditional data platforms, especially those that were implemented
on premises, couldn’t adequately address modern data problems or solve the long-
standing scalability issue. The Snowflake team made the decision to take a unique
approach. Rather than trying to incrementally improve or transform existing soft‐
ware architectures, they built an entirely new, modern data platform, just for the
cloud, that allows multiple users to concurrently share live data.

The unique Snowflake design physically separates but logically integrates storage and
compute along with providing services such as security and management. As we
explore the many unique Snowflake features throughout the upcoming chapters,
you’ll be able to see for yourself why the Snowflake architecture is the only architec‐
ture that can enable the Data Cloud.

The Snowflake hybrid-model architecture is composed of three layers, which are
shown in Figure 2-3: the cloud services layer, the compute layer, and the data storage
layer. Each layer, along with the three Snowflake caches, is discussed in more detail in
the following sections.

26 | Chapter 2: Creating and Managing the Snowflake Architecture

Figure 2-3. Snowflake’s hybrid columnar architecture

Snowflake’s processing engine is native SQL, and as we will see in later chapters,
Snowflake is also able to handle semi-structured and unstructured data.

The Cloud Services Layer
All interactions with data in a Snowflake instance begin in the cloud services layer,
also called the global services layer (as shown in Figure 2-4). The Snowflake cloud
services layer is a collection of services that coordinate activities such as authentica‐
tion, access control, and encryption. It also includes management functions for han‐
dling infrastructure and metadata, as well as performing query parsing and
optimization, among other features. The cloud services layer is sometimes referred to
as the Snowflake brain because all the various service layer components work
together to handle user requests that begin from the time a user requests to log in.

The Cloud Services Layer | 27

Figure 2-4. Snowflake’s cloud services layer

Each time a user requests to log in, the request is handled by the cloud services layer.
When a user submits a Snowflake query, the SQL query will be sent to the cloud serv‐
ices layer optimizer before being sent to the compute layer for processing. The cloud
services layer is what enables the SQL client interface for Data Definition Language
(DDL) and Data Manipulation Language (DML) operations on data.

Managing the Cloud Services Layer
The cloud services layer manages data security, including the security for data shar‐
ing. The Snowflake cloud services layer runs across multiple availability zones in each
cloud provider region and holds the result cache, a cached copy of the executed query
results. The metadata required for query optimization or data filtering are also stored
in the cloud services layer.

Just like the other Snowflake layers, the cloud services layer will
scale independently of the other layers. Scaling of the cloud serv‐
ices layer is an automated process that doesn’t need to be directly
manipulated by the Snowflake end user.

Billing for the Cloud Services Layer
Most cloud services consumption is already incorporated into Snowflake pricing.
However, when customers occasionally exceed 10% of their daily compute credit
usage, they are billed for the overage. Note that daily compute credit usage is calcula‐
ted in the UTC time zone.

All queries use a small number of cloud services resources. DDL operations are meta‐
data operations, and as such, they use only cloud services. Keeping both facts in
mind, we should evaluate some situations when we know the cost will be higher for
cloud services to consider whether the benefits will be worth the increased costs.

28 | Chapter 2: Creating and Managing the Snowflake Architecture

Increased usage of the cloud services layer will likely occur when using several simple
queries, especially queries accessing session information or using session variables.
Increased usage also occurs when using large, complex queries with many joins.
Single row inserts, rather than bulk or batch loading, will also result in higher cloud
services consumption. Finally, you’ll consume only cloud services resources if you use
commands on the INFORMATION_SCHEMA tables or certain metadata-only com‐
mands such as the SHOW command. If you are experiencing higher than expected costs
for cloud services, you may want to investigate these situations. Be sure to also inves‐
tigate any partner tools, including those using the JDBC driver, as there could be
opportunities for improvement from these third-party tools.

Even though the cloud services cost for a particular use case is high, sometimes it
makes sense economically and/or strategically to incur the cost. For example, taking
advantage of the result cache for queries, especially for large or complex queries, will
mean zero compute cost for that query. Thoughtful choices about the right frequency
and granularity for DDL commands, especially for use cases such as cloning, helps to
better balance cloud services consumption costs and virtual warehouse costs to ach‐
ieve an overall lower cost.

The Query Processing (Virtual Warehouse) Compute Layer
A Snowflake compute cluster, most often referred to simply as a virtual warehouse, is
a dynamic cluster of compute resources consisting of CPU memory and temporary
storage. Creating virtual warehouses in Snowflake makes use of the compute
clusters—virtual machines in the cloud which are provisioned behind the scenes.
Snowflake doesn’t publish the exact server in use at any given time; it could change as
the cloud providers modify their services. The Snowflake compute resources are cre‐
ated and deployed on demand to the Snowflake user, to whom the process
is transparent.

A running virtual warehouse is required for most SQL queries and all DML opera‐
tions, including loading and unloading data into tables, as well as updating rows in
tables. Some SQL queries can be executed without requiring a virtual warehouse, and
we’ll soon see examples of that when we discuss the query result cache later in
this chapter.

Snowflake’s unique architecture allows for separation of storage and compute, which
means any virtual warehouse can access the same data as another, without any con‐
tention or impact on performance of the other warehouses. This is because each
Snowflake virtual warehouse operates independently and does not share compute
resources with other virtual warehouses (as shown in Figure 2-5).

The Query Processing (Virtual Warehouse) Compute Layer | 29

Figure 2-5. Snowflake’s compute (virtual warehouse) layer

A virtual warehouse is always consuming credits when it is running in a session.
However, Snowflake virtual warehouses can be started and stopped at any time, and
can be resized at any time, even while running. Snowflake supports two different
ways to scale warehouses. Virtual warehouses can be scaled up by resizing a ware‐
house and can be scaled out by adding clusters to a warehouse. It is possible to use
one or both scaling methods at the same time.

Unlike the Snowflake cloud services layer and the data storage
layer, the Snowflake virtual warehouse layer (as shown in
Figure 2-5) is not a multitenant architecture. Snowflake predeter‐
mines the CPU, memory, and solid-state drive (SSD) configura‐
tions for each node in a virtual warehouse (see Table 2-1). While
these definitions are subject to change, they are consistent in con‐
figuration across all three cloud providers.

Virtual Warehouse Size
A Snowflake compute cluster is defined by its size, with size corresponding to the
number of servers in the virtual warehouse cluster. For each virtual warehouse size
increase, the number of compute resources on average doubles in capacity (see
Table 2-1). Beyond 4X-Large, a different approach is used to determine the number
of servers per cluster. However, the credits per hour do still increase by a factor of 2
for these extremely large virtual warehouses.

Table 2-1. Snowflake virtual warehouse sizes and the associated number of servers per
cluster

X-Small Small Medium Large X-Large 2X-Large 3X-Large 4X-Large
1 2 4 8 16 32 64 128

Virtual warehouse resizing to a larger size, also known as scaling up, is most often
undertaken to improve query performance and handle large workloads. This will be
discussed in more detail in the next section.

30 | Chapter 2: Creating and Managing the Snowflake Architecture

Because Snowflake utilizes per-second billing, it can often be cost-
effective to run larger virtual warehouses because you are able to
suspend virtual warehouses when they aren’t being used. The
exception is when you are running a lot of small or very basic quer‐
ies on large virtual warehouse sizes. There won’t likely be any bene‐
fit from adding the additional resources regardless of the number
of concurrent queries.

Scaling Up a Virtual Warehouse to Process Large Data Volumes and
Complex Queries
In a perfect world (i.e., simple workload, exact same per test), you’d pay the same total
cost for using an X-Small virtual warehouse as using a 4X-Large virtual warehouse.
The only difference would be a decrease in the time to completion. In reality, though,
it isn’t quite that simple. Many factors affect the performance of a virtual warehouse.
The number of concurrent queries, the number of tables being queried, and the size
and composition of the data are a few things that should be considered when sizing a
Snowflake virtual warehouse.

Sizing appropriately matters. A lack of resources, due to the virtual warehouse being
too small, could result in taking too long to complete the query. There could be a neg‐
ative cost impact if the query is too small and the virtual warehouse is too large.

Resizing a Snowflake virtual warehouse is a manual process and can be done even
while queries are running because a virtual warehouse does not have to be stopped or
suspended to be resized. However, when a Snowflake virtual warehouse is resized,
only subsequent queries will make use of the new size. Any queries already running
will finish running while any queued queries will run on the newly sized virtual ware‐
house. Scaling a virtual warehouse up will increase the number of servers (as shown
in Figure 2-6). An example would be from Medium to Large. Scaling a virtual ware‐
house down will decrease the number of servers.

It is recommended that you experiment with different types of
queries and different virtual warehouse sizes to determine the best
way to manage your virtual warehouses effectively and efficiently.
The queries should be of a certain size and complexity that you
would typically expect to complete within no more than 5 to 10
minutes. Additionally, it is recommended that you start small and
increase in size as you experiment. It is easier to identify an under‐
sized virtual warehouse than an underutilized one.

The Query Processing (Virtual Warehouse) Compute Layer | 31

Figure 2-6. Scaling up a Snowflake virtual warehouse increases the size of the cluster

In Snowflake, we can create virtual warehouses through the user interface or with
SQL. A little later we’ll create some virtual warehouses using both methods. But first
let’s review a few things about virtual warehouses before we dive into some hands-on.

When we create a new virtual warehouse using the Snowsight user interface, as
shown in Figure 2-7, we’ll need to know the name of the virtual warehouse and the
size we want the virtual warehouse to be. We’ll also need to decide whether or not we
want the virtual warehouse to be a multicluster virtual warehouse. A multicluster vir‐
tual warehouse allows Snowflake to scale in and out automatically. You’ll learn more
about multicluster virtual warehouses in the next section.

Figure 2-7. Creating a new virtual warehouse in the Snowflake web UI

32 | Chapter 2: Creating and Managing the Snowflake Architecture

Once we create the virtual warehouse, we can always go back and resize it. Resizing
the virtual warehouse means we are scaling it up or down. Scaling up and down is
done manually by editing the existing virtual warehouse.

A virtual warehouse can be resized, either up or down, at any time,
including while it is running and processing statements. Resizing a
virtual warehouse doesn’t have any impact on statements that are
currently being executed by the virtual warehouse. Resizing to a
larger size makes the new, larger virtual warehouse available for
any queries that are in the queue as well as for any future
statements.

Scaling a virtual warehouse up or down can be achieved in the user interface or by
using SQL statements in the worksheet. Another thing you’ll notice is that you have
the choice to use some advanced virtual warehouse options such as Auto Suspend
and Auto Resume (as shown in Figure 2-8). Auto Suspend and Auto Resume are
enabled by default. With Auto Suspend enabled, Snowflake will automatically sus‐
pend the virtual warehouse if it is inactive for a specified period of time. The Auto
Suspend functionality ensures that you don’t leave a virtual warehouse running when
there are no incoming queries. This is important because you are only charged when
a virtual warehouse is running, so you want to have the virtual warehouse suspended
when it is not in use.

The value of the Auto Resume and Auto Suspend times should
equal or exceed any regular gaps in your query workload. For
example, if you have regular gaps of four minutes between queries,
it wouldn’t be advisable to set Auto Suspend for less than four
minutes. If you did, your virtual warehouse would be continually
suspending and resuming, which could potentially result in higher
costs since the minimum credit usage billed is 60 seconds. There‐
fore, unless you have a good reason for changing the default Auto
Suspend and Auto Resume times, it is recommended to leave the
default at 10 minutes.

The Query Processing (Virtual Warehouse) Compute Layer | 33

Figure 2-8. Increasing the cluster size to Medium in the Snowflake web UI (manually
scaled up)

34 | Chapter 2: Creating and Managing the Snowflake Architecture

Larger virtual warehouses do not necessarily result in better perfor‐
mance for query processing or data loading. It is the query com‐
plexity, as part of query processing, that should be a consideration
for choosing a virtual warehouse size because the time it takes for a
server to execute a complex query will likely be greater than the
time it takes to run a simple query. The amount of data to be
loaded or unloaded can also greatly affect performance. Specifi‐
cally, the number of files being loaded and the size of each file are
important factors for data loading performance. As such, you’ll
want to carefully consider your use case before selecting any virtual
warehouse that is greater in size than Large. One exception to that
general rule would be if you are bulk-loading hundreds or thou‐
sands of files concurrently.

Scaling Out with Multicluster Virtual Warehouses to Maximize
Concurrency
A multicluster virtual warehouse operates in much the same way as a single-cluster
virtual warehouse. The goal is to optimize the Snowflake system performance in
terms of size and number of clusters. In the previous section, we learned that when
there was a queuing problem due to either very long-running SQL queries or a large
data volume to be loaded or unloaded, scaling up could result in increased perfor‐
mance since the queries could run faster.

If a concurrency problem is due to many users, or connections, scaling up will not
adequately address the problem. Instead, we’ll need to scale out by adding clusters (as
shown in Figure 2-9)—going from a Min Clusters value of 1 to a Max Clusters value
of 3, for example. Multicluster virtual warehouses can be set to automatically scale if
the number of users and/or queries tends to fluctuate.

Multicluster virtual warehouses are available on the Enterprise,
Business Critical, and Virtual Private Snowflake editions.

The Query Processing (Virtual Warehouse) Compute Layer | 35

Figure 2-9. Scaling out a Snowflake virtual warehouse increases the number of
Snowflake compute clusters

Just like single-cluster virtual warehouses, multicluster virtual warehouses can be cre‐
ated through the web interface or by using SQL for Snowflake instances. Unlike
single-cluster virtual warehouses where sizing is a manual process, scaling in or out
for multicluster virtual warehouses is an automated process. You’ll just need to let
Snowflake know how much you want the multicluster virtual warehouse to scale out.
As an example, you can edit a Snowflake virtual warehouse to have a minimum of
one small cluster and a maximum of three small clusters, as shown in Figure 2-10.

The two modes that can be selected for a multicluster virtual warehouse are Auto-
scale and Maximized. The Snowflake scaling policy, designed to help control the
usage credits in the Auto-scale mode, can be set to Standard or Economy.

Whenever a multicluster virtual warehouse is configured with the scaling policy set to
Standard, the first virtual warehouse immediately starts when a query is queued, or if
the Snowflake system detects that there is one more query than the currently running
clusters can execute. Each successive virtual warehouse starts 20 seconds after the
prior virtual warehouse has started.

If a multicluster virtual warehouse is configured with the scaling policy set to Econ‐
omy, a virtual warehouse starts only if the Snowflake system estimates the query load
can keep the virtual warehouse busy for at least six minutes. The goal of the Economy
scaling policy is to conserve credits by keeping virtual warehouses fully loaded. As a
result, queries may end up being queued and could take longer to complete.

36 | Chapter 2: Creating and Managing the Snowflake Architecture

Figure 2-10. A multicluster virtual warehouse in the Snowflake web UI (automatically
scales in/out)

It is recommended to set the Max Clusters value as high as possible, while being
aware of the associated costs. For example, if you set the Max Clusters at 10, keep in
mind that you could experience a tenfold compute cost for the length of time all 10
clusters are running. A multicluster virtual warehouse is Maximized when the Min
Clusters value is greater than 1 and both the Min Clusters and Max Clusters values
are equal. We’ll see an example of that in the next section.

The Query Processing (Virtual Warehouse) Compute Layer | 37

Compute can be scaled up, down, in, or out. In all cases, there is no
effect on storage used.

Creating and Using Virtual Warehouses
Commands for virtual warehouses can be executed in the web UI or within a work‐
sheet by using SQL. We’ll first take a look at creating and managing virtual ware‐
houses with SQL. Then we’ll look at the web UI functionality for virtual warehouses.

Auto Suspend and Auto Resume are two options available when creating a Snowflake
virtual warehouse. Auto Suspend is the number of seconds that the virtual warehouse
will wait if no queries need to be executed before going offline. Auto Resume will
restart the virtual warehouse once there is an operation that requires compute
resources.

The following SQL script will create a medium-sized virtual warehouse, with four
clusters, that will automatically suspend after five minutes. One thing you’ll notice is
that when you create a virtual warehouse using SQL, you’ll need to state the suspend
time in total seconds. In the user interface, the time is entered in minutes. Navigate to
your Chapter2 Creating and Managing Snowflake Architecture worksheet and execute
the following SQL statement to create a new virtual warehouse:

USE ROLE SYSADMIN;
CREATE WAREHOUSE CH2_WH WITH WAREHOUSE_SIZE = MEDIUM
 AUTO_SUSPEND = 300 AUTO_RESUME = true INITIALLY_SUSPENDED = true;

It is a best practice to create a new virtual warehouse in a sus‐
pended state. Unless the Snowflake virtual warehouse is created ini‐
tially in a suspended state, the initial creation of a Snowflake virtual
warehouse could take time to provision compute resources.

Earlier we discussed how we can change the size of a virtual warehouse by scaling it
up or down and that doing so is a manual process. In order to scale up or down, we’ll
use the ALTER command:

USE ROLE SYSADMIN;
ALTER WAREHOUSE CH2_WH
SET WAREHOUSE_SIZE = LARGE;

38 | Chapter 2: Creating and Managing the Snowflake Architecture

Any SQL statements executed in this workbook after creating this virtual warehouse
will run on that virtual warehouse. If you prefer to use a certain virtual warehouse to
execute a script instead, you can specify that warehouse in the worksheet:

USE WAREHOUSE CH2_WH;

Alternatively, you can update the virtual warehouse in the context menu located at
the upper right of the web UI (as shown in Figure 2-11).

Figure 2-11. The Snowflake web UI virtual warehouses selection

We created our virtual warehouse using SQL commands, but we can also use the
Snowsight web UI to create and/or edit Snowflake virtual warehouses. Let’s navigate
there now. Click the Home icon in the upper left and then select Admin → Ware‐
houses. You’ll see the virtual warehouse that we just created (see CH2_WH in
Figure 2-12). If you don’t see both virtual warehouses, try refreshing the page.

The Query Processing (Virtual Warehouse) Compute Layer | 39

Figure 2-12. Virtual warehouses available for the current role

Look to the far right, click the ellipsis, and then select the Edit option (as shown in
Figure 2-13). Notice that you could have chosen to create a new virtual warehouse by
selecting the + Warehouse button, rather than selecting to edit an existing virtual
warehouse.

Figure 2-13. The Snowflake web UI Edit selection

40 | Chapter 2: Creating and Managing the Snowflake Architecture

Upon selecting the Edit option, you should now see the Edit Warehouse screen, as
shown in Figure 2-14.

Figure 2-14. The Snowflake web UI Edit Warehouse screen

The Query Processing (Virtual Warehouse) Compute Layer | 41

If you are working in a Snowflake Standard Edition org, you won’t see the multiclus‐
ter virtual warehouse option. For the Enterprise Edition, Business Critical Edition,
and Virtual Private Snowflake Edition, multicluster virtual warehouses are enabled.
Even though the multicluster virtual warehouse is toggled on when a cluster of one is
selected, scaling out beyond a single cluster is not possible. To scale out, the number
of clusters needs to be two or greater. When you increase the number of clusters to
two or more, be sure to evaluate the mode. You’ll most likely want to change the
mode to Auto-scale from the default Maximized mode. In that way, your multicluster
virtual warehouse will scale as needed.

To create a Snowflake multicluster virtual warehouse via SQL, you’ll need to specify
the scaling policy as well as the minimum and maximum number of clusters. As sta‐
ted previously, the scaling policy, which applies only if the virtual warehouse is run‐
ning in Auto-scale mode, can be either Economy or Standard.

A multicluster virtual warehouse is said to be Maximized when the
minimum number of clusters and maximum number of clusters
are the same. Additionally, value(s) must be more than one. An
example of a Maximized multicluster virtual warehouse is when
MIN_CLUSTER_COUNT = 3 and MAX_CLUSTER_COUNT = 3.

Separation of Workloads and Workload Management
Query processing tends to slow down when the workload reaches full capacity on tra‐
ditional database systems. In contrast, Snowflake estimates the resources needed for
each query, and as the workload approaches 100%, each new query is suspended in a
queue until there are sufficient resources to execute them. Several options exist to
efficiently handle workloads of varying size. One way is to separate the workloads by
assigning different virtual warehouses to different users or groups of users (as shown
in Figure 2-15). The virtual warehouses depicted in Figure 2-15 are all the same size,
but in practice, the virtual warehouses for different workloads will likely be of differ‐
ent sizes.

Different groups of users can be assigned to different Snowflake virtual warehouses of
varying size. Thus, users who are querying the data will experience a consistent aver‐
age query time. Marketing and sales teams can create and evaluate campaigns while
also capturing sales activities. Accounting and finance teams can access their reports
and delve into the details of the underlying data. Data scientists can run large, com‐
plex queries on vast amounts of data. And ETL processes can continuously load data.

42 | Chapter 2: Creating and Managing the Snowflake Architecture

Figure 2-15. Separating Snowflake workloads by assigning different virtual warehouses
to groups of users

We learned earlier in the chapter that multicluster virtual warehouses can be set to
automatically scale to avoid concurrency problems. For an automatically scaling
multicluster virtual warehouse, we will still need to define the virtual warehouse size
and the minimum and maximum number of clusters. Previously, we saw how to cre‐
ate a new virtual warehouse through the Snowflake UI. Now let’s use SQL to create a
multicluster virtual warehouse for accounting and finance, then take a look at an
example of how automatic scaling for that virtual warehouse might work. Navigate
back to the Chapter2 Creating and Managing Snowflake Architecture worksheet:

USE ROLE SYSADMIN;
CREATE OR REPLACE WAREHOUSE ACCOUNTING_WH
 WITH Warehouse_Size = MEDIUM MIN_CLUSTER_COUNT = 1
 MAX_CLUSTER_COUNT = 6 SCALING_POLICY = 'STANDARD';

The Query Processing (Virtual Warehouse) Compute Layer | 43

The scaling process occurs automatically once the multicluster virtual warehouse is
configured. Figure 2-16 illustrates how automatic scaling works when the number of
concurrent SQL statements increases.

Figure 2-16. Managing Snowflake workloads by using multicluster virtual warehouses to
scale in and out

You can see that on an hourly basis, the workload is heavier between core working
hours for employees. We might also want to investigate to confirm that the daily
workload is heavier overall at the beginning of the month for the consumption virtual
warehouse for reporting, as the accounting department works to prepare and review
the accounting statements for the prior month.

Billing for the Virtual Warehouse Layer
Consumption charges for Snowflake virtual warehouses are calculated based on the
warehouse size, as determined by the number of servers per cluster, the number of
clusters if there are multicluster virtual warehouses, and the amount of time each
cluster server runs. Snowflake utilizes per-second billing with a 60-second minimum
each time a virtual warehouse starts or is resized. When a virtual warehouse is scaled
up, credits are billed for one minute of the additional resources that are provisioned.
All billing, even though calculated in seconds, is reported in fractions of hours.

When using the ACCOUNTADMIN role, you can view the virtual warehouse credit
usage for your account by clicking Account → Usage in the UI. You can also query
the Account Usage view in the SNOWFLAKE shared database to obtain the informa‐
tion. It is recommended that you choose an X-Small virtual warehouse to do so
because of the small size of the data set and simplicity of the query.

44 | Chapter 2: Creating and Managing the Snowflake Architecture

Centralized (Hybrid Columnar) Database Storage Layer
Snowflake’s centralized database storage layer holds all data, including structured and
semi-structured data. As data is loaded into Snowflake, it is optimally reorganized
into a compressed, columnar format and stored and maintained in Snowflake data‐
bases. Each Snowflake database consists of one or more schemas, which are logical
groupings of database objects such as tables and views. Chapter 3 is devoted to show‐
ing you how to create and manage databases and database objects. In Chapter 9, we
will learn about Snowflake’s physical data storage as we take a deep dive into micro-
partitions to better understand data clustering.

Data stored in Snowflake databases is always compressed and encrypted. Snowflake
takes care of managing every aspect of how the data is stored. Snowflake automati‐
cally organizes stored data into micro-partitions, an optimized, immutable, com‐
pressed columnar format which is encrypted using AES-256 encryption. Snowflake
optimizes and compresses data to make metadata extraction and query processing
easier and more efficient. We learned earlier in the chapter that whenever a user sub‐
mits a Snowflake query, that query will be sent to the cloud services optimizer before
being sent to the compute layer for processing.

Snowflake’s data storage layer is sometimes referred to as the remote disk layer. The
underlying file system is implemented on Amazon, Microsoft, or Google Cloud (as
shown in Figure 2-17). The specific provider used for data storage is the one you
selected when you created your Snowflake account. Snowflake doesn’t place limits on
the amount of data you can store or the number of databases or database objects you
can create. Snowflake tables can easily store petabytes of data. There is no effect on
virtual warehouse size as the storage increases or decreases in a Snowflake account.
The two are scaled independently from each other and from the cloud services layer.

Figure 2-17. Snowflake’s data storage layer

There are two unique features in the storage layer architecture: Time Travel and zero-
copy cloning. Both of these very powerful Snowflake features will be introduced in
this chapter and covered in more detail in later chapters. To prepare for those later
chapters, you’ll want to have a thorough understanding of these two features.

Centralized (Hybrid Columnar) Database Storage Layer | 45

Introduction to Zero-Copy Cloning
Zero-copy cloning offers the user a way to snapshot a Snowflake database, schema, or
table along with its associated data. There is no additional storage charge until
changes are made to the cloned object, because zero-copy data cloning is a metadata-
only operation. For example, if you clone a database and then add a new table or
delete some rows from a cloned table, at that point storage charges would be assessed.
There are many uses for zero-copy cloning other than creating a backup. Most often,
zero-copy clones will be used to support development and test environments. We’ll
see examples of this in Chapter 8.

Introduction to Time Travel
Time Travel allows you to restore a previous version of a database, table, or schema.
This is an incredibly helpful feature that gives you an opportunity to fix previous
edits that were done incorrectly or restore items deleted in error. With Time Travel,
you can also back up data from different points in the past by combining the Time
Travel feature with the clone feature, or you can perform a simple query of a database
object that no longer exists. How far back you can go into the past depends on a few
different factors. Time Travel will be discussed in detail in Chapter 7. For the pur‐
poses of this chapter, it is important to note that data storage fees will be assessed for
any data that has been deleted but is still available to restore.

Billing for the Storage Layer
Snowflake data storage costs are calculated based on the daily average size of com‐
pressed rather than uncompressed data. Storage costs include the cost of persistent
data stored in permanent tables and files staged for bulk data loading and unloading.
Fail-safe data and the data retained for data recovery using Time Travel are also con‐
sidered in the calculation of data storage costs. Clones of tables referencing data that
has been deleted are similarly considered.

Snowflake Caching
When you submit a query, Snowflake checks to see whether that query has been pre‐
viously run and, if so, whether the results are still cached. Snowflake will use the
cached result set if it is still available rather than executing the query you just submit‐
ted. In addition to retrieving the previous query results from a cache, Snowflake sup‐
ports other caching techniques. There are three Snowflake caching types: the query
result cache, the virtual warehouse cache, and the metadata cache.

46 | Chapter 2: Creating and Managing the Snowflake Architecture

Query Result Cache
The fastest way to retrieve data from Snowflake is by using the query result cache.
The results of a Snowflake query are cached, or persisted, for 24 hours and then
purged. This contrasts with how the virtual warehouse cache and metadata cache
work. Neither of those two caches is purged based on a timeline. Even though the
result cache only persists for 24 hours, the clock is reset each time the query is re-
executed, up to a maximum of 31 days from the date and time when the query was
first executed. After 31 days, or sooner if the underlying data changes, a new result is
generated and cached when the query is submitted again.

The result cache is fully managed by the Snowflake global cloud services (GCS) layer,
as shown in Figure 2-18, and is available across all virtual warehouses since virtual
warehouses have access to all data. The process for retrieving cached results is man‐
aged by GCS. However, once the size of the results exceeds a certain threshold, the
results are stored in and retrieved from cloud storage.

Figure 2-18. The result cache in the Snowflake cloud services layer

Query results returned to one user are also available to any user who has the neces‐
sary access privileges and who executes the same query. Therefore, any user can run a
query against the result cache with no running virtual warehouse needed, assuming
the query is cached and the underlying data has not changed.

Another unique feature of the query result cache is that it is the only cache that can
be disabled by a parameter. Navigate to the Chapter2 worksheet and execute the fol‐
lowing SQL statement:

ALTER SESSION SET USE_CACHED_RESULT=FALSE;

Disabling the result cache is necessary before performing A/B testing, and it is impor‐
tant to enable query result caching once the testing is complete.

Snowflake Caching | 47

Metadata Cache
The metadata cache is fully managed in the global services layer (as shown in
Figure 2-19) where the user does have some control over the metadata but no control
over the cache. Snowflake collects and manages metadata about tables, micro-
partitions, and even clustering. For tables, Snowflake stores row count, table size in
bytes, file references, and table versions. Thus, a running virtual warehouse will not
be needed, because the count statistics are kept in the metadata cache when running a
SELECT COUNT(*) on a table.

Figure 2-19. The metadata storage cache in the Snowflake cloud services layer

The Snowflake metadata repository includes table definitions and references to the
micro-partition files for that table. The range of values in terms of MIN and MAX,
the NULL count, and the number of distinct values are captured from micro-
partitions and stored in Snowflake. As a result, some queries don’t require a running
virtual warehouse to return results. For example, the MIN of zip code, an integer data
type column, wouldn’t require virtual compute-only cloud services. Snowflake also
stores the total number of micro-partitions and the depth of overlapping micro-
partitions to provide information about clustering.

The information stored in the metadata cache is used to build the
query execution plan.

48 | Chapter 2: Creating and Managing the Snowflake Architecture

Virtual Warehouse Local Disk Cache
The traditional Snowflake data cache is specific to the virtual warehouse used to pro‐
cess the query. Running virtual warehouses use SSD storage to store the micro-
partitions that are pulled from the centralized database storage layer when a query is
processed. This is necessary to complete the query requested, whenever a query is
executed. The size of the virtual warehouse’s SSD cache is determined by the size of
the virtual warehouse’s compute resources (as shown in Figure 2-20).

The virtual warehouse data cache is limited in size and uses the
LRU (Least Recently Used) algorithm.

Whenever a virtual warehouse receives a query to execute, that warehouse will scan
the SSD cache first before accessing the Snowflake remote disk storage. Reading from
SSD is faster than from the database storage layer but still requires the use of a run‐
ning virtual warehouse.

Figure 2-20. The virtual warehouse cache in the Snowflake cloud services layer

Although the virtual warehouse cache is implemented in the virtual warehouse layer
where each virtual warehouse operates independently, the global services layer
handles overall system data freshness. It does so via the query optimizer, which
checks the freshness of each data segment of the assigned virtual warehouse and then
builds a query plan to update any segment by replacing it with data from the remote
disk storage.

Snowflake Caching | 49

Note that the virtual warehouse cache is sometimes referred to as the raw data cache,
the SSD cache, or the data cache. This cache is dropped once the virtual warehouse is
suspended, so you’ll want to consider the trade-off between the credits that will be
consumed by keeping a virtual warehouse running and the value from maintaining
the cache of data from previous queries to improve performance. By default, Snow‐
flake will automatically suspend a virtual warehouse after 10 minutes of idle time, but
this can be changed.

Whenever possible, and where it makes sense, assign the same vir‐
tual warehouse to users who will be accessing the same data for
their queries. This increases the likelihood that they will benefit
from the virtual warehouse local disk cache.

Code Cleanup
In the Chapter2 worksheet, make sure to set the cached results back to TRUE:

USE ROLE SYSADMIN;
ALTER SESSION SET USE_CACHED_RESULT=TRUE;

Go ahead and drop the virtual warehouses:

USE ROLE SYSADMIN;
DROP WAREHOUSE CH2_WH;
DROP WAREHOUSE ACCOUNTING_WH;

Summary
Hopefully these first two chapters have given you an understanding of the power of
the Snowflake Data Cloud and its ease of use. We executed a few SQL statements in
this chapter, but in the upcoming chapters we’ll be demonstrating Snowflake’s many
capabilities by deep-diving into core concepts with hands-on learning examples. If
you haven’t already done so, now is a good time to sign up for a Snowflake free trial
account so that you’ll get the most out of the chapters. Refer to Appendix C for more
details on getting set up in a trial account. Also, be sure to read the important caveats
to code examples in Chapter 1 if you haven’t already done so.

50 | Chapter 2: Creating and Managing the Snowflake Architecture

Knowledge Check
The following questions are based on the information provided in this chapter:

1. Name the three Snowflake architecture layers.
2. Which of the three Snowflake layers are multitenant?
3. In which of the three Snowflake architecture layers will you find the virtual ware‐

house cache? The result cache?
4. If you are experiencing higher than expected costs for Snowflake cloud services,

what kinds of things might you want to investigate?
5. Explain the difference between scaling up and scaling out.
6. What effect does scaling up or scaling out have on storage used in Snowflake?
7. The shared-nothing architecture evolved from the shared-disk architecture.

NoSQL alternatives have also been created. What one main problem have they all
been trying to solve?

8. In a Snowflake multicluster environment, what scaling policies can be selected?
9. What components do you need to configure specifically for multicluster virtual

warehouses?
10. What are two options to change the virtual warehouse that will be used to run a

SQL command within a specific worksheet?

Answers to these questions are available in Appendix A.

Knowledge Check | 51

CHAPTER 3

Creating and Managing Snowflake
Securable Database Objects

Within Snowflake, all data is stored in database tables. Snowflake database tables are
logically structured into collections of rows and columns. This chapter focuses on the
logical structure of databases and database objects, such as tables and views. The
physical structure of Snowflake data storage, including Snowflake micro-partitions,
will be explained in Chapter 9.

In this chapter, we will cover topics in a specific order because the series of examples
build upon each other. We’ll start with creating databases and schemas, reviewing the
INFORMATION_SCHEMA and ACCOUNT_USAGE views, and then creating
tables and views. Next, we’ll learn about stages, stored procedures, and user-defined
functions (UDFs). We’ll close out the chapter with pipes, sequences, streams, and
tasks. All the objects discussed in this chapter are securable database objects (as
shown in Figure 3-1).

A Snowflake securable object is an entity for which you grant access to specific roles.
Roles, which have been granted access privileges, are assigned to users. A Snowflake
user can be either an individual person or an application. Users and roles will be dis‐
cussed in Chapter 5.

In the previous chapter, we completed hands-on exercises with Snowflake virtual
warehouses. Snowflake resource monitors, used to help manage virtual warehouses,
will be explained in detail in Chapter 8.

53

Figure 3-1. Snowflake account entities

Prep Work
Create a new worksheet titled Chapter3 Creating Database Objects. Refer to “Navigat‐
ing Snowsight Worksheets” on page 8 if you need help creating a new worksheet. To
set the worksheet context, make sure you are using the SYSADMIN role and the
COMPUTE_WH virtual warehouse.

Creating and Managing Snowflake Databases
In a relational environment, database objects such as tables and views are maintained
within databases. In Snowflake, the database logically groups the data while the
schema organizes it. Together, the database and schema comprise the namespace. In
the examples throughout this chapter, whenever we work with database objects we’ll
need to specify a namespace, unless the schema and database we want to use are the
active context in the workspace. If the database or schema needs to be specified, we’ll
include the USE command. That way, it is clear to Snowflake the location where
objects are to be created and which specific object is being referenced in the
commands.

We can create two main types of databases: permanent (persistent) and transient. At
the time we create a database, the default will be a permanent database, if we don’t
specify which of the two types we want to create.

54 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Snowflake is designed so that your data is accessible and recovera‐
ble at every stage within the data lifecycle. This is achieved through
Continuous Data Protection (CDP), Snowflake’s comprehensive set
of features that help protect data stored in Snowflake against
human error, malicious acts, and software or hardware failure. The
important Snowflake CDP features introduced in this chapter are
Time Travel and fail-safe.

Transient databases have a maximum one-day data retention period, aka Time Travel
period, and do not have a fail-safe period.

The Snowflake Time Travel period is the time during which table data within the
database can be queried at a historical point in time. This also enables databases and
database objects to be cloned or undropped and historical data to be restored. The
default Time Travel period is one day but can be up to 90 days for permanent data‐
bases; or a user could set the Time Travel period to zero days if no Time Travel period
is desired. Note that the Enterprise Edition or higher is necessary to take advantage of
the 90-day Time Travel period.

Snowflake’s fail-safe data recovery service provides a seven-day period during which
data from permanent databases and database objects may be recoverable by Snow‐
flake. The fail-safe data recovery period is the seven-day period after the data reten‐
tion period ends. Unlike Time Travel data, which is accessible by Snowflake users,
fail-safe data is recoverable only by Snowflake employees.

It is important to note that data storage costs are incurred for those seven days. That
is one consideration when deciding what database type you want to create. Another
consideration is the ability to recover data from other sources if the data stored in the
database is lost after a single data Time Travel period is up.

These are the basic SQL commands for Snowflake databases that we will be covering
in this section:

• CREATE DATABASE

• ALTER DATABASE

• DROP DATABASE

• SHOW DATABASES

CREATE DATABASE is the command used to create a new database, clone an existing
database, create a database from a share provided by another Snowflake account, or
create a replica of an existing primary database (i.e., a secondary database).

Creating and Managing Snowflake Databases | 55

We can create databases from the UI or by using SQL code in the Snowflake work‐
sheet. We’ll first demonstrate how to use the UI to create one database. The rest of the
objects in this chapter will be created using SQL commands in the Snowflake
worksheet.

For all exercises in this chapter, make sure you have your role set to
SYSADMIN unless otherwise directed. As we’ll learn in Chapter 5,
it is a best practice to use the SYSADMIN role, rather than the
ACCOUNTADMIN or SECURITYADMIN role, to create most
Snowflake objects.

Let’s go ahead and get started. We’ll create one permanent database using the Snow‐
flake web UI and one transient database using SQL code in a worksheet. Navigate to
the Data → Databases menu option, as shown in Figure 3-2. It is very important that
you confirm your role is set to SYSADMIN.

Figure 3-2. The Main menu showing the Data → Databases selection

In the upper-right corner of the screen, you should see a + Database button (as
shown in Figure 3-3).

Figure 3-3. Use the + Database button to create new Snowflake databases

Click the + Database button, and when the New Database menu appears, enter the
information to create a new DEMO3A_DB database (as shown in Figure 3-4). Then
click the Create button.

56 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-4. The Snowsight user interface New Database screen

You’ll now see that the new DEMO3A_DB database has been created and is one of
the two databases accessible to the SYSADMIN role (as shown in Figure 3-5).

Figure 3-5. A list of Snowflake databases available for the (current) SYSADMIN role

Creating and Managing Snowflake Databases | 57

Now we’ll create another database, but this time we’ll use a Snowflake worksheet to
do so. Navigate to the Worksheets menu and then click the Creating Database Objects
worksheet that you created previously in the Prep Work section (as shown in
Figure 3-6).

Figure 3-6. The Snowsight user interface showing current worksheets

Make sure your context is set for the SYSADMIN role and the COMPUTE_WH vir‐
tual warehouse. Execute the following statements to create a new transient database:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE TRANSIENT DATABASE DEMO3B_DB
Comment = 'Transient Database for Chapter 3 Exercises';

Notice in the preceding code that we used the optional keywords OR REPLACE in the
command. That way, an error will not be returned if the database already exists,
though the existing database would be completely overwritten.

Use the CREATE OR REPLACE statement sparingly in production so
as not to overwrite an existing database. As an alternative, if you
don’t want to have an error but also don’t want to overwrite an
existing database, use the CREATE DATABASE DEMO3B_DB IF NOT
EXISTS statement instead. The OR REPLACE and IF NOT EXISTS
optional keywords cannot both be used in the same statement. As
mentioned in Chapter 1, the choice was made to use the optional
keywords OR REPLACE throughout the book so that you can easily
go back anywhere in the chapter to rework a section or make a cor‐
rection. However, this approach is not a best practice in your pro‐
duction environment. See Appendix B for more information about
best practices.

Whenever you create a new database, that database is automatically set as the active
database for the current session. It’s the equivalent of using the USE DATABASE com‐
mand. If we needed or wanted to use a database other than the one we just created,
we’d have to include the USE DATABASE command in the worksheet to select the
appropriate database. Alternatively, we could use the drop-down menu to select a dif‐
ferent database.

58 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

If you navigate to the Databases UI, as shown in Figure 3-7, you will see that it shows
the two databases we just created plus the Snowflake sample database that automati‐
cally comes with the Snowflake account.

Figure 3-7. A list of available databases for the (current) SYSADMIN role

Navigate back to the Creating Database Objects worksheet and then change your role
to ACCOUNTADMIN by using the drop-down menu in the upper-right corner.
Open the drop-down menu for databases in the worksheet and you’ll now see one
more database, the SNOWFLAKE database, included as one of the databases you can
select (as shown in Figure 3-8).

Figure 3-8. A list of available databases within the current Snowsight worksheet

While using the ACCOUNTADMIN role in the worksheet, execute the following
command:

USE ROLE ACCOUNTADMIN;
SHOW DATABASES;

Creating and Managing Snowflake Databases | 59

Notice in Figure 3-9 that all databases, including the ones we just created, have a one-
day retention time. Data retention time (in days) is the same as the Time Travel num‐
ber of days and specifies the number of days for which the underlying data is retained
after deletion, and for which the CLONE and UNDROP commands can be performed on
the database.

Figure 3-9. Results of the SHOW DATABASES command

We can change the data retention time for a permanent database but not for a transi‐
ent one. We can change the retention time to up to 90 days for permanent databases,
assuming we have an Enterprise or higher Snowflake edition. We’ll go ahead and
change the retention time for our permanent database to 10 days by using the ALTER
DATABASE command. Be sure to change your role back to SYSADMIN before issuing
the following commands:

USE ROLE SYSADMIN;
ALTER DATABASE DEMO3A_DB
SET DATA_RETENTION_TIME_IN_DAYS=10;

We just changed the data retention time for the DEMO3A_DB database. Let’s see
what happens if we attempt to change the data retention time for a transient database:

USE ROLE SYSADMIN;
ALTER DATABASE DEMO3B_DB
SET DATA_RETENTION_TIME_IN_DAYS=10;

If you run the previous statements, you’ll receive an error telling you that the value 10
is an invalid value for the DATA_RETENTION_TIME_IN_DAYS parameter. That is because
a transient database can have a maximum data retention time of one day. You could
change the retention time to zero days, but then you wouldn’t be able to CLONE or
UNDROP that database.

We’ll be covering tables in more detail in a later section, but for now, it is important
to mention a few things about tables as they relate to permanent versus transient
databases.

Snowflake uses a mixed approach when it comes to permanent databases but not
transient databases. Permanent databases are not limited to the different types of
objects that can be stored within them. For example, you can store transient tables
within a permanent database but you cannot store permanent tables within a transi‐
ent database. As a reminder, transient tables are designed to hold transitory data that

60 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

doesn’t need the same level of protection and recovery as permanent tables but does
need to be maintained beyond a session.

Here is an example of creating a table in our transient database:

USE ROLE SYSADMIN;
CREATE OR REPLACE TABLE DEMO3B_DB.PUBLIC.SUMMARY
 (CASH_AMT number,
 RECEIVABLES_AMT number,
 CUSTOMER_AMT number);

Notice that we didn’t specify the type of table as either permanent or transient. By
default, Snowflake creates a permanent table in a database unless you indicate other‐
wise when you are creating the table. The exception would be when you are creating a
table within a transient database. In that case, the table would also have to be
transient.

By default, all tables created in a transient schema are transient. We can see that is the
case by using the SHOW TABLES command, which gives us the result shown in
Figure 3-10 for the table we just created.

Figure 3-10. Result of using the SHOW TABLES command

There is no limit to the number of database objects, schemas, and
databases that can be created within a Snowflake account.

Each Snowflake account also comes with certain databases, schemas, and tables
already included, as shown in Figure 3-11. The following two databases initially come
with a Snowflake account:

• SNOWFLAKE database
• SNOWFLAKE_SAMPLE_DATA database

Creating and Managing Snowflake Databases | 61

Figure 3-11. The objects hierarchy for a Snowflake database

The SNOWFLAKE database is owned by Snowflake Inc. and is a system-defined,
read-only, shared database which provides object metadata and usage metrics about
your account. Unlike the SNOWFLAKE_SAMPLE_DATA database imported into
your account at the time of setup, the SNOWFLAKE database cannot be deleted
from your account.

While using the SYSADMIN role, we are not able to see the
SNOWFLAKE database because, by default, the SNOWFLAKE
database is shown only to those using the ACCOUNTADMIN role.
However, that privilege can be granted to other roles.

If you signed up for your Snowflake trial account prior to 2022, your account may
also have included the UTIL_DB database and DEMO_DB database, also imported
into your account at the time of setup. These two databases can be dropped from
your Snowflake account if you want.

Upon first look, the SNOWFLAKE_SAMPLE_DATA database appears to be some‐
thing similar to what you might create in your Snowflake account. However, the sam‐
ple database is actually one that has been shared from the Snowflake SFC_SAMPLES
account and the database is read-only in your account, which means that no Data
Definition Language (DDL) commands can be executed on that database. In other
words, database objects cannot be added, dropped, or altered within the sample data‐
base. In addition, no Data Manipulation Language (DML) commands for actions
such as cloning can be performed on the tables. You can, however, view the sample
database and execute queries on the tables.

62 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

We’ll be using the SNOWFLAKE_SAMPLE_DATA database in some of our examples
in this chapter. In Chapter 10 we’ll be learning about shared databases, but for now
what is important to know is that while we don’t incur any storage costs for the
shared sample database, we do need a running virtual warehouse to run queries, so
there will be an associated compute cost for running those queries on the Snowflake
sample database.

Even though it may be obvious, one important consideration for how to architect
your solution and whether to choose permanent or transient objects for storing data
is that there is a monetary cost for storing data in Snowflake, as well as performance
implications. We’ll discuss both of those in more detail in later chapters.

Neither of the databases that come automatically with a Snowflake
account, including the SNOWFLAKE account, will result in data
storage charges for you.

Creating and Managing Snowflake Schemas
When we created databases, we didn’t have to specify the account, because we can
only operate in one account at a time. But when we create a schema, we need to let
Snowflake know which database we want to use. If we don’t specify a particular data‐
base, Snowflake will use the one that is active.

There are different ways to create a schema that will achieve the same end result. Fol‐
lowing are two examples that accomplish the same thing. In this example, the USE
command lets Snowflake know for which database the schema will be created:

USE ROLE SYSADMIN; USE DATABASE DEMO3A_DB;
CREATE OR REPLACE SCHEMA BANKING;

In this example, we simply use the fully qualified schema name:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO3A_DB.BANKING;

If we use the SHOW SCHEMAS command as demonstrated in Figure 3-12, we notice that
the retention time of the new schema also has a retention time of 10 days, just like the
database in which it was created, rather than the default one-day retention.

Figure 3-12. Results of the SHOW SCHEMAS command

Creating and Managing Snowflake Schemas | 63

However, we can always change the retention time to one day for the schema:

USE ROLE SYSADMIN;
ALTER SCHEMA DEMO3A_DB.BANKING
SET DATA_RETENTION_TIME_IN_DAYS=1;

Now run the SHOW SCHEMAS command again and you’ll see the retention time has
been changed for the BANKING schema.

In the previous section, we created a SUMMARY table in the DEMO3B_DB.PUBLIC
schema. Let’s assume we’ve now decided we want that table to exist in a different
schema. How do we achieve that? First we’ll create the new schema, if it doesn’t exist,
and then we’ll rename the table with the newly created schema:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO3B_DB.BANKING;
ALTER TABLE DEMO3B_DB.PUBLIC.SUMMARY
RENAME TO DEMO3B_DB.BANKING.SUMMARY;

Just like databases, schemas can be either permanent or transient,
with the default being permanent. And just like databases, the same
SQL commands are available to us. However, for schemas we have
something unique, called a managed access schema. In a managed
access schema, the schema owner manages grants on the objects
within a schema, such as tables and views, but doesn’t have any of
the USAGE, SELECT, or DROP privileges on the objects.

The following code demonstrates how to create a schema with managed access:

USE ROLE SYSADMIN; USE DATABASE DEMO3A_DB;
CREATE OR REPLACE SCHEMA MSCHEMA WITH MANAGED ACCESS;

Now when you run the SHOW SCHEMAS command, you’ll notice that MANAGED
ACCESS will be displayed under the options column for the schema named
MSCHEMA (as shown in Figure 3-13).

Figure 3-13. Results of the SHOW SCHEMAS command on a schema with managed access

As we will see in Chapter 5, for regular schemas, the object owner role can grant
object access to other roles and can also grant those roles the ability to manage grants
for the object. However, in managed access schemas, object owners are unable to

64 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

issue grant privileges. Instead, only the schema owner or a role with the MANAGE
GRANTS privilege assigned to it can manage the grant privileges.

The SECURITYADMIN and ACCOUNTADMIN roles inherently
have the MANAGE GRANTS privilege. Thus, both roles can manage the
grant privileges on all managed schemas.

Two database schemas, as shown in Figure 3-14, are included in every database that is
created: INFORMATION_SCHEMA and PUBLIC. The PUBLIC schema is the
default schema and can be used to create any other objects, whereas the INFORMA‐
TION_SCHEMA is a special schema for the system that contains views and table
functions which provide access to the metadata for the database and account. The
INFORMATION_SCHEMA will be discussed in the next section.

Figure 3-14. The objects hierarchy for the Snowflake schema

INFORMATION_SCHEMA
As we just learned, the Snowflake INFORMATION_SCHEMA is included within
every database created in Snowflake. The INFORMATION_SCHEMA, also known as
the Data Dictionary, includes metadata information about the objects within the
database as well as account-level objects such as roles. In Chapter 8, we’ll explore
INFORMATION_SCHEMA table functions, which can be used to return historical
information and account usage information. For now, we’ll be exploring INFORMA‐
TION_SCHEMA database views in a little more detail.

Creating and Managing Snowflake Schemas | 65

More than 20 system-defined views are included in every INFORMA‐
TION_SCHEMA. These views can be divided into two categories: account views and
database views.

INFORMATION_SCHEMA account views include the following:

APPLICABLE_ROLES
Displays one row for each role grant

DATABASES
Displays one row for each database defined in your account

ENABLED_ROLES
Displays one row for each currently enabled role in the session

INFORMATION_SCHEMA_CATALOG_NAME
Displays the name of the database in which the INFORMATION_SCHEMA
resides

LOAD_HISTORY
Displays one row for each file loaded into tables using the COPY INTO <table>
command, and returns history for all data loaded in the past 14 days except for
data loaded using Snowpipe

REPLICATION_DATABASES
Displays one row for each primary and secondary database (i.e., a database for
which replication has been enabled) in your organization

You may want to look at what is within each of these views. You’ll notice that for
some of them, all views in the account contain the same information. Try the follow‐
ing two SQL statements, one at a time:

SELECT * FROM SNOWFLAKE_SAMPLE_DATA.INFORMATION_SCHEMA.DATABASES;
SELECT * FROM DEMO3A_DB.INFORMATION_SCHEMA.DATABASES;

You’ll notice the results are the same for each statement, as shown in Figure 3-15.

Figure 3-15. INFORMATION_SCHEMA account views return the same result regard‐
less of the database selected

Now try the following two SQL statements, one at a time:

SELECT * FROM SNOWFLAKE_SAMPLE_DATA.INFORMATION_SCHEMA.APPLICABLE_ROLES;
SELECT * FROM DEMO3A_DB.INFORMATION_SCHEMA.APPLICABLE_ROLES;

66 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Again you’ll notice the results are the same for each statement. For all the INFOR‐
MATION_SCHEMA account views, you’ll receive the same information no matter
which database INFORMATION_SCHEMA you query.

Now let’s take a look at the INFORMATION_SCHEMA database views. We’ll see in
the query results that the INFORMATION_SCHEMA database views will return
results specific to a database.

INFORMATION_SCHEMA database views include the following views:

COLUMNS
Displays one row for each column in the tables defined in the specified (or cur‐
rent) database.

EXTERNAL_TABLES
Displays one row for each external table in the specified (or current) database.

FILE_FORMATS
Displays one row for each file format defined in the specified (or current) data‐
base.

FUNCTIONS
Displays one row for each UDF or external function defined in the specified (or
current) database.

OBJECT_PRIVILEGES
Displays one row for each access privilege granted for all objects defined in your
account.

PIPES
Displays one row for each pipe defined in the specified (or current) database.

PROCEDURES
Displays one row for each stored procedure defined for the specified (or current)
database.

REFERENTIAL_CONSTRAINTS
Displays one row for each referential integrity constraint defined in the specified
(or current) database.

SCHEMATA
Displays one row for each schema in the specified (or current) database.

SEQUENCES
Displays one row for each sequence defined in the specified (or current)
database.

Creating and Managing Snowflake Schemas | 67

STAGES
Displays one row for each stage defined in the specified (or current) database.

TABLE_CONSTRAINTS
Displays one row for each referential integrity constraint defined for the tables in
the specified (or current) database.

TABLE_PRIVILEGES
Displays one row for each table privilege that has been granted to each role in the
specified (or current) database.

TABLE_STORAGE_METRICS
Displays table-level storage utilization information, includes table metadata, and
displays the number of storage types billed for each table. Rows are maintained in
this view until the corresponding tables are no longer billed for any storage,
regardless of various states that the data in the tables may be in (i.e., active, Time
Travel, fail-safe, or retained for clones).

TABLES
Displays one row for each table and view in the specified (or current) database.

USAGE_PRIVILEGES
Displays one row for each privilege defined for sequences in the specified (or
current) database.

VIEWS
Displays one row for each view in the specified (or current) database.

There are different ways to look at database-specific metadata in Snowflake, some of
which use the INFORMATION_SCHEMA database view. If you try each of the fol‐
lowing two commands, you’ll see that there are two different ways we can get the
information about schemas within the Snowflake sample database:

SELECT * FROM SNOWFLAKE_SAMPLE_DATA.INFORMATION_SCHEMA.SCHEMATA;
SHOW SCHEMAS IN DATABASE SNOWFLAKE_SAMPLE_DATA;

One thing you will notice is that the metadata contained with the INFORMA‐
TION_SCHEMA is much more complete, with several more columns of information,
than when you simply use the SHOW SCHEMAS command.

Let’s drill down further to look at the table privileges in the two databases we previ‐
ously created. As a reminder, we created a table in the second database but have not
yet created any tables in the first database. So, what happens if we try to get informa‐
tion about the tables in each database? Run each of the two statements separately to
find out:

SELECT * FROM DEMO3A_DB.INFORMATION_SCHEMA.TABLE_PRIVILEGES;
SELECT * FROM DEMO3B_DB.INFORMATION_SCHEMA.TABLE_PRIVILEGES;

68 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

You will notice that one row was returned for the second query and no rows were
returned for the first query. The reason is because there are no tables in the first data‐
base; thus, there will be no table privileges.

The INFORMATION_SCHEMA, one of the two schemas that are included with
every Snowflake database, has a great many uses. Among other things, the INFOR‐
MATION_SCHEMA provides a great deal of information about an account’s object
metadata and usage metrics. There is also another place within Snowflake where
object metadata and usage metrics are stored, which we’ll cover in the next section.

ACCOUNT_USAGE Schema
The SNOWFLAKE database, viewable by the ACCOUNTADMIN by default,
includes an ACCOUNT_USAGE schema that is very similar to the INFORMA‐
TION_SCHEMA, but with three differences:

• The SNOWFLAKE database ACCOUNT_USAGE schema includes records for
dropped objects whereas the INFORMATION_SCHEMA does not.

• The ACCOUNT_USAGE schema has a longer retention time for historical usage
data. Whereas the INFORMATION_SCHEMA has data available ranging from
seven days to six months, the ACCOUNT_USAGE view retains historical data
for one year.

• Most views in the INFORMATION_SCHEMA have no latency, but
the latency time for ACCOUNT_USAGE could range from 45 minutes
to three hours. Specifically, for the INFORMATION_SCHEMA, there
may be a one- to two-hour delay in updating storage-related statistics
for ACTIVE_BYTES, TIME_TRAVEL_BYTES, FAILSAFE_BYTES, and
RETAINED_FOR_CLONE_BYTES.

One of the common uses for the ACCOUNT_USAGE schema is to keep track of
credits used over time by each virtual warehouse in your account (month to date).
Change your role to ACCOUNTADMIN and execute the following statements:

USE ROLE ACCOUNTADMIN;USE DATABASE SNOWFLAKE;USE SCHEMA ACCOUNT_USAGE;
USE WAREHOUSE COMPUTE_WH;
SELECT start_time::date AS USAGE_DATE, WAREHOUSE_NAME,
 SUM(credits_used) AS TOTAL_CREDITS_CONSUMED
FROM warehouse_metering_history
WHERE start_time >= date_trunc(Month, current_date)
GROUP BY 1,2
ORDER BY 2,1;

The SNOWFLAKE database, which includes the ACCOUNT_USAGE schema, is
only available to the ACCOUNTADMIN role, unless the ACCOUNTADMIN grants
imported privileges from the underlying share to another role. We’ll explore the
ACCOUNT_USAGE schema in more detail in future chapters, especially in

Creating and Managing Snowflake Schemas | 69

Chapter 8 and Chapter 9 when we learn more about improving performance and
reducing costs. For now, though, the results of the code you just executed should look
something like what is shown in Figure 3-16. You’ll notice that there are credits con‐
sumed by the COMPUTE_WH virtual warehouse and by cloud services.

Figure 3-16. Credits consumed by the COMPUTE_WH virtual warehouse and cloud
services

Be sure to change your role back to SYSADMIN before continuing
on to the next section.

Schema Object Hierarchy
Thus far, we’ve learned about the schema object and explored the two schemas that
come with each Snowflake database. A look back at Figure 3-14 shows us the schema
object hierarchy that exists above the schema object and includes the database object
and the account. Next, we’ll want to explore the Snowflake objects below the schema
in the hierarchy.

Many objects exist within a Snowflake schema object, including tables, views, stages,
policies, stored procedures, UDFs, and more. In the next sections, we’ll take a closer
look at several of these Snowflake objects. While we will explore some of these Snow‐
flake objects in detail, the explanations in this chapter are meant to be foundational;
we’ll dive deeper into these objects throughout many of the subsequent chapters.

Introduction to Snowflake Tables
As previously mentioned, all Snowflake data is stored in tables. In addition to perma‐
nent and transient tables, it is also possible to create hybrid, temporary, and external
tables, as shown in Figure 3-17. Snowflake hybrid tables support the new Unistore
workload and are described in more detail in Chapter 12. Snowflake temporary tables
only exist within the session in which they were created and are frequently used for
storing transitory data such as ETL data. Snowflake external tables give you the abil‐
ity to directly process or query your data that exists elsewhere without ingesting it
into Snowflake, including data that lives in a data lake.

70 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

One new way you can work with your external data is by integrating Apache Hive
metastores with Snowflake. You can use the new Hive Metastore connector to con‐
nect to your Hadoop environments. The Snowflake support is also available if you are
using newer technologies, such as Delta Lake or Apache Iceberg.

Delta Lake is a table format on a data lake Spark-based platform. A Snowflake exter‐
nal table can be created which will reference your Delta Lake cloud storage locations.

Apache Iceberg tables have addressed many of the challenges associated with object
stores, which has made this a popular choice as a data lake. Whereas Hive keeps track
of data at the folder level, Iceberg keeps track of a complete list of all files within a
table using a persistent tree structure. Keeping track of the data at the folder level can
lead to performance problems, and there is the potential for data to appear as if it
were missing when file list operations are performed at the folder level. The Apache
Iceberg table format is used by many leading technology companies, including Apple,
AWS, Expedia, LinkedIn, and Netflix.

In June 2022, Snowflake announced a new table type, materialized tables. Material‐
ized tables allow users to declaratively specify the pipelines where transformations
can occur. Snowflake then handles the incremental refresh to materialize the data. In
this way, Snowflake materialized tables automatically refresh as new data streams in.
Materialized tables have some of the characteristics of materialized views and tasks
and can be thought of as the logical progression of streams. This new materialized
table type gives Snowflake users the ability to dramatically improve their incremental
materialization experience.

Like databases and schemas, we can use the CREATE, ALTER, DROP, and SHOW TABLES
commands. In addition, we’ll need to use INSERT INTO or COPY INTO to place data
into a table. For Snowflake tables we create, we can also use the TRUNCATE or DELETE
command to remove data from a table but not remove the table object itself.

TRUNCATE and DELETE are different in that TRUNCATE also clears
table load history metadata while DELETE retains the metadata.

Introduction to Snowflake Tables | 71

Figure 3-17. The objects hierarchy for a Snowflake table

As we saw in “Creating and Managing Snowflake Databases” on page 54, Snowflake
assumes it should create a permanent table if the table type is not specified, unless the
table is created within a transient database.

Transient tables are unique to Snowflake and have characteristics of both permanent
and temporary tables. Transient tables are designed for transitory data that needs to
be maintained beyond a session but doesn’t need the same level of data recovery as
permanent tables. As a result, the data storage costs for a transient table would be less
than for a permanent table. One of the biggest differences between transient tables
and permanent tables is that the fail-safe service is not provided for transient tables.

It isn’t possible to change a permanent table to a transient table by using the ALTER
command, because the TRANSIENT property is set at table creation time. Likewise, a
transient table cannot be converted to a permanent table. If you would like to make a
change to a transient or permanent table type, you’ll need to create a new table, use
the COPY GRANTS clause, and then copy the data. Using the COPY GRANTS clause will
ensure that the table will inherit any explicit access privileges.

It was mentioned that the default for creating tables is that a permanent table would
be created unless otherwise specified. If it makes sense to have new tables automati‐
cally created as a transient type by default, you can first create a transient database or
schema. As we saw in “Creating and Managing Snowflake Databases” on page 54, all
tables created afterward will be transient rather than permanent.

72 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Transient tables can be accessed by other users who have the necessary permissions.
However, temporary tables exist only within the session in which they are created.
This means they are not available to other users and cannot be cloned. Temporary
tables have many uses, including being used for ETL data and for session-specific
data needs.

A temporary table, as well as the data within it, is no longer accessi‐
ble once the session ends. During the time a temporary table exists,
it does count toward storage costs; therefore, it is a good practice to
drop a temporary table once you no longer need it.

Table 3-1 summarizes some characteristics of the different Snowflake tables.

Table 3-1. Snowflake table characteristics

Characteristics Permanent table Transient table Temporary table External table
Persistence Until explicitly dropped Until explicitly

dropped
Remainder of session Until explicitly

dropped
Time Travel retention (days) 0–90 a 0 or 1 0 or 1 0
Fail-safe period (days) 7 0 0 0
Cloning possible? Yes Yes Yes No
Create views possible? Yes Yes Yes Yes
a In Enterprise Edition and above, 0–90 days. In Standard Edition, 0 or 1 day.

Interestingly, you can create a temporary table that has the same
name as an existing table in the same schema since the temporary
table is session based. No errors or warnings will be given. Thus, it
is a best practice to give temporary tables unique names to avoid
unexpected problems given that the temporary table takes
precedence.

We will now create some tables that we’ll use later in the chapter. Make sure you are
using the SYSADMIN role to create the tables:

USE ROLE SYSADMIN; USE DATABASE DEMO3A_DB;
CREATE OR REPLACE SCHEMA BANKING;
CREATE OR REPLACE TABLE CUSTOMER_ACCT
 (Customer_Account int, Amount int, transaction_ts timestamp);
CREATE OR REPLACE TABLE CASH
 (Customer_Account int, Amount int, transaction_ts timestamp);
CREATE OR REPLACE TABLE RECEIVABLES
 (Customer_Account int, Amount int, transaction_ts timestamp);

Introduction to Snowflake Tables | 73

After creating this table, the active role is the SYSADMIN role, the active database is
DEMO3A_DB, and the active schema is BANKING. We specified the database with
the USE command. We then created the BANKING schema, which made
DEMO3A_DB.BANKING the default schema. Thus, a newly created table will be
located within the BANKING schema if you create a new table without specifically
using a different namespace. Let’s try that now:

USE ROLE SYSADMIN;
CREATE OR REPLACE TABLE NEWTABLE
 (Customer_Account int,
 Amount int,
 transaction_ts timestamp);

Now navigate back by clicking the Home icon in the upper-left corner, then select
Data → Databases from the menu. Use the drop-down menu on the right to expand
the BANKING schema and the Tables option to see a list of all the tables in the
BANKING schema in the DEMO3A_DB database. In Figure 3-18, we can see that
NEWTABLE was created in the active namespace.

Figure 3-18. A list of the tables in the BANKING schema of the DEMO3A_DB database

Let’s now drop the new table we just created by using the fully qualified table name.
Navigate back to the Chapter3 Creating Database Objects worksheet. Make sure the
SYSADMIN role is the current role. In the upper-left corner, you’ll see that you are
currently on the Worksheets tab. Click the Databases tab (which is circled in
Figure 3-19).

74 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-19. The Databases tab within the Chapter3 Creating Objects worksheet

After clicking the Databases tab, you can expand the objects until you are able to see
the NEWTABLE table in the BANKING schema for the DEMO3A_DB database (as
shown in Figure 3-20).

Figure 3-20. The NEWTABLE table within the BANKING schema of the DEMO3A_DB
database

Introduction to Snowflake Tables | 75

In the worksheet, enter DROP TABLE with a space after it. Then click the NEWTABLE
table on the left and select the “Place name in SQL” option. You’ll notice that the fully
qualified name of the table is added to the SQL statement (as shown in Figure 3-21).
Put a semicolon at the end, if you want, and then execute the statement.

Figure 3-21. Selecting the fully qualified table name

We weren’t required to use the fully qualified table name, because we were in the
active space where we wanted to drop the table. We could have just used the com‐
mand DROP TABLE NEWTABLE; instead of using the fully qualified name. However, it is
a best practice to use a table’s fully qualified name or to include the USE command,
which achieves the same goal.

Creating and Managing Views
Along with tables, Snowflake views are the primary objects maintained in database
schemas, as shown in Figure 3-22. Views are of two types: materialized and nonmate‐
rialized. Whenever the term view is mentioned and the type is not specified, it is
understood that it is a nonmaterialized view.

I’ve mentioned the importance of using fully qualified names for
tables. Using a fully qualified name for the table is even more
important when creating views, because the connected reference
will be invalid if the namespace of the base table is not used and
this table or the view is moved to a different schema or database
later.

76 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-22. The objects hierarchy for the Snowflake view

A view is considered to be a virtual table created by a query expression; something
like a window into a database. Let’s create a new view by selecting one column from
the Snowflake sample data:

USE ROLE SYSADMIN;
CREATE OR REPLACE VIEW DEMO3B_DB.PUBLIC.NEWVIEW AS
SELECT CC_NAME
FROM (SELECT * FROM SNOWFLAKE_SAMPLE_DATA.TPCDS_SF100TCL.CALL_CENTER);

One purpose of views is to display selected rows and columns from one or more
tables. This is a way to provide some security by only exposing certain data to specific
users. Views can provide even more security by creating a specific secure view of
either a nonmaterialized or materialized view. We’ll dive deeper into secure views
when we discuss implementing account security and protections in Chapter 7. We’ll
also learn more about secure views in Chapter 10.

It’s important to remember that creating materialized views requires Snowflake Enter‐
prise Edition. Let’s create a materialized view using the same query as before:

USE ROLE SYSADMIN;
CREATE OR REPLACE MATERIALIZED VIEW DEMO3B_DB.PUBLIC.NEWVIEW_MVW AS
SELECT CC_NAME
FROM (SELECT * FROM SNOWFLAKE_SAMPLE_DATA.TPCDS_SF100TCL.CALL_CENTER);

You can run a SHOW VIEWS command and both views will be returned in the results. If
you run a SHOW MATERIALIZED VIEWS command, only the materialized view result
will be returned. You’ll need to make sure the correct schema is selected from the
drop-down menu or include the USE command in the statement:

USE SCHEMA DEMO3B_DB.PUBLIC;
SHOW VIEWS;

Creating and Managing Views | 77

If you run a SELECT * command for each view, you’ll notice that the results are iden‐
tical. That is because we haven’t really used a materialized view for its intended pur‐
pose. Unlike a regular view, a materialized view object gets periodically refreshed with
the data from the base table. Thus, it is illogical to consider using a materialized view
for the Snowflake sample database because the Snowflake sample database cannot be
updated with new data.

Also, the query to retrieve a single column is not one typically used for materialized
views. Materialized views are generally used to aggregate as well as filter data so that
the results of resource-intensive operations can be stored in a materialized view for
improved data performance. The performance improvement is especially good when
that same query is used frequently.

Snowflake uses a background service to automatically update materialized views. As a
result, data accessed through materialized views is always current, regardless of the
amount of DML that has been performed on the base table. Snowflake will update the
materialized view or use the up-to-date portions of the materialized view and retrieve
newer data from the base table if a query is run before the materialized view is up to
date.

To see this in action, we’re going to create a materialized view. We will revisit the
materialized view later in the chapter to see for ourselves that it contains up-to-date
information:

CREATE OR REPLACE MATERIALIZED VIEW DEMO3B_DB.BANKING.SUMMARY_MVW AS
SELECT * FROM (SELECT * FROM DEMO3B_DB.BANKING.SUMMARY);

Let’s also create a nonmaterialized view, for comparison:

CREATE OR REPLACE VIEW DEMO3B_DB.BANKING.SUMMARY_VW AS
SELECT * FROM (SELECT * FROM DEMO3B_DB.BANKING.SUMMARY);

As you would expect, views are read-only. Thus, it isn’t possible to use the INSERT,
UPDATE, or DELETE command on views. Further, Snowflake doesn’t allow users to
truncate views. While it is not possible to execute DML commands on a view, you can
use a subquery within a DML statement to update the underlying base table. An
example might be something like this:

DELETE FROM <Base_Table> WHERE <Column_Name> >
 (SELECT AVG <Column> FROM <View_Name>);

Another thing to be aware of is that a view definition cannot be updated with the
ALTER VIEW command. However, the ALTER MATERIALIZED VIEW command can be
used to rename a materialized view, to add or replace comments, to modify the view
to be a secure view, and much more. The SHOW and DESCRIBE commands are also
available for views.

78 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

If you wanted to change something structural about the view, you would have to re-
create it with a new definition.

Changes to a source table’s structure do not automatically propa‐
gate to views. For example, dropping a table column won’t drop the
column in the view.

There are many considerations when deciding between a regular view and a material‐
ized view. One consideration beyond whether to create a regular view or a material‐
ized view is whether to use ETL to materialize the data set in a table.

As a general rule, it is best to use a nonmaterialized view when the results of the view
change frequently and the query isn’t so complex and expensive to rerun. Regular
views do incur compute costs but not storage costs. The compute cost to refresh the
view and the storage cost will need to be weighed against the benefits of a material‐
ized view when the results of a view change often.

Generally, it is beneficial to use a materialized view when the query
consumes a lot of resources, as well as when the results of the view
are used often and the underlying table doesn’t change frequently.
Also, if a table needs to be clustered in multiple ways, a material‐
ized view can be used with a cluster key that is different from the
cluster key of the base table.

There are some limitations for materialized views. For example, a materialized view
can query only a single table, and joins are not supported. It is recommended that
you consult the Snowflake documentation for more detail on materialized view
limitations.

One thing to remember is that we are using the SYSADMIN role
currently and we’re creating the views using that role. Someone
who doesn’t have the SYSDAMIN role will need to have assigned to
them the privileges on the schema, the database objects in the
underlying table(s), and the view itself if they are to work with the
materialized view.

Introduction to Snowflake Stages: File Format Included
There are two types of Snowflake stages: internal and external. Stages are
Snowflake objects that point to a storage location, either internal to Snowflake or on
external cloud storage. Internal stage objects can be either named stages or a user or

Introduction to Snowflake Stages: File Format Included | 79

table stage. The temporary keyword can be used to create a session-based named
stage object.

In most cases, the storage is permanent while the stage object, a pointer to the storage
location, may be temporary or dropped at any time. Snowflake stages are often used
as an intermediate step to load files to Snowflake tables or to unload data from Snow‐
flake tables into files.

Snowflake permanent and internal temporary stages are used to store data files inter‐
nally, on cloud storage managed by Snowflake, whereas external stages reference data
files that are stored in a location outside of Snowflake. Outside locations, whether
private/protected or public, like Amazon S3 buckets, Google Cloud Storage buckets,
and Microsoft Azure containers, are supported by Snowflake and can be used in
external stages.

Each Snowflake user has a stage for storing files which is accessible only by that user.
The User stage can be referenced by @~. Likewise, each Snowflake table has a stage
allocated for storing files, and each table stage can be referenced by using @%<name of
table>.

Table stages are useful if multiple users need to access the files and
those files only need to be copied into a single table, whereas a user
stage is best when the files only need to be accessed by one user but
will need to be copied into multiple tables.

User and table stages cannot be altered or dropped, and neither of these stages sup‐
ports setting the file format. But you can specify the format and copy options at the
time the COPY INTO command is issued. Additionally, table stages do not support
transforming the data while loading it. A table stage is tied to the table itself and is
not a separate database object. To perform actions on the table stage, you must have
been granted the table ownership role.

The command to list a user stage is ls@~; or LIST @~;. We’ll dive into stages in more
depth when we discuss data loading and unloading in Chapter 6.

User stages and table stages, both of which are types of internal stages, are automati‐
cally provided for each Snowflake account. In addition to user and table stages, inter‐
nal named stages can also be created (see Figure 3-23). Internal named stages are
database objects, which means they can be used not just by one user but by any user
who has been granted a role with the appropriate privileges.

80 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-23. The objects hierarchy for Snowflake stages

Internal named stages and external stages can be created as either a permanent or a
temporary stage. When a temporary external stage is dropped, no data files are
removed, because those files are stored external to Snowflake. Only the stage object is
dropped. For a temporary internal stage, however, the data and stage are both drop‐
ped and the files are not recoverable. It is important to note that the behavior just
described is not limited to temporary stage objects. Both temporary and permanent
stages, internal or external, have the same characteristics described.

When using stages, we can use file formats to store all the format information we
need for loading data from files to tables. The default file format is CSV. However,
you can create file formats for other formats such as JSON, Avro, ORC, Parquet, and
XML. There are also optional parameters that can be included when you create a file
format. Here we are creating a very basic file format, without any optional parame‐
ters, for loading JSON data into a stage:

USE ROLE SYSADMIN; USE DATABASE DEMO3B_DB;
CREATE OR REPLACE FILE FORMAT FF_JSON TYPE = JSON;

Introduction to Snowflake Stages: File Format Included | 81

Once we create the file format, we can make use of it when creating an internal
named stage:

USE DATABASE DEMO3B_DB; USE SCHEMA BANKING;
CREATE OR REPLACE TEMPORARY STAGE BANKING_STG FILE_FORMAT = FF_JSON;

We introduced file formats briefly here by creating a file format using SQL in a Snow‐
flake worksheet. We’ll explore file formats much more in Chapter 6, including using
the Snowsight web UI to create file formats.

Table 3-2 summarizes some characteristics of the different Snowflake stages.

Table 3-2. Snowflake stage characteristics

Characteristics Named stagea User stagea Table stagea External stage
Stage is a database object? Yes No No Yes
Default type Permanent Permanent Permanent Permanent
Temporary type possible? Yes Yes Yes No
Creation method User-created Automatic Automatic User-created
How to reference <stage_name> @~ @$<table_name> <stage_name>

Drop/alter stage possible? Yes No No Yes
Data actually stored in stage? Yes No No No
Supports setting file formats? Yes No No No
Directory tables possible? Yes No No Yes
a Internal stage

The data is always in an encrypted state, whether it is in flight to an
internal named stage or at rest while stored in a Snowflake database
table.

Extending SQL with Stored Procedures and UDFs
To extend SQL capabilities in Snowflake, you can create stored procedures and UDFs
to achieve functionalities not possible with Snowflake’s built-in functions. Both stored
procedures and UDFs encapsulate and return a single value (scalar). UTFs can return
multiple values (tabular) whereas stored procedures can return only a single value.
You can create stored functions in JavaScript and UDFs in SQL, JavaScript, Python,
and Java languages. It is possible to create secure UDFs (see Figure 3-24).

The return value for stored procedures is scalar, but procedures can
return multiple values if the return type is a variant.

82 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-24. The objects hierarchy for Snowflake stored procedures and UDFs

Both stored procedures and UDFs extend SQL capabilities, but there are many differ‐
ences between the two. One of the most important differences is how they are used.

If you need to perform a database operation such as SELECT,
DELETE, or CREATE, you’ll need to use a stored procedure. If you
want to use a function as part of the SQL statement or expression,
or if your output needs to include a value for every input row,
you’ll want to use a Snowflake UDF.

A UDF is called as part of the SQL statement, but a stored procedure cannot be called
within a SQL statement. Instead, a stored procedure is called as an independent state‐
ment using the CALL statement. The CALL statement can call only one stored proce‐
dure per statement.

Extending SQL with Stored Procedures and UDFs | 83

A UDF is required to return a value, and you can use the UDF return value inside
your SQL statements. Although not required, a stored procedure is allowed to return
a value, but the CALL command doesn’t provide a place to store the returned value.
The stored procedure also doesn’t provide a way to pass it to another operation.

The next two sections provide a total of five examples. The first example is a simple
JavaScript UDF that returns a scalar value and the second example is a secure SQL
UDF that returns tabular results. Following those are three stored procedures exam‐
ples: the first example is where an argument is directly passed in; the next example is
lengthier and demonstrates the basics of an accounting information system where
each banking transaction has a debit and credit entry; the last example is more
advanced and combines a stored procedure with a task.

User-Defined Function (UDF): Task Included
UDFs allow you to perform some operations that are not available through the built-
in, system-defined functions provided by Snowflake. Snowflake supports four lan‐
guages for UDFs. Python UDFs are limited to returning scalar results. SQL,
JavaScript, and Java UDFs can return either scalar or tabular results.

A SQL UDF evaluates SQL statements and can refer to other UDFs, although a SQL
UDF cannot refer to itself either directly or indirectly.

A JavaScript UDF is useful for manipulating variant and JSON data. A JavaScript
UDF expression can refer to itself recursively, although it cannot refer to other UDFs.
JavaScript UDFs also have size and depth limitations that don’t apply to SQL UDFs.
We’ll see that demonstrated in one of our examples.

JavaScript UDFs have access to the basic standard JavaScript library needed to create
arrays, variables, and simple objects. You cannot use math functions or use error han‐
dling, because Snowflake does not let you import external libraries. The properties
that are available for both JavaScript UDFs and JavaScript procedures can be found
by using the following commands:

USE ROLE SYSADMIN;
CREATE OR REPLACE DATABASE DEMO3C_DB;
CREATE OR REPLACE FUNCTION JS_PROPERTIES()
RETURNS string LANGUAGE JAVASCRIPT AS
 $$ return Object.getOwnPropertyNames(this); $$;

Now let’s use the SELECT command to see what is included in the JavaScript UDF
properties:

SELECT JS_PROPERTIES();

Figure 3-25 displays the results of the previous command.

84 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-25. Results of using the SELECT command on the JS_PROPERTIES user-defined
function

For our first UDF example, we are going to create a simple JavaScript UDF which
returns a scalar result. We mentioned that JavaScript UDFs have size and depth limi‐
tations, and we’ll be able to demonstrate that in this example:

USE ROLE SYSADMIN; USE DATABASE DEMO3C_DB;
CREATE OR REPLACE FUNCTION FACTORIAL(n variant)
RETURNS variant LANGUAGE JAVASCRIPT AS
 'var f=n;
 for (i=n-1; i>0; i--) {
 f=f*i}
 return f';

You would expect the result of 120 to be returned when the number 5 is used for the
factorial function. Try it now and see:

SELECT FACTORIAL(5);

If you use a number greater than 33, you’ll receive an error
message.

Try finding the result of FACTORIAL(50) and see what happens. If you use the number
50 in the factorial function, you’ll receive an error message telling you that the
numeric value is out of range (as shown in Figure 3-26).

Figure 3-26. An error message is received because the number 50 is greater than what
can be used with the FACTORIAL function

One thing you’ll notice is that when we created the JS_PROPERTIES and FACTORIAL
functions we didn’t specify a schema to be used. What schema do you think Snow‐
flake used to create the functions? By default, the PUBLIC schema will be used if you
don’t specify a schema. You can expand the PUBLIC schema of the DEMO3C_DB
database to confirm (as shown in Figure 3-27).

Extending SQL with Stored Procedures and UDFs | 85

Figure 3-27. The PUBLIC schema was the default schema used when DEMO3C_DB was
created

We previously mentioned that it is possible to create secure UDFs. Secure UDFs are
the same as nonsecure UDFs, except that they hide the DDL from the consumer of
the UDF. Secure UDFs do have limitations on performance functionality due to some
optimizations being bypassed. Thus, data privacy versus performance is the consider‐
ation because only secure UDFs can be shared. Secure SQL UDFs and JavaScript
secure UDFs are both shareable but operate differently and are generally used for dif‐
ferent purposes. JavaScript secure UDFs are often used for data cleansing, address
matching, or other data manipulation operations.

Unlike JavaScript secure UDFs, a secure SQL UDF can run queries. For a secure
shared UDF, the queries can only be run against the provider’s data. When a provider
shares a secure UDF with a customer, the cost of data storage for any tables being
accessed by the function is paid by the provider and the compute cost is paid by the
consumer. There may be shared functions that don’t incur storage costs.

In the example created for you, no data storage cost will be incurred because we are
using the Snowflake sample data set.

86 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Secure SQL UDTF That Returns Tabular Value (Market Basket Analysis
Example)
Market basket analysis is a common use of secure SQL UDFs, and that is what we’ll
be demonstrating. In our example, the output is aggregated data in which a consumer
would like to see how many times other items were sold with their particular item.
We wouldn’t want the consumer account to have access to our raw sales data, so we’ll
wrap the SQL statement in a secure UDF and create an input parameter. When the
secure UDF is used with an input parameter, the consumer still gets the same results
as running the SQL statement directly on the underlying raw data.

We want to use data that is already provided for us in the Snowflake sample database,
but there are more records than we need for this demonstration. Let’s create a new
table and select 100,000 rows from the sample database, which will be more than
enough:

USE ROLE SYSADMIN;
CREATE OR REPLACE DATABASE DEMO3D_DB;
CREATE OR REPLACE TABLE DEMO3D_DB.PUBLIC.SALES AS
 (SELECT * FROM SNOWFLAKE_SAMPLE_DATA.TPCDS_SF100TCL.WEB_SALES)
LIMIT 100000;

Next, we’ll run our query directly on the new table. In this instance, we are interested
in the product with an SK of 1. We want to know the different items that were sold
with this product in the same transaction. We can use this query to find that
information:

SELECT 1 AS INPUT_ITEM, WS_WEB_SITE_SK AS BASKET_ITEM,
 COUNT (DISTINCT WS_ORDER_NUMBER) BASKETS
FROM DEMO3D_DB.PUBLIC.SALES
WHERE WS_ORDER_NUMBER IN
 (SELECT WS_ORDER_NUMBER
 FROM DEMO3D_DB.PUBLIC.SALES
 WHERE WS_WEB_SITE_SK = 1)
GROUP BY WS_WEB_SITE_SK
ORDER BY 3 DESC, 2;

The results of your query will probably vary slightly from what is
shown here, for a few different reasons. First, the underlying sam‐
ple data set could change. And second, because we’ve limited the
previous results to 10,000 records, your limited data set could be
different even if the underlying data set is still the same.

The result of this query shows us the product with an SK of 1 was sold in 5,050
unique transactions within our records. The item with an SK of 31 was sold in the
same transaction as the item with an SK of 1 a total of four times. The items with an
SK of 16, 19, 40, 58, 70, and 80 were each sold in the same transaction as the items

Extending SQL with Stored Procedures and UDFs | 87

with an SK of 1 a total of two times each (as shown in Figure 3-28). That isn’t a log,
though. If, instead, there had been an SK that was sold in high numbers alongside the
SK of 1, this could be valuable information for the manufacturers of the product.

Figure 3-28. Results showing how many times an item with an SK of 1 was used in
baskets

We might be willing to share those kinds of related sales details with the manufactur‐
ers, but we wouldn’t want to allow access to the underlying sales data. We can achieve
our objectives by creating a secure SQL UDF function:

USE ROLE SYSADMIN;
CREATE OR REPLACE SECURE FUNCTION
 DEMO3D_DB.PUBLIC.GET_MKTBASKET(INPUT_WEB_SITE_SK number(38))
RETURNS TABLE (INPUT_ITEM NUMBER(38, 0), BASKET_ITEM NUMBER(38, 0),
 BASKETS NUMBER(38, 0)) AS
'SELECT input_web_site_sk, WS_WEB_SITE_SK as BASKET_ITEM,
 COUNT(DISTINCT WS_ORDER_NUMBER) BASKETS
 FROM DEMO3D_DB.PUBLIC.SALES
 WHERE WS_ORDER_NUMBER IN
 (SELECT WS_ORDER_NUMBER
 FROM DEMO3D_DB.PUBLIC.SALES
 WHERE WS_WEB_SITE_SK = input_web_site_sk)
 GROUP BY ws_web_site_sk
 ORDER BY 3 DESC, 2';

If we were to share with another user this secure UDF through a Snowflake consumer
account, that user could run the secure UDF without seeing any of the underlying
data, table structures, or SQL code. This is the command the owner of the consumer
account would use to obtain the results. You can try this command with the

88 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

number 1 that we used earlier when we queried the table directly, and you’ll get the
same exact result with the UDF function. You can also try other product SKs:

SELECT * FROM TABLE(DEMO3D_DB.PUBLIC.GET_MKTBASKET(1));

Secure UDFs should be used for instances in which data privacy is
of concern and you want to limit access to sensitive data. It is
important to consider the purpose and necessity of creating a
secure UDF and weigh that against the decreased query perfor‐
mance that is likely to result from using a secure UDF.

Stored Procedures
Stored procedures are similar to functions in that they are created once and can be
executed many times. Stored procedures allow you to extend Snowflake SQL by com‐
bining it with JavaScript in order to include branching and looping, as well as error
handling. Stored procedures, which must be written in JavaScript, can be used to
automate tasks that require multiple SQL statements performed frequently. Although
stored procedures can only be written in JavaScript at this time, SQL stored proce‐
dures are now in private preview.

While you can use SELECT statements inside a stored procedure, the results must be
used within the stored procedure. If not, only a single value result can be returned.
Stored procedures are great for batch actions because a stored procedure runs by
itself and, similar to a trigger, can be conditionally tied to database events.

In the first stored procedures example, we are going to pass in an argument to the
stored procedure:

USE ROLE SYSADMIN;
CREATE OR REPLACE DATABASE DEMO3E_DB;
CREATE OR REPLACE PROCEDURE STOREDPROC1(ARGUMENT1 VARCHAR)
RETURNS string not null
language javascript AS
$$
var INPUT_ARGUMENT1 = ARGUMENT1;
var result = `${INPUT_ARGUMENT1}`
return result;
$$;

Now let’s call the stored procedure:

CALL STOREDPROC1('I really love Snowflake ❄');

JavaScript is case sensitive, so make sure you pay close attention
when creating the stored procedure.

Extending SQL with Stored Procedures and UDFs | 89

Figure 3-29 shows the result of passing an argument to the stored procedure.

Figure 3-29. Result of passing an argument to the STOREDPROC1 stored procedure

You can use the INFORMATION_SCHEMA to take a look at the information for
Snowflake procedures in the database:

SELECT * FROM DEMO3E_DB.INFORMATION_SCHEMA.PROCEDURES;

In the next stored procedure example, we are demonstrating the very basics of an
accounting information system in which tabular results are returned for banking
transactions that record debits and credits. If you remember, earlier in the chapter we
created the tables needed for this example, so we can just dive right into creating the
stored procedure.

We are recording the accounting transactions for a bank that deals with customers
giving cash to the bank and getting cash from the bank. We’ll keep the accounting
portion of the example limited to three types of transactions: deposits, withdrawals,
and loan payments.

First we’ll want to create a stored procedure for a deposit transaction in which the
bank’s cash account is debited and the customer account on the bank’s balance sheet
is credited whenever a customer gives the bank cash to add to their account:

USE ROLE SYSADMIN; USE DATABASE DEMO3A_DB; USE SCHEMA BANKING;
CREATE OR REPLACE PROCEDURE deposit(PARAM_ACCT FLOAT, PARAM_AMT FLOAT)
returns STRING LANGUAGE javascript AS
 $$
 var ret_val = ""; var cmd_debit = ""; var cmd_credit = "";
 // INSERT data into tables
 cmd_debit = "INSERT INTO DEMO3A_DB.BANKING.CASH VALUES ("
 + PARAM_ACCT + "," + PARAM_AMT + ",current_timestamp());";
 cmd_credit = "INSERT INTO DEMO3A_DB.BANKING.CUSTOMER_ACCT VALUES ("
 + PARAM_ACCT + "," + PARAM_AMT + ",current_timestamp());";
 // BEGIN transaction
 snowflake.execute ({sqlText: cmd_debit});
 snowflake.execute ({sqlText: cmd_credit});
 ret_val = "Deposit Transaction Succeeded";
 return ret_val;
 $$;

Next, we’ll create the transaction for a withdrawal. In this case, it is just the reverse of
what happens for a deposit:

90 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

USE ROLE SYSADMIN;USE DATABASE DEMO3A_DB; USE SCHEMA BANKING;
CREATE OR REPLACE PROCEDURE withdrawal(PARAM_ACCT FLOAT, PARAM_AMT FLOAT)
returns STRING LANGUAGE javascript AS
 $$
 var ret_val = ""; var cmd_debit = ""; var cmd_credit = "";
 // INSERT data into tables
 cmd_debit = "INSERT INTO DEMO3A_DB.BANKING.CUSTOMER_ACCT VALUES ("
 + PARAM_ACCT + "," + (-PARAM_AMT) + ",current_timestamp());";
 cmd_credit = "INSERT INTO DEMO3A_DB.BANKING.CASH VALUES ("
 + PARAM_ACCT + "," + (-PARAM_AMT) + ",current_timestamp());";
 // BEGIN transaction
 snowflake.execute ({sqlText: cmd_debit});
 snowflake.execute ({sqlText: cmd_credit});
 ret_val = "Withdrawal Transaction Succeeded";
 return ret_val;
 $$;

Finally, the transaction for the loan payment is one in which the bank’s cash account
is debited and the receivables account is credited:

USE ROLE SYSADMIN;USE DATABASE DEMO3A_DB; USE SCHEMA BANKING;
CREATE OR REPLACE PROCEDURE loan_payment(PARAM_ACCT FLOAT, PARAM_AMT FLOAT)
returns STRING LANGUAGE javascript AS
 $$
 var ret_val = ""; var cmd_debit = ""; var cmd_credit = "";
 // INSERT data into the tables
 cmd_debit = "INSERT INTO DEMO3A_DB.BANKING.CASH VALUES ("
 + PARAM_ACCT + "," + PARAM_AMT + ",current_timestamp());";
 cmd_credit = "INSERT INTO DEMO3A_DB.BANKING.RECEIVABLES VALUES ("
 + PARAM_ACCT + "," +(-PARAM_AMT) + ",current_timestamp());";
 //BEGIN transaction
 snowflake.execute ({sqlText: cmd_debit});
 snowflake.execute ({sqlText: cmd_credit});
 ret_val = "Loan Payment Transaction Succeeded";
 return ret_val;
 $$;

Now let’s run a few quick tests to see if the procedures are working. Run each CALL
statement separately:

CALL withdrawal(21, 100);
CALL loan_payment(21, 100);
CALL deposit(21, 100);

We can review the details of what happened when we called the procedures by exe‐
cuting the SELECT command:

SELECT CUSTOMER_ACCOUNT, AMOUNT FROM DEMO3A_DB.BANKING.CASH;

After using the CALL command followed by the SELECT command to test a few trans‐
actions, we feel confident that the procedure is working as intended.

Extending SQL with Stored Procedures and UDFs | 91

So, now we can truncate the tables, leaving the tables intact but removing the data:

USE ROLE SYSADMIN; USE DATABASE DEMO3A_DB; USE SCHEMA BANKING;
TRUNCATE TABLE DEMO3A_DB.BANKING.CUSTOMER_ACCT;
TRUNCATE TABLE DEMO3A_DB.BANKING.CASH;
TRUNCATE TABLE DEMO3A_DB.BANKING.RECEIVABLES;

Note that if we rerun the previous SELECT statements now, we’ll see that there is no
data in the tables. We are ready to input some transactions by calling the procedures
and supplying the inputs:

USE ROLE SYSADMIN;
CALL deposit(21, 10000);
CALL deposit(21, 400);
CALL loan_payment(14, 1000);
CALL withdrawal(21, 500);
CALL deposit(72, 4000);
CALL withdrawal(21, 250);

We’d like to see a transaction summary, so we’ll create one final stored procedure:

USE ROLE SYSADMIN; USE DATABASE DEMO3B_DB; USE SCHEMA BANKING;
CREATE OR REPLACE PROCEDURE Transactions_Summary()
returns STRING LANGUAGE javascript AS
 $$
 var cmd_truncate = `TRUNCATE TABLE IF EXISTS DEMO3B_DB.BANKING.SUMMARY;`
 var sql = snowflake.createStatement({sqlText: cmd_truncate});
 //Summarize Cash Amount
 var cmd_cash = `Insert into DEMO3B_DB.BANKING.SUMMARY (CASH_AMT)
 select sum(AMOUNT) from DEMO3A_DB.BANKING.CASH;`
 var sql = snowflake.createStatement({sqlText: cmd_cash});
 //Summarize Receivables Amount
 var cmd_receivables = `Insert into DEMO3B_DB.BANKING.SUMMARY
 (RECEIVABLES_AMT) select sum(AMOUNT) from DEMO3A_DB.BANKING.RECEIVABLES;`
 var sql = snowflake.createStatement({sqlText: cmd_receivables});
 //Summarize Customer Account Amount
 var cmd_customer = `Insert into DEMO3B_DB.BANKING.SUMMARY (CUSTOMER_AMT)
 select sum(AMOUNT) from DEMO3A_DB.BANKING.CUSTOMER_ACCT;`
 var sql = snowflake.createStatement({sqlText: cmd_customer});
 //BEGIN transaction
 snowflake.execute ({sqlText: cmd_truncate});
 snowflake.execute ({sqlText: cmd_cash});
 snowflake.execute ({sqlText: cmd_receivables});
 snowflake.execute ({sqlText: cmd_customer});
 ret_val = "Transactions Successfully Summarized";
 return ret_val;
 $$;

Now we can see the transaction summary. We’ll call the stored procedure so that all
the debit and credit transactions are summarized and then we’ll take a look at the
table:

92 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

CALL Transactions_Summary();

SELECT * FROM DEMO3B_DB.BANKING.SUMMARY;

Let’s also take a look at the materialized view we created earlier:

USE ROLE SYSADMIN; USE DATABASE DEMO3B_DB;USE SCHEMA BANKING;
SELECT * FROM DEMO3B_DB.BANKING.SUMMARY_MVW;

Interestingly, the materialized view has been kept updated with the information from
the SUMMARY base table (as shown in Figure 3-30).

Figure 3-30. Results of the materialized view

For comparison, let’s look at the nonmaterialized view as well:

USE ROLE SYSADMIN; USE DATABASE DEMO3B_DB;USE SCHEMA BANKING;
SELECT * FROM DEMO3B_DB.BANKING.SUMMARY_VW;

Now we have our final stored procedure example. It’s an advanced example because
we are going to add a task to execute this stored procedure.

As a quick side note, tasks are incredibly powerful and an important topic. We’ll
cover tasks in more detail later in this chapter when we’ll see how tasks can be com‐
bined with table streams. For now, it’s enough to understand that a task can call a
stored procedure, as we are going to see in this example, or it can execute a single
SQL statement.

We will be creating a stored procedure that will delete a database. Thus, it’s important
that we create the stored procedure in a different database than the one we’ll want to
delete using the stored procedure:

USE ROLE SYSADMIN; USE DATABASE DEMO3E_DB;
CREATE OR REPLACE PROCEDURE drop_db()
RETURNS STRING NOT NULL LANGUAGE javascript AS
 $$
 var cmd = `DROP DATABASE DEMO3A_DB;`
 var sql = snowflake.createStatement({sqlText: cmd});
 var result = sql.execute();
 return 'Database has been successfully dropped';
 $$;

Extending SQL with Stored Procedures and UDFs | 93

Now we can call the stored procedure and the database will be dropped. This is part
of our cleanup for this chapter:

CALL drop_db();

Refresh the worksheet and you’ll see that the DEMO3A_DB database has been
dropped. Now that you’ve seen how this stored procedure works, we’ll modify it so
that it will drop a different database, and we’ll add a task so that the database will be
dropped 15 minutes later. That way, you can see how a task works.

Let’s go ahead and change our drop_db procedure so that we’ll be dropping the
DEMO3B_DB database. Note that we will need to replace the drop_db procedure
because it is not possible to alter the contents of the stored procedure. However, it is
possible to use the ALTER command to rename the procedure, set and unset the com‐
ments, or change whether the procedure is executed with the rights of the owner or
the caller:

USE ROLE SYSADMIN;
CREATE OR REPLACE PROCEDURE drop_db() RETURNS STRING NOT NULL
 LANGUAGE javascript AS
 $$
 var cmd = `DROP DATABASE "DEMO3B_DB";`
 var sql = snowflake.createStatement({sqlText: cmd});
 var result = sql.execute();
 return 'Database has been successfully dropped';
 $$;

Next, we’ll want to create the task that will delay the stored procedure by 15 minutes:

USE ROLE SYSADMIN; USE DATABASE DEMO3E_DB;
CREATE OR REPLACE TASK tsk_wait_15
WAREHOUSE = COMPUTE_WH SCHEDULE = '15 MINUTE'
AS CALL drop_db();

The SYSADMIN role is going to need some privileges to execute the task, so be sure
to use the ACCOUNTADMIN role for this command. Even though the SYSADMIN
role is the task owner, an elevated account-level privilege to execute tasks is required.
Make sure you set the role to ACCOUNTADMIN:

USE ROLE ACCOUNTADMIN;
GRANT EXECUTE TASK ON ACCOUNT TO ROLE SYSADMIN;

You can now set the role to SYSADMIN. Because tasks are always created in a sus‐
pended state, they’ll need to be resumed:

USE ROLE SYSADMIN;
ALTER TASK IF EXISTS tsk_wait_15 RESUME;

Now our task is in a scheduled state. We’ll be able to see that by using this query
against the INFORMATION_SCHEMA.TASK_HISTORY table function:

94 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

SELECT * FROM table(information_schema.task_history
 (task_name => 'tsk_wait_15',
 scheduled_time_range_start =>
 dateadd('hour', -1, current_timestamp())));

Figure 3-31 shows the results of the query.

Figure 3-31. Results showing the task is in a scheduled state

You can use the next 15 minutes to answer the questions at the end of the chapter to
test your knowledge, and then come back. Once you see that the task has been com‐
pleted and the database has been dropped (you can refresh your screen, or you can
run the query again to see the state of the task), you can suspend the task:

USE ROLE SYSADMIN;
ALTER TASK IF EXISTS tsk_15 SUSPEND;

After you suspend the task, you can run the query one last time, and you’ll see that
the task succeeded and that there are no tasks scheduled.

Introduction to Pipes, Streams, and Sequences
Pipes, streams, and sequences are Snowflake objects we’ve not yet covered. Pipes are
objects that contain a COPY command that is used by Snowpipe. Snowpipe is used for
continuous, serverless loading of data into a Snowflake target table. Snowflake
streams, also known as change data capture (CDC), keep track of certain changes
made to a table including inserts, updates, and deletes. Snowflake streams have many
useful purposes, including recording changes made in a staging table which are used
to update another table.

A sequence object is used to generate unique numbers. Often, sequences are used as
surrogate keys for primary key values. Here is how you can generate a sequence that
begins with the number 1 and increments by one:

USE ROLE SYSADMIN; USE DATABASE DEMO3E_DB;
CREATE OR REPLACE SEQUENCE SEQ_01 START = 1 INCREMENT = 1;
CREATE OR REPLACE TABLE SEQUENCE_TEST(i integer);

You can use the SELECT command three or four times to see how the NEXTVAL incre‐
ments. Each time you execute the statement, you’ll notice the NEXTVAL increases by
one:

SELECT SEQ_01.NEXTVAL;

Introduction to Pipes, Streams, and Sequences | 95

Now let’s create a new sequence with a different increment:

USE ROLE SYSADMIN;USE DATABASE DEMO3E_DB;
CREATE OR REPLACE SEQUENCE SEQ_02 START = 1 INCREMENT = 2;
CREATE OR REPLACE TABLE SEQUENCE_TEST(i integer);

Take a look at what happens when you try this:

SELECT SEQ_02.NEXTVAL a, SEQ_02.NEXTVAL b,SEQ_02.NEXTVAL c,SEQ_02.NEXTVAL d;

You should see that the value of A is 1, the value of B is 3, the value of C is 5, and the
value of D is 7.

Some important things to remember are that the first value in a sequence cannot be
changed after the sequence is created, and sequence values, although unique, are not
necessarily free of gaps. This is because sequences are user-defined database objects;
thus, the sequence value can be shared by multiple tables because sequences are not
tied to any specific table. An alternative to creating a sequence is to use identity col‐
umns in which you would generate auto-incrementing numbers, often used as a pri‐
mary key, in one specific table.

A consideration when using sequences is that they may not be
appropriate for situations such as a secure UDF case. In some
instances, a consumer may be able to use the difference between
sequence numbers to infer information about the number of
records. In that case, you can exclude the sequence column from
the consumer results or use a unique string ID instead of a
sequence.

We’ll explore Snowpipe in Chapter 6. Streams will be discussed in depth in the next
section, where we’ll discover how to use them for CDC. We’ll also see how to com‐
bine the power of streams and tasks.

Snowflake Streams (Deep Dive)
A Snowflake stream works like a pointer that keeps track of the status of a DML oper‐
ation on a defined table. A Snowflake table stream creates a change table that shows
what has changed, at a row level, between two transactional points in time. Streams
are like processing queues and can be queried just like a table. Table streams make it
easy to grab the new data in a table so that one can have more efficient processing.
Streams do that by taking a snapshot of all the rows in a table at a point in time and
only storing an offset for the source table. In that way, a stream can return the CDC
records by leveraging the versioning history.

96 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

To get an in-depth understanding of Snowflake streams, let’s go through an example.
We’ll be creating a table for a bank branch that stores the branch ID, city, and associ‐
ated dollar amount of deposits for a particular day.

To prepare for the example, we’ll create a new database, schema, and table. We’ll
insert some values to get us started. We are going to use the INSERT command in our
example, but typically you wouldn’t be using insert statements to load data into your
Snowflake instance. Instead, you’d probably use something like Snowpipe. To keep
things simple, we’ll be inserting only a few records at a time, so we’ll use the INSERT
command. Here are the statements to set things up for our Snowflake stream
example:

USE ROLE SYSADMIN;
CREATE OR REPLACE DATABASE DEMO3F_DB;
CREATE OR REPLACE SCHEMA BANKING;
CREATE OR REPLACE TABLE BRANCH (ID varchar, City varchar, Amount number (20,2));
INSERT INTO BRANCH (ID, City, Amount)
values
 (12001, 'Abilene', 5387.97),
 (12002, 'Barstow', 34478.10),
 (12003, 'Cadbury', 8994.63);

Before moving on, you can pause and view the records in the table by using the fol‐
lowing statement:

SELECT * FROM BRANCH;

We’ll create two streams and then use the SHOW STREAMS command to see the created
streams:

CREATE OR REPLACE STREAM STREAM_A ON TABLE BRANCH;
CREATE OR REPLACE STREAM STREAM_B ON TABLE BRANCH;
SHOW STREAMS;

If you run SELECT * statements on these streams, you will see that both are empty.
What happens if we insert some new records into the table? We expect that the
streams would then have records:

INSERT INTO BRANCH (ID, City, Amount)
values
 (12004, 'Denton', 41242.93),
 (12005, 'Everett', 6175.22),
 (12006, 'Fargo', 443689.75);

Now execute each SELECT * statement, one at a time, for the BRANCH table and two
streams:

SELECT * FROM BRANCH;
SELECT * FROM STREAM_A;
SELECT * FROM STREAM_B;

Snowflake Streams (Deep Dive) | 97

You should see that there are now six records in the BRANCH table and three records
each in the streams. If we add another stream, STREAM_C, we will expect that there
will be no records in that stream:

CREATE OR REPLACE STREAM STREAM_C ON TABLE BRANCH;

Now let’s go ahead and insert some records a third time:

INSERT INTO BRANCH (ID, City, Amount)
values
 (12007, 'Galveston', 351247.79),
 (12008, 'Houston', 917011.27);

If you run SELECT * statements on the table and the three streams, you’ll see that the
table has eight records, STREAM_A and STREAM_B each have five records, and
STREAM_C has two records.

Let’s do one more thing. Let’s re-create STREAM_B to see what happens in the next
section:

CREATE OR REPLACE STREAM STREAM_B ON TABLE BRANCH;

At this point, STREAM_B will have zero records.

To see the impact of deleting records, let’s go ahead and delete the first record from
each of the previous inserts:

DELETE FROM BRANCH WHERE ID = 12001;
DELETE FROM BRANCH WHERE ID = 12004;
DELETE FROM BRANCH WHERE ID = 12007;

If we run SELECT * on the table and then on all three streams, we should see five
records in the BRANCH table (as shown in Figure 3-32), four records in
STREAM_A, three records in STREAM_B, and three records in STREAM_C.

Figure 3-32. Results of the SELECT * query on the BRANCH table

After STREAM_A was created, three records were entered: 12004, 12005, and 12006.
Then two more records were entered: 12007 and 12008. When records 12004 and
12007 were deleted, they were removed from STREAM_A. When record 12001 was
deleted, this showed up as a new entry in STREAM_A because record 12001 didn’t

98 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

previously exist. In total there should now be four records in STREAM_A (as shown
in Figure 3-33).

Figure 3-33. Results of the SELECT * query on STREAM_A

As a reminder, STREAM_B was re-created. From the time STREAM_B was re-
created, no new records were inserted. When records 12001, 12004, and 12007 were
deleted, they all appeared in STREAM_B because they had not appeared there previ‐
ously. Thus, there should now be three records in STREAM_B (as shown in
Figure 3-34).

Figure 3-34. Results of the SELECT * query on STREAM_B

After STREAM_C was created, two records were entered: 12007 and 12008. When
record 12007 was deleted, it was removed from STREAM_C. When records 12001
and 12004 were deleted, they showed up as new entries in STREAM_C because those
records didn’t previously exist. In total, there should now be three records in
STREAM_C (as shown in Figure 3-35).

Figure 3-35. Results of the SELECT * query on STREAM_C

Snowflake Streams (Deep Dive) | 99

Our examples demonstrate the impact of inserting and deleting records, and we can
see the results in the METADATA$ACTION columns. But what happens when we
update a record? Let’s update the city to Fayetteville where the BRANCH ID equals
12006:

UPDATE BRANCH
SET City = 'Fayetteville' WHERE ID = 12006;
SELECT * FROM BRANCH;

As expected, the BRANCH table shows the updated city (as shown in Figure 3-36).

Figure 3-36. Results of the SELECT * query on the BRANCH table with the city set to
Fayetteville

Record 12006 already existed in STREAM_A and, thus, no new entry was needed.
The value was simply updated in the stream (as shown in Figure 3-37).

Figure 3-37. Results of the SELECT * query on STREAM_A

Record 12006 did not previously exist in STREAM_B. Therefore, we see that there is
an entry for the deletion of record 12006 with the city of Fargo and then an entry for
the insertion of the new 12006 record with the value of Fayetteville. You can see
that those two new entries show as having a value of TRUE in the
METADATA$ISUPDATE column. With the addition of those two new entries,
STREAM_B now has five records (as shown in Figure 3-38).

100 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-38. Results of the SELECT * query on STREAM_B

Record 12006 did not previously exist in STREAM_C. Therefore, we see that there is
an entry for the deletion of record 12006 with the city of Fargo and then an entry for
the insertion of the new 12006 record with the value of Fayetteville. You can see that
those two entries show as having a value of TRUE in the METADATA$ISUPDATE
column. With the addition of those two new entries, STREAM_C now has five
records (as shown in Figure 3-39). Interestingly, you’ll notice that STREAM_B and
STREAM_C both have five records at this point, but they don’t have the same five
entries.

Figure 3-39. Results of the SELECT * query on STREAM_C

To summarize the metadata, let’s review the stream metadata columns. The META‐
DATA$ACTION column tells us whether the row was inserted or deleted. If the row
is updated, the METADATA$ISUPDATE column will be TRUE. And lastly, there is a
unique hash key for the METADATA$ROW_ID column.

As you can see in the examples presented, Snowflake streams are a powerful way to
handle changing data sets. In Snowflake, one of the most important reasons for using
table streams is to keep the staging table and production table in sync. Using a staging
table, along with streams, helps to protect undesired changes from being made to the
production table. Snowflake table streams are also often used in conjunction with
other features, such as Snowflake pipelines or Snowflake tasks.

Snowflake Streams (Deep Dive) | 101

Snowflake Tasks (Deep Dive)
Snowflake tasks are frequently used with Snowflake streams, as our next examples
will show. They can also be useful in scenarios that don’t call for the use of streams.
As you may recall, Snowflake tasks were introduced earlier in the chapter, when we
created a task that called a stored procedure to delete a database as part of our
cleanup efforts.

In this section, we’re going to demonstrate how Snowflake tasks can be used with
streams. Before we tackle some hands-on examples, let’s first review some important
details about Snowflake tasks.

One way Snowflake tasks can be completed is by using compute resources that are
managed by users. We used this method earlier, where we designated a virtual ware‐
house for the task to use. Alternatively, the completion of tasks can be managed by
Snowflake via a serverless compute model. In a serverless compute model, the com‐
pute resources are automatically resized and scaled up or down by Snowflake as the
workload requirements change.

The option to enable the serverless compute model must be speci‐
fied when the task is created.

Tasks run on a schedule which is defined at the time a task is created. Alternatively,
you can establish task dependencies whereby a task can be triggered by a predecessor
task. There is no event source that can trigger a task; a task that is not triggered by a
predecessor task must be run on a schedule.

You can see in Figure 3-40, which includes the CREATE statements for each task type,
that tasks can be either scheduled or triggered by a predecessor task. You’ll notice that
we elected to include a small virtual warehouse as the initial warehouse size for all the
tasks, but we could have selected different sizes for different tasks.

Whenever there are task dependencies, there is a root task which is run on a sched‐
ule. Each task that completes then triggers associated child tasks. Each child task is
triggered by one predecessor task. Each individual task is limited to a single predeces‐
sor task but can have up to 100 child tasks. A task tree is limited to 1,000 tasks in
total, including the root task.

102 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

Figure 3-40. Task examples for creating standalone, root, and child tasks

You can use the cron expression in a task definition, rather than
defining the number of minutes, to support specifying a time zone
when scheduling tasks. To avoid unexpected task executions due to
daylight saving time, consider scheduling tasks at a time other than
1 a.m. to 3 a.m. daily or on days of the week that include Sundays.

The EXECUTE TASK command manually triggers a single run of a scheduled task that
is either a standalone task or the root task in a task tree. If it is necessary to recur‐
sively resume all dependent tasks tied to a root task, be sure to use the
SYSTEM$TASK_DEPENDENTS_ENABLE function, rather than resuming each task individu‐
ally by using the ALTER TASK RESUME command.

Snowflake Tasks (Deep Dive) | 103

By default, Snowflake ensures that only one instance of a particular
tree of tasks is allowed to run at one time. As a result, at least one
run of the task tree will be skipped if the cumulative time required
to run all tasks in the tree exceeds the explicit scheduled time set in
the definition of the root task. When read/write SQL operations
executed by overlapping runs of a task tree don’t produce incorrect
or duplicate data, overlapping runs may not be problematic. In this
situation, if it makes sense to do so, the default behavior can be
changed by setting the ALLOW_OVERLAPPING_EXECUTION parameter
in the root task to TRUE.

If it would be problematic to have overlapping runs of a task tree, you have several
options. You could choose a more appropriate warehouse size or use Snowflake-
managed compute resources so that the task tree will finish before the next scheduled
run of the root task. Alternatively, you could analyze the SQL statements or stored
procedures executed by each task to determine whether the code could be optimized.
Another option is that you could increase the scheduling time between runs of the
root task.

Three Snowflake task functions can be used to retrieve information about tasks:

SYSTEM$CURRENT_USER_TASK_NAME

This function returns the name of the task currently executing when invoked
from the statement or stored procedure defined by the task.

TASK_HISTORY

This function returns task activity within the last seven days or the next sched‐
uled execution within the next eight days.

TASK_DEPENDENTS

This is a table function that returns the list of child tasks for a given root task.

Because many access control privileges are needed to create and manage tasks, it is
recommended that a custom TASKADMIN role be created so that a role can alter its
own tasks. Having a custom TASKADMIN role also allows for a SECURITYADMIN
role, or any role with MANAGE GRANTS privileges, to manage the TASKADMIN role.
Otherwise, only an ACCOUNTADMIN can revoke any task privileges assigned to the
task owner.

The following example demonstrates how you would create a TASKADMIN role:

USE ROLE SECURITYADMIN;
CREATE ROLE TASKADMIN;

USE ROLE ACCOUNTADMIN;
GRANT EXECUTE TASK, EXECUTE MANAGED TASK ON ACCOUNT TO ROLE TASKADMIN;

104 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

USE ROLE SECURITYADMIN;
GRANT ROLE TASKADMIN TO ROLE <USER_ROLE>;
GRANT ROLE TASKADMIN TO ROLE SYSADMIN;

In practice, you’d need to make sure the USER_ROLE to which the TASKADMIN
role is assigned has all the necessary access to the database, schema, and tables. We
won’t be executing all those statements in this chapter. Please refer to Chapter 5 for
more information about creating roles, granting access to objects, and best practices
for specific roles like SECURITYADMIN and ACCOUNTADMIN. For this task’s
hands-on examples, we’ll use the ACCOUNTADMIN role instead of the TASKAD‐
MIN role:

USE ROLE ACCOUNTADMIN;
USE WAREHOUSE COMPUTE_WH;
USE DATABASE DEMO3F_DB;
CREATE OR REPLACE SCHEMA TASKSDEMO;

We will want to create a product table which lists the product ID and description, the
category and segment, and the manufacturer ID and name:

CREATE OR REPLACE TABLE DEMO3F_DB.TASKSDEMO.PRODUCT
 (Prod_ID int,
 Prod_Desc varchar(),
 Category varchar(30),
 Segment varchar(20),
 Mfg_ID int,
 Mfg_Name varchar(50));

Let’s insert some values into the product table:

INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1201, 'Product 1201', 'Category 1201', 'Segment 1201', '1201', 'Mfg 1201');
INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1202, 'Product 1202', 'Category 1202', 'Segment 1202', '1202', 'Mfg 1202');
INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1203, 'Product 1203', 'Category 1203', 'Segment 1203', '1203', 'Mfg 1203');
INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1204, 'Product 1204', 'Category 1204', 'Segment 1204', '1204', 'Mfg 1204');
INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1205, 'Product 1205', 'Category 1205', 'Segment 1205', '1205', 'Mfg 1205');
INSERT INTO DEMO3F_DB.TASKSDEMO.PRODUCT values
(1206, 'Product 1206', 'Category 1206', 'Segment 1206', '1206', 'Mfg 1206');

Next, we’ll create a sales table and then a stream on the sales table:

CREATE OR REPLACE TABLE DEMO3F_DB.TASKSDEMO.SALES
 (Prod_ID int,
 Customer varchar(),
 Zip varchar(),
 Qty int,
 Revenue decimal(10,2));

Snowflake Tasks (Deep Dive) | 105

We’ll want our table stream to record insert-only values on the sales table:

CREATE OR REPLACE STREAM DEMO3F_DB.TASKSDEMO.SALES_STREAM
ON TABLE DEMO3F_DB.TASKSDEMO.SALES
APPEND_ONLY = TRUE;

Before we create a task, we want to make sure our stream and other statements work
properly. Let’s go ahead and insert some values into the sales table:

INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1201, 'Amy Johnson', 45466, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1201, 'Harold Robinson', 89701, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1203, 'Chad Norton', 33236, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1206, 'Horatio Simon', 75148, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1205, 'Misty Crawford', 10001, 45, 2345.67);

When we run a SELECT * command, we’ll be able to see that the values we entered
into the sales table were then captured in the SALES_STREAM:

SELECT * FROM DEMO3F_DB.TASKSDEMO.SALES_STREAM;

Now it’s time to create our sales transaction table which combines the
SALES_STREAM with the product table and adds a timestamp so that we can know
when the sales data was recorded:

CREATE OR REPLACE TABLE DEMO3F_DB.TASKSDEMO.SALES_TRANSACT
 (Prod_ID int,
 Prod_Desc varchar(),
 Category varchar(30),
 Segment varchar(20),
 Mfg_ID int,
 Mfg_Name varchar(50),
 Customer varchar(),
 Zip varchar(),
 Qty int,
 Revenue decimal (10, 2),
 TS timestamp);

We’ll eventually want to automate the creation of the sales transaction table, but first
we need to see what happens when we manually insert data. If things work as
expected, we’ll proceed to creating a task for the insertion:

INSERT INTO
 DEMO3F_DB.TASKSDEMO.SALES_TRANSACT
 (Prod_ID,Prod_Desc,Category,Segment,Mfg_Id,
 Mfg_Name,Customer,Zip,Qty,Revenue,TS)
SELECT
 s.Prod_ID,p.Prod_Desc,p.Category,p.Segment,p.Mfg_ID,
 p.Mfg_Name,s.Customer,s.Zip,s.Qty,s.Revenue,current_timestamp

106 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

FROM
 DEMO3F_DB.TASKSDEMO.SALES_STREAM s
 JOIN DEMO3F_DB.TASKSDEMO.PRODUCT p ON s.Prod_ID = p.Prod_ID;

If we use a SELECT * statement, we’ll confirm that the records were in fact inserted
into the transaction table:

SELECT * FROM DEMO3F_DB.TASKSDEMO.SALES_TRANSACT;

Success! We’ve demonstrated that the INSERT statement works. Now it’s time to auto‐
mate the insertion by creating a task:

CREATE OR REPLACE TASK DEMO3F_DB.TASKSDEMO.SALES_TASK
WAREHOUSE = compute_wh
SCHEDULE = '1 minute'
WHEN system$stream_has_data('DEMO3F_DB.TASKSDEMO.SALES_STREAM')
AS
INSERT INTO
 DEMO3F_DB.TASKSDEMO.SALES_TRANSACT
 (Prod_ID,Prod_Desc,Category,Segment,Mfg_Id,
 Mfg_Name,Customer,Zip,Qty,Revenue,TS)
SELECT
 s.Prod_ID,p.Prod_Desc,p.Category,p.Segment,p.Mfg_ID,
 p.Mfg_Name,s.Customer,s.Zip,s.Qty,s.Revenue,current_timestamp
FROM
 DEMO3F_DB.TASKSDEMO.SALES_STREAM s
 JOIN DEMO3F_DB.TASKSDEMO.PRODUCT p ON s.Prod_ID = p.Prod_ID;
ALTER TASK DEMO3F_DB.TASKSDEMO.SALES_TASK RESUME;

Created tasks are suspended by default. Therefore, you’ll need to
execute the ALTER TASK…RESUME statement to allow the task to run.

Alternatively, for nonroot tree tasks, use the SYSTEM$TASK_DEPENDENTS_ENABLE
function.

Note that it is possible for the root task to execute something on a stream event. How‐
ever, there is a limitation that it can be scheduled at the lowest granulation to one
minute. The previous example was used to demonstrate how you would use SYSTEM
$STREAM_HAS_DATA to accomplish this.

Now let’s see what happens when we insert values into the sales table. Once we insert
values into the sales table, the SALES_STREAM should reflect the newly inserted
records. Then the task should insert the new sales records after joining with the prod‐
uct table and generating a timestamp. Let’s see what happens:

INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1201, 'Edward Jameson', 45466, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES

Snowflake Tasks (Deep Dive) | 107

(1201, 'Margaret Volt', 89701, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1203, 'Antoine Lancaster', 33236, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1204, 'Esther Baker', 75148, 45, 2345.67);
INSERT INTO DEMO3F_DB.TASKSDEMO.SALES VALUES
(1206, 'Quintin Anderson', 10001, 45, 2345.67);

We can confirm that the values were captured by the SALES_STREAM:

SELECT * FROM DEMO3F_DB.TASKSDEMO.SALES_STREAM;

We’ll need to wait a minute to give the task time to execute. If your next query pro‐
duces no results, wait just a little longer and then try again. We only have to wait a
minute because that is the time we set for the task. We could have increased the time
if we had wanted:

SELECT * FROM DEMO3F_DB.TASKSDEMO.SALES_TRANSACT;

We’ve confirmed that our task works! We’ll do cleanup at the end of the chapter, but
let’s go ahead and suspend the task now. We don’t need the sales task to be checking
every minute for new records in the SALES_STREAM:

ALTER TASK DEMO3F_DB.TASKSDEMO.SALES_TASK SUSPEND;

The costs associated with using tasks depend on whether you choose the virtual ware‐
house dedicated to the task or whether you opt to use the USER_TASK_MANAGED_INI
TIAL_WAREHOUSE_SIZE command. The latter is a serverless feature. You can refer to
Chapter 8 for a deep dive into Snowflake billing and ways to monitor virtual ware‐
house usage and reduce costs. Importantly, billing for Snowflake is based on usage so
that you end up paying only for resources that you use.

Code Cleanup
Let’s perform code cleanup to remove the objects in your Snowflake account in prep‐
aration for working on another chapter example.

Note that there is no need to drop objects in the hierarchy below the database before
dropping the databases. If you’ve been following along, you dropped two databases
already. Let’s drop the remaining databases now:

DROP DATABASE DEMO3C_DB; DROP DATABASE DEMO3D_DB;
DROP DATABASE DEMO3E_DB; DROP DATABASE DEMO3F_DB;

Summary
This chapter provided several hands-on examples of creating and managing Snow‐
flake objects such as databases, schemas, tables, views, stages, stored procedures, and
UDFs. In addition, the INFORMATION_SCHEMA and ACCOUNT_USAGE views

108 | Chapter 3: Creating and Managing Snowflake Securable Database Objects

were reviewed. To build on our foundational knowledge of Snowflake architecture
and objects, we’ll explore the different Snowflake data types and learn how to use
more SQL commands and functions in the next chapter.

Knowledge Check
The following questions are based on the information provided in this chapter:

1. What are the different types of databases, schemas, and tables that can be cre‐
ated? If a particular type is not specifically stated at the time of creation, what is
the default type for each?

2. What is the difference between scalar and tabular UDFs?
3. What kinds of things can you do with a stored procedure that you cannot do

with a UDF?
4. What would happen if we used the CREATE DATABASE command and the database

we want to create already exists? What if we used the CREATE OR REPLACE DATA
BASE command?

5. What is the default retention time for a database? Can the database retention
time be changed? Can the default retention time be changed?

6. Why might you choose to use the TRUNCATE TABLE command rather than the
DROP TABLE command?

7. Are there any storage or compute costs associated with views?
8. What is the difference between a fully qualified object name and a partially quali‐

fied object name?
9. When using stages, what is the default file format? What other file formats does

Snowflake support?
10. What is unique about the SNOWFLAKE database that comes with every Snow‐

flake account?
11. In what ways can Snowflake tasks be triggered?
12. Describe the METADATA$ACTION, METADATA$ISUPDATE, and META‐

DATA$ROW_ID columns in a Snowflake stream.
13. Give examples of use cases or reasons why you might want to use Snowflake

streams.

Answers to these questions are available in Appendix A.

Knowledge Check | 109

CHAPTER 4

Exploring Snowflake SQL Commands,
Data Types, and Functions

As we learned in previous chapters, Snowflake was built to store data in an optimized,
compressed, columnar format within a relational database. Snowflake’s data end users
need to access the stored data and be able to give instructions to perform tasks, call
functions, and execute queries on the data. The way that can be accomplished is with
the standard programming language for relational databases, Structured Query Lan‐
guage (SQL). Snowflake supports SQL:ANSI, the most common standardized version
of SQL. In addition to SQL support for structured data, Snowflake offers native sup‐
port for semi-structured data formats such as JSON and XML. Snowflake also
supports unstructured data.

The main focus of this chapter is on learning the fundamentals of using Snowflake
worksheets to execute a variety of SQL commands using different data types and
functions. Other than using worksheets in the Snowflake web UI, it is possible to use
a Snowflake-native command-line client, known as SnowSQL, to create and execute
SQL commands. More detail about SnowSQL will be provided in Chapter 6.

Besides connecting to Snowflake via the web UI or SnowSQL, you can use ODBC and
JDBC drivers to access Snowflake data through external applications such as Tableau
and Looker. We’ll explore connections to Tableau and Looker in Chapter 12. Native
connectors such as Python and Spark can also be used to develop applications for
connecting to Snowflake.

To help you prepare for mastering advanced topics in upcoming chapters, we’ll want
to focus first on learning the basics of Snowflake SQL commands, data types, and
Snowflake functions.

111

Prep Work
Create a new worksheet titled Chapter4 Syntax Examples, Data Types, and Functions.
Refer to “Navigating Snowsight Worksheets” on page 8 if you need help creating a
new worksheet. To set the worksheet context, make sure you are in the Syntax Exam‐
ples worksheet and using the SYSADMIN role and the COMPUTE_WH virtual
warehouse.

Working with SQL Commands in Snowflake
SQL can be divided into five different language command types. To create Snowflake
objects, you need to use Data Definition Language (DDL) commands. Giving access
to those objects requires the Data Control Language (DCL). Next, you’ll use Data
Manipulation Language (DML) commands to manipulate the data into and out of
Snowflake. Transaction Control Language (TCL) commands enable you to manage
transaction blocks. Data Query Language (DQL) statements are then used to actually
query the data. Following is a list of common SQL commands, organized by type:

DDL commands:
• CREATE

• ALTER

• TRUNCATE

• RENAME

• DROP

• DESCRIBE

• SHOW

• USE

• SET/UNSET

• COMMENT

DCL commands:
• GRANT

• REVOKE

DML commands:
• INSERT

• MERGE

• UPDATE

• DELETE

112 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

• COPY INTO

• PUT

• GET

• LIST

• VALIDATE

• REMOVE

TCL commands:
• BEGIN

• COMMIT

• ROLLBACK

• CREATE

DQL command:
• SELECT

Each of these five different command language types, and their associated com‐
mands, will be discussed briefly in the following sections. A comprehensive list of all
Snowflake SQL commands can be found in the Snowflake online documentation.

DDL Commands
DDL commands are the SQL commands used to define the database schema. The
commands create, modify, and delete database structures. In addition, DDL com‐
mands can be used to perform account-level session operations, such as setting
parameters, as we’ll see later in the chapter when we discuss the SET and UNSET com‐
mands. DDL commands include CREATE, ALTER, TRUNCATE, RENAME, DROP, DESCRIBE,
SHOW, USE, and COMMENT. With the exception of the COMMENT command, each DDL
command takes an object type and identifier.

Snowflake DDL commands manipulate objects such as databases, virtual warehouses,
schemas, tables, and views; however, they do not manipulate data. Refer back to
Chapter 3, which is devoted to demonstrating Snowflake DDL commands, for in-
depth explanations and many hands-on examples.

DCL Commands
DCL commands are the SQL commands used to enable access control. Examples of
DCL commands include GRANT and REVOKE. Chapter 5 will take you through a com‐
plete and detailed series of examples using DCL commands to show you how to
secure Snowflake objects.

Working with SQL Commands in Snowflake | 113

https://oreil.ly/tlQJJ

DML Commands
DML commands are the SQL commands used to manipulate the data. The traditional
DML commands such as INSERT, MERGE, UPDATE, and DELETE exist to be used for gen‐
eral data manipulation. For data loading and unloading, Snowflake provides COPY
INTO <table> and COPY INTO <location> commands. Additionally, Snowflake’s DML
commands include some commands that do not perform any actual data manipula‐
tion but are used to stage and manage files stored in Snowflake locations. Some
examples include VALIDATE, PUT, GET, LIST, and REMOVE. Chapter 6 will explore many
of Snowflake’s DML commands.

TCL Commands
TCL commands are the SQL commands used to manage transaction blocks within
Snowflake. Commands such as BEGIN, COMMIT, and ROLLBACK can be used for multi‐
statement transactions in a session. A Snowflake transaction is a set of read and write
SQL statements that are processed together as one unit. By default, and upon query
success, a DML statement that is run separately will be committed individually or will
be rolled back at the end of the statement, if the query fails.

DQL Command
The DQL command is the SQL command used as either a statement or a clause to
retrieve data that meets the criteria specified in the SELECT command. Note that the
SELECT command is the only DQL command; it is used to retrieve data and does so
by specifying the location and then using the WHERE statement to include attributes
necessary for data selection inclusion.

The Snowflake SELECT command works on external tables and can be used to query
historical data. In certain situations, using the SELECT statement will not require a
running virtual warehouse to return results; this is because of Snowflake caching, as
described in Chapter 2. Examples of the SELECT statement, the most common SQL
statement, can be found throughout most of the chapters in this book. The following
section provides details on how to make the most of the SELECT command.

114 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

SQL Query Development, Syntax, and Operators in
Snowflake
Within Snowflake, SQL development can be undertaken natively, using Snowflake UI
worksheets or SnowSQL, as well as via the many third-party SQL tools available.

Query syntax is how Snowflake SQL queries are structured or built. Often there are
many different ways to write a SQL query that will yield the desired result. It is
important to consider how to optimize the query for the best database performance
and lowest cost. Chapter 9 includes a section devoted to discussing the topic of ana‐
lyzing query performance and optimization techniques.

Query operators include terms reserved to specify conditions in a SQL query state‐
ment and are most often used in the WHERE clause. They can also be used as conjunc‐
tions for multiple conditions in a statement. We’ll explore query operators later in
this section.

SQL Development and Management
There are two native Snowflake options for developing and querying data. It is easy to
get started with Snowflake SQL development using the Worksheets browser-based
SQL editor within the Snowflake interface. Using Snowflake Worksheets requires no
installation or configuration. Thus far, we’ve used only the Snowflake Worksheets for
creating objects and querying data.

An alternative to Worksheets is SnowSQL, a Python-based client that can be down‐
loaded from the Snowflake client repository and used to perform Snowflake tasks
such as querying or executing DDL and DML commands. SnowSQL is frequently
used for loading and unloading data. We’ll get some hands-on experience with
SnowSQL in Chapter 6.

Snowflake provides SnowSQL versions for Linux, macOS, and Microsoft Windows.
Executable SnowSQL can be run as an interactive shell or in batch mode. Snowflake
provides complete instructions on how to download and install SnowSQL for all sup‐
ported platforms.

You can view the recently used client versions, including the SnowSQL version, in
your Snowflake account by querying Snowflake’s query history. To view that informa‐
tion, click Activity → Query History if you are using the new Snowsight web inter‐
face. Should you not see the client driver information right away, click the Columns
button and select Client Driver (as shown in Figure 4-1).

SQL Query Development, Syntax, and Operators in Snowflake | 115

https://oreil.ly/wVCHF

Figure 4-1. Available columns for reviewing query history activity in Snowsight

Alternatively, click the History tab in the Classic Console web interface. From there,
you can view the Client Info column by clicking the Column button at the upper
right and selecting Client Driver. Interestingly, the Client Info column in the Classic
Console web interface includes an icon to indicate whether the client version is sup‐
port, unsupported, or nearing the end of support. We’ve been using the Snowsight
web UI, so we’ll see that the Go client driver has been used and it is supported, as
indicated by a checkmark (as shown in Figure 4-2).

Figure 4-2. The Client Info column from the History tab (Classic Console web interface)

In addition to native Snowflake tools, a wide variety of third-party SQL tools are
available for modeling, developing, and deploying SQL code in Snowflake applica‐
tions. Some of these third-party tools, such as DataOps and SqlDBM, are available for

116 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

a free trial by using Snowflake Partner Connect. You can visit the Snowflake online
documentation for a more comprehensive list of third-party SQL tools available for
use with Snowflake.

For drivers and connectors that support sending a SQL statement
for preparation before execution, Snowflake will prepare DML
commands, and will execute SELECT and SHOW <objects> SQL
statements received from those drivers and connectors. Other types
of SQL statements received from drivers and connectors will be
executed by Snowflake without preparation.

Query Syntax
Snowflake SQL queries begin with either the WITH clause or the SELECT command.
The WITH clause, an optional clause that precedes the SELECT statement, is used to
define common table expressions (CTEs) which are referenced in the FROM clause.
Most queries, however, begin with the SELECT command and other syntax which
appears afterward. The other syntax, described in Table 4-1, is evaluated in the fol‐
lowing order:

• FROM

• WHERE

• GROUP BY

• HAVING

• WINDOW

• QUALIFY

• ORDER BY

• LIMIT

Table 4-1. Snowflake query syntax

Query
syntax

Query clause Comments

WITH Optional clause that precedes the body of the SELECT statement
TOP<n> Contains the maximum number of rows returned, recommended to

include ORDER BY
FROM AT | BEFORE, CHANGES,

CONNECT BY, JOIN,
MATCH_RECOGNIZE, PIVOT or
UNPIVOT, SAMPLE or
TABLESAMPLE_VALUE

Specifies the tables, views, or table functions to use in a SELECT
statement

SQL Query Development, Syntax, and Operators in Snowflake | 117

https://oreil.ly/EVyOF
https://oreil.ly/EVyOF

Query
syntax

Query clause Comments

WHERE Specifies a condition that matches a subset of rows; can filter the
result of the FROM clause; can specify which rows to operate on in an
UPDATE, MERGE, or DELETE

GROUP BY GROUP BY CUBE, GROUP BY
GROUPING SETS, GROUP BY
ROLLUP, HAVING

Groups rows with the same group-by-item expressions and computes
aggregate functions for resultant group; can be a column name, a
number referencing a position in the SELECT list, or a general
expression

QUALIFY Filters the results of window functions
ORDER BY Specifies an ordering of the rows of the result table from a SELECT

list
LIMIT/
FETCH

 Constrains the maximum number of rows returned; recommended to
include ORDER BY

Note that QUALIFY is evaluated after a window function; QUALIFY works with window
functions in much the same way as HAVING does with the aggregate functions and
GROUP BY clauses. More information on window functions can be found later in this
chapter.

Subqueries, derived columns, and CTEs
A subquery is a query within another query and can be used to compute values that
are returned in a SELECT list, grouped in a GROUP BY clause, or compared with other
expressions in the WHERE or HAVING clause.

A Snowflake subquery is a nested SELECT statement supported as a block in one or
more of the following Snowflake SQL statements:

• CREATE TABLE AS

• SELECT

• INSERT

• INSERT INTO

• UPDATE

• DELETE

To prepare for our hands-on exercises for subqueries and derived columns, we need
to create a few simple tables and insert some values into those tables. We’ll create one
database for this chapter. We’ll also create a schema and table for our subqueries and
derived column examples. Navigate to the Chapter4 worksheet in Snowsight to exe‐
cute the following statements:

118 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE DATABASE DEMO4_DB;
CREATE OR REPLACE SCHEMA SUBQUERIES;
CREATE OR REPLACE TABLE DEMO4_DB.SUBQUERIES.DERIVED
 (ID integer, AMT integer, Total integer);
INSERT INTO DERIVED (ID, AMT, Total)
VALUES (1,1000,4000),(2,2000,3500),(3,3000, 9900),(4,4000,3000),
 (5,5000,3700),(6,6000,2222);
SELECT * FROM DEMO4_DB.SUBQUERIES.DERIVED;

Your results should match what is shown in Figure 4-3.

Figure 4-3. Results of inserting values into a new Snowflake DERIVED table

We’ll need a second table in the SUBQUERIES schema; after adding the table, we’ll
see the results shown in Figure 4-4:

CREATE OR REPLACE TABLE DEMO4_DB.SUBQUERIES.TABLE2
 (ID integer, AMT integer, Total integer);
INSERT INTO TABLE2 (ID, AMT, Total)
VALUES (1,1000,8300),(2,1001,1900),(3,3000,4400),(4,1010,3535),
 (5,1200,3232),(6,1000,2222);
SELECT * FROM DEMO4_DB.SUBQUERIES.TABLE2;

Figure 4-4. Results of inserting values into a new Snowflake TABLE2 table

SQL Query Development, Syntax, and Operators in Snowflake | 119

Having now created both tables, we can write an uncorrelated subquery:

SELECT ID, AMT
FROM DEMO4_DB.SUBQUERIES.DERIVED
WHERE AMT = (SELECT MAX(AMT)
 FROM DEMO4_DB.SUBQUERIES.TABLE2);

You’ll notice that an uncorrelated subquery is an independent query, one in which the
value returned doesn’t depend on any columns of the outer query. An uncorrelated
subquery returns a single result that is used by the outer query only once. On the
other hand, a correlated subquery references one or more external columns. A corre‐
lated subquery is evaluated on each row of the outer query table and returns one
result per row that is evaluated.

Let’s try executing a correlated subquery now:

SELECT ID, AMT
FROM DEMO4_DB.SUBQUERIES.DERIVED
WHERE AMT = (SELECT AMT
 FROM DEMO4_DB.SUBQUERIES.TABLE2
 WHERE ID = ID);

We receive an error message telling us that a single-row subquery returns more than
one row (as shown in Figure 4-5). This probably isn’t what you expected.

Figure 4-5. The error message received when executing a correlated subquery without an
aggregate

Logically, we know there is only one row per ID; so, the subquery won’t be returning
more than one row in the result set. However, the server can’t know that. We must use
a MIN, MAX, or AVG function so that the server can know for certain that only one row
will be returned each time the subquery is executed.

Let’s go ahead and add MAX to the statement to see for ourselves how this works:

SELECT ID, AMT
FROM DEMO4_DB.SUBQUERIES.DERIVED
WHERE AMT = (SELECT MAX(AMT)
 FROM DEMO4_DB.SUBQUERIES.TABLE2
 WHERE ID = ID);

Success! We get a result set of one row with the ID equal to the value of 3. Let’s see
what happens if we change the equals sign to a greater-than sign:

SELECT ID, AMT
FROM DEMO4_DB.SUBQUERIES.DERIVED
WHERE AMT > (SELECT MAX(AMT)

120 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

 FROM DEMO4_DB.SUBQUERIES.TABLE2
 WHERE ID = ID);

Now we get a result set with three values (as shown in Figure 4-6).

Figure 4-6. A correlated query result set with three values

Let’s see what happens if we change MAX to AVG:

SELECT ID, AMT
FROM DEMO4_DB.SUBQUERIES.DERIVED
WHERE AMT > (SELECT AVG(AMT)
 FROM DEMO4_DB.SUBQUERIES.TABLE2
 WHERE ID = ID);

There are five records in the result set. You may want to try different operators in the
WHERE clause and different aggregators in the SELECT clause to see for yourself how
correlated subqueries actually work.

Correlated subqueries are used infrequently because they result in one query per row,
which is probably not the best scalable approach for most use cases.

Subqueries can be used for multiple purposes, one of which is to calculate or derive
values that are then used in a variety of different ways. Derived columns can also be
used in Snowflake to calculate another derived column, can be consumed by the
outer SELECT query, or can be used as part of the WITH clause. These derived column
values, sometimes called computed column values or virtual column values, are not
physically stored in a table but are instead recalculated each time they are referenced
in a query.

Our next example demonstrates how a derived column can be used in Snowflake to
calculate another derived column. We’ll also discover how we can use derived col‐
umns in one query, in subqueries, and with CTEs.

Let’s create a derived column, AMT1, from the AMT column and then directly use
the first derived column to create the second derived column, AMT2:

SELECT ID, AMT, AMT * 10 as AMT1, AMT1 + 20 as AMT2
FROM DEMO4_DB.SUBQUERIES.DERIVED;

The results of running that query can be seen in Figure 4-7.

SQL Query Development, Syntax, and Operators in Snowflake | 121

Figure 4-7. Results of running the query with two derived columns

We can achieve the same results by creating a derived column, AMT1, which can
then be consumed by an outer SELECT query. The subquery in our example is a Snow‐
flake uncorrelated scalar subquery. As a reminder, the subquery is considered to be
an uncorrelated subquery because the value returned doesn’t depend on any outer
query column:

SELECT sub.ID, sub.AMT, sub.AMT1 + 20 as AMT2
FROM (SELECT ID, AMT, AMT * 10 as AMT1
 FROM DEMO4_DB.SUBQUERIES.DERIVED) AS sub;

Lastly, we get the same results by using a derived column as part of the WITH clause.
You’ll notice that we’ve included a CTE subquery which could help increase modular‐
ity and simplify maintenance. The CTE defines a temporary view name, which is
CTE1 in our example. Included in the CTE are the column names and a query
expression, the result of which is basically a table:

WITH CTE1 AS (SELECT ID, AMT, AMT * 10 as AMT2
 FROM DEMO4_DB.SUBQUERIES.DERIVED)
SELECT a.ID, b.AMT, b.AMT2 + 20 as AMT2
FROM DEMO4_DB.SUBQUERIES.DERIVED a
 JOIN CTE1 b ON(a.ID = b.ID);

A major benefit of using a CTE is that it can make your code more readable. With a
CTE, you can define a temporary table once and refer to it whenever you need it
instead of having to declare the same subquery every place you need it. While not
demonstrated here, a CTE can also be recursive. A recursive CTE can join a table to
itself many times to process hierarchical data.

Whenever the same names exist for a CTE and a table or view, the
CTE will take precedence. Therefore, it is recommended to always
choose a unique name for your CTEs.

122 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

Caution about multirow inserts
Now is a good time for a brief pause to learn a little more about multirow inserts. One
or more rows of data can be inserted using a select query, or can be inserted as explic‐
itly stated values in a comma-separated list. To keep things simple, we’ve been insert‐
ing values in comma-separated lists in this chapter.

There is one important thing to be aware of regarding multirow inserts. When insert‐
ing multiple rows of data into a VARCHAR data type, each data type being inserted into
VARCHAR columns must be the same or else the insert will fail. A VARCHAR data type
can accept data values such as the word one or the number 1, but never both types of
values in the same INSERT statement. We can best see this with some examples.

We’ll first create a new schema and table to do some multirow insert testing. In the
first example, we’ll insert the value one into the VARCHAR DEPT column:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.TEST;
CREATE OR REPLACE TABLE DEMO4_DB.TEST.TEST1 (ID integer, DEPT Varchar);
INSERT INTO TEST1 (ID, DEPT)
VALUES (1,'one');
SELECT * FROM DEMO4_DB.TEST.TEST1;

As expected, the value was entered successfully. Let’s see what happens if we instead
insert a numerical value into the VARCHAR column:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.TEST;
CREATE OR REPLACE TABLE DEMO4_DB.TEST.TEST1 (ID integer, DEPT Varchar);
INSERT INTO TEST1 (ID, DEPT)
VALUES (1,1);
SELECT * FROM DEMO4_DB.TEST.TEST1;

Again, the value was entered successfully. Now let’s try inserting both types into the
column within the same INSERT statement:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.TEST;
CREATE OR REPLACE TABLE DEMO4_DB.TEST.TEST1 (ID integer, DEPT Varchar);
INSERT INTO TEST1 (ID, DEPT)
VALUES (1,'one'), (2,2);
SELECT * FROM DEMO4_DB.TEST.TEST1;

When we try to insert two different data types into the VARCHAR column at the
same time, we experience an error, as shown in Figure 4-8.

SQL Query Development, Syntax, and Operators in Snowflake | 123

Figure 4-8. The error message that is received when attempting to insert two different
data types into a VARCHAR column in one multirow INSERT statement

Let’s try again, but this time we’ll insert two values with the same data type:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.TEST;
CREATE OR REPLACE TABLE DEMO4_DB.TEST.TEST1 (ID integer, DEPT Varchar);
INSERT INTO TEST1 (ID, DEPT)
VALUES (1,'one'), (2,'two');
SELECT * FROM DEMO4_DB.TEST.TEST1;

We’re also successful if we insert two numerical values into the VARCHAR column:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.TEST;
CREATE OR REPLACE TABLE DEMO4_DB.TEST.TEST1 (ID integer, DEPT Varchar);
INSERT INTO TEST1 (ID, DEPT)
VALUES (1,1), (2,2);
SELECT * FROM DEMO4_DB.TEST.TEST1;

You’ll notice that we are able to successfully load two different data types into the
VARCHAR column, but not at the same time. And once we have two different data
types in the VARCHAR column, we can still add additional values:

INSERT INTO TEST1 (ID, DEPT)
VALUES (5, 'five');
SELECT * FROM DEMO4_DB.TEST.TEST1;

Multirow inserts are one way of getting data into Snowflake. Chapter 6 is devoted to
data loading and unloading, and includes an in-depth discussion of bulk data loading
options and continuous data loading options.

Query Operators
There are several different types of query operators, including arithmetic, compari‐
son, logical, subquery, and set operators.

Arithmetic operators, including +, –, *, /, and %, produce a numeric output from one
or more inputs. The scale and precision of the output depends on the scale and preci‐
sion of the input(s). Note that subtraction is the only arithmetic operation allowed on
DATE expressions.

Comparison operators, typically appearing in a WHERE clause, are used to test the
equality of two inputs. Comparison operators include the following:

124 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

• Equal (=)
• Not equal (!= or <>)
• Less than (<)
• Less than or equal (<=)
• Greater than (>)
• Greater than or equal (>=)

Remember that TIMESTAMP_TZ values are compared based on their
times in UTC, which does not account for daylight saving time.
This is important because, at the moment of creation,
TIMESTAMP_TZ stores the offset of a given time zone, not the actual
time zone.

Logical operators can only be used in the WHERE clause. The order of precedence of
these operators is NOT then AND then OR. Subquery operators include [NOT] EXISTS,
ANY or ALL, and [NOT] IN. Queries can be combined when using set operators such as
INTERSECT, MINUS or EXCEPT, UNION, and UNION ALL.

The default set operator order of preference is INTERSECT as the highest precedence,
followed by EXCEPT, MINUS, and UNION, and finally UNION ALL as the lowest prece‐
dence. Of course, you can always use parentheses to override the default. Note that
the UNION set operation is costly because it needs to sort the records to eliminate
duplicate rows.

When using set operators, make sure each query selects the same
number of columns and the data type of each column is consistent,
although an explicit type cast can be used if the data types are
inconsistent.

Long-Running Queries, and Query Performance and Optimization
The Snowflake system will cancel long-running queries. The default duration for
long-running queries is two days, but the STATEMENT_TIMEOUT_IN_SECONDS duration
value can always be set at an account, session, object, or virtual warehouse level.

During the Snowflake SQL query process, one of the things that happens is the opti‐
mization engines find the most efficient execution plan for a specific query. In Chap‐
ter 9, we’ll learn more about analyzing query performance and optimization
techniques as well as how to use Snowflake’s query profiler.

SQL Query Development, Syntax, and Operators in Snowflake | 125

Snowflake Query Limits
SQL statements submitted through Snowflake clients have a query text size limit of
1 MB. Included in that limit are literals, including both string and binary literals. The
query text size limit applies to the compressed size of the query. However, because the
compression ratio for data varies widely, it is recommended to keep the uncom‐
pressed query text size below 1 MB.

Additionally, Snowflake limits the number of expressions allowed in a query to
16,384. There are ways to resolve this type of error depending on what are you trying
to do with your SQL query statement. If you’re attempting to insert data when you
receive the error, try breaking up the statement into smaller queries. However, an
even better choice would probably be to use the COPY INTO command instead of the
INSERT command.

Another type of query limit error occurs when using a SELECT statement with an IN
clause that has more than 16,384 values. Here is an example of what that code might
look like:

SELECT <column_1> FROM <table_1>
WHERE <column_2> IN (1, 2, 3, 4, 5,...);

One solution would be to use a JOIN or UNION command after placing those values in
a second table. The SQL code could look like this:

SELECT <column_1>
FROM <table_1> a
 JOIN <table_2> b ON a.<column_2> = b.<column_2>;

Introduction to Data Types Supported by Snowflake
Snowflake supports the basic SQL data types including geospatial data types, and a
Boolean logical data type which provides for ternary logic. Snowflake’s BOOLEAN data
type can have an unknown value, or a TRUE or FALSE value. If the Boolean is used in
an expression, such as a SELECT statement, an unknown value returns a NULL. If the
Boolean is used as a predicate, such as in a WHERE clause, the unknown results will
evaluate to FALSE. There are a few data types not supported by Snowflake, such as
Large Object (LOB), including BLOB and CLOB, as well as ENUM and user-defined data
types.

Snowflake offers native support for geospatial features such as points, lines, and poly‐
gons on the earth’s surface. The Snowflake GEOGRAPHY data type follows the WGS
standard. Points on the earth are represented as degrees of longitude and latitude.
Altitude is not currently supported.

126 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

If you have geospatial data such as longitude and latitude, WKT,
WKB, or GeoJSON, it is recommended that you convert and store
this data in GEOGRAPHY columns rather than keeping the data in
their original formats in VARCHAR, VARIANT, or NUMBER col‐
umns. This could significantly improve the performance of queries
that use geospatial functionality.

In this section, we’ll take a deeper dive into several Snowflake data types including
numeric, string and binary, date and time, semi-structured, and unstructured.

Numeric Data Types
Snowflake’s numeric data types include fixed-point numbers and floating-point num‐
bers, as detailed in Table 4-2. Included in the table is information about each numeric
data type’s precision and scale. Precision, the total number of digits, impacts storage,
whereas scale, the number of digits following the decimal point, does not. However,
processing numeric data values with a larger scale could cause slower processing.

Table 4-2. Snowflake numeric data types

Fixed-point number data
types

Precision Comments

NUMBER Optional (38, 0) Numbers up to 38 digits; maximum scale is 37

DECIMAL, NUMERIC Optional (38,0) Synonymous with NUMBER
INT, INTEGER, BIGINT,
SMALLINT, TINYINT,
BYTEINT

Cannot be specified;
always (38,0)

Possible values: -99999999999999999999999999999999999999
to +99999999999999999999999999999999999999 (inclusive)

Floating-point number data
types

 Comments

FLOAT, FLOAT4, FLOAT8 Approximately 15 digits Values range from approximately 10-308 to 10+308

DOUBLE, DOUBLE
PRECISION, REAL

Approximately 15 digits Synonymous with FLOAT

It is a known issue that DOUBLE, DOUBLE PRECISION, and
REAL columns are stored as DOUBLE but displayed as FLOAT.

Fixed-point numbers are exact numeric values and, as such, are often used for natural
numbers and exact decimal values such as monetary amounts. In contrast, floating-
point data types are used most often for mathematics and science.

You can see how fixed-point numbers vary based on the data type. Be sure to navigate
to the Chapter4 worksheet and then try the following example:

Introduction to Data Types Supported by Snowflake | 127

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO4_DB.DATATYPES;
CREATE OR REPLACE TABLE NUMFIXED (
 NUM NUMBER,
 NUM12 NUMBER(12, 0),
 DECIMAL DECIMAL (10, 2),
 INT INT,
 INTEGER INTEGER
);

To see what was created, you can run the DESC TABLE NUMFIXED statement to get the
results shown in Figure 4-9.

Figure 4-9. Results showing the Snowflake fixed-point number data type

Now you can compare fixed-point numbers to floating-point numbers by using this
next example:

USE ROLE SYSADMIN; USE SCHEMA DEMO4_DB.DATATYPES;
CREATE OR REPLACE TABLE NUMFLOAT (
 FLOAT FLOAT,
 DOUBLE DOUBLE,
 DP DOUBLE PRECISION,
 REAL REAL
);

Once again, use the Desc command to see the results, as shown in Figure 4-10:

DESC TABLE NUMFLOAT;

Figure 4-10. Results showing the Snowflake floating-point number data type

In traditional computing, float data types are known to be faster for computation. But
is that still an accurate statement about float data types in modern data platforms

128 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

such as Snowflake? Not necessarily. It is important to consider that integer values can
be stored in a compressed format in Snowflake, whereas float data types cannot. This
results in less storage space and less cost for integers. Querying rows for an integer
table type also takes significantly less time.

Because of the inexact nature of floating-point data types, floating-
point operations could have small rounding errors and those errors
can accumulate, especially when using aggregate functions to pro‐
cess a large number of rows.

Snowflake’s numeric data types are supported by numeric constants. Constants, also
referred to as literals, represent fixed data values. Numeric digits 0 through 9 can be
prefaced by a positive or negative sign. Exponents, indicated by e or E, are also sup‐
ported in Snowflake numeric constants.

String and Binary Data Types
Snowflake supports both text and binary string data types, the details of which can be
seen in Table 4-3.

Table 4-3. Snowflake text and binary string data types

Text string data types Parameters Comments
VARCHAR Optional parameter

(N), max number of
characters

Holds Unicode characters; no performance difference between using
full-length VARCHAR (16,777,216) or a smaller length

CHAR, CHARACTERS Synonymous with VARCHAR; length is CHAR(1) if not specified
STRING, TEXT Synonymous with VARCHAR
Binary string data
types

 Comments

BINARY Has no notion of Unicode characters, so length is always measured in
bytes; if length is not specified, the default is 8 MB (the maximum length)

VARBINARY Synonymous with BINARY

You can see how the text string data types vary by attempting the following example,
which creates the text string fields and then describes the table:

USE ROLE SYSADMIN; USE SCHEMA DEMO4_DB.DATATYPES;
CREATE OR REPLACE TABLE TEXTSTRING(
 VARCHAR VARCHAR,
 V100 VARCHAR(100),
 CHAR CHAR,
 C100 CHAR(100),
 STRING STRING,
 S100 STRING(100),

Introduction to Data Types Supported by Snowflake | 129

 TEXT TEXT,
 T100 TEXT(100)
);

DESC TABLE TEXTSTRING;

If you followed along with the example, you should see the output shown in
Figure 4-11.

Figure 4-11. Results of creating a TEXTSTRING table

Snowflake’s string data types are supported by string constants, which are always
enclosed between delimiters, either single quotes or dollar signs. Using dollar sign
symbols as delimiters is especially useful when the string contains many quote
characters.

Date and Time Input/Output Data Types
Snowflake uses the Gregorian calendar, rather than the Julian calendar, for all dates
and timestamps. The Snowflake date and time data types are summarized in
Table 4-4.

Table 4-4. Snowflake date and time data types

Date and time data
types

Default mapping Comments

DATE Single DATE type; most common date forms are accepted; all accepted
timestamps are valid inputs with TIME truncated; the associated time is
assumed to be midnight

DATETIME Alias for TIMESTAMP_NTZ
TIME Single TIME type in the form HH:MI:SS, internally stored as wall clock

time; time zones not taken into consideration
TIMESTAMP Default is

TIMESTAMP_NTZ

User-specified alias of one of the three TIMESTAMP_ variations

130 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

Date and time data
types

Default mapping Comments

TIMESTAMP_LTZ Internally UTC time with a specified precision; TIMESTAMP with local
time zone

TIMESTAMP_NTZ Internally wall clock time; TIMESTAMP without time zone
TIMESTAMP_TZ Internally UTC time with a time zone offset; TIMESTAMP with time zone

Snowflake’s data and time data types are supported by interval constants as well as
date and time constants. Interval constants can be used to add or subtract a specific
period of time to or from a date, time, or timestamp. The interval is not a data type; it
can be used only in date, time, or timestamp arithmetic and will represent seconds if
the date or time portion is not specified.

The order of interval increments is important because increments
are added or subtracted in the order in which they are listed. This
could be important for calculations affected by leap years.

Semi-Structured Data Types
Structured data, known as quantitative data, can be easily stored in a database table as
rows and columns whereas semi-structured data, such as XML data, is not schema
dependent, which makes it more difficult to store in a database. In some situations,
however, semi-structured data can be stored in a relational database.

Snowflake supports data types for importing and operating on semi-structured data
such as JSON, Avro, ORC, Parquet, and XML data. Snowflake does so through its
universal data type VARIANT, a special column type which allows you to store
semi-structured data. Table 4-5 provides more information about Snowflake semi-
structured data types. Note that it is possible for a VARIANT value to be missing, which
is considered to be different from a true null value.

Table 4-5. Snowflake semi-structured data types

Semi-structured
data types

Characteristics Comments

VARIANT Can store OBJECT
and ARRAY

Stores values of any other type, up to a maximum of 16 MB uncompressed;
internally stored in compressed columnar binary representation

OBJECT Represents collections of key-value pairs with the key as a nonempty string
and the value of VARIANT type

ARRAY Represents arrays of arbitrary size whose index is a non-negative integer and
values have VARIANT type

Introduction to Data Types Supported by Snowflake | 131

When loaded into a VARIANT column, non-native values such as
dates and timestamps are stored as strings. Storing values in this
way will likely cause operations to be slower and to consume more
space as compared to storing date and timestamp values in a rela‐
tional column with the corresponding data type.

The hands-on exercises for semi-structured data will use the Snowflake sample
weather data, which is stored in native JSON format. We’ll spend some time getting a
feel for the data that exists and then we’ll learn how to use the FLATTEN function to
produce a lateral view of the semi-structured data.

At the time of this writing, the weather dataset was available in
the Snowflake free trial accounts. However, Snowflake may be
deprecating this dataset over time. Please see https://github.com/
SnowflakeDefinitiveGuide for further information.

Let’s first just take a quick look at a few rows of data:

USE ROLE SYSADMIN;
USE SCHEMA SNOWFLAKE_SAMPLE_DATA.WEATHER;
SELECT * FROM DAILY_16_TOTAL
LIMIT 5;

You should see that there are two columns: one VARIANT column (V) and one
TIMESTAMP column (T), as shown in Figure 4-12.

Figure 4-12. Two columns in the Snowflake weather sample data table

Let’s focus on the data in the VARIANT column:

SELECT v:city
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

Once the results are returned, click V:CITY at the top of the column. This will high‐
light the column and give you the details you need to see that there are four distinct
object keys in this column (as shown in Figure 4-13). In order, the object keys relating
to V:CITY are coordinates, country, ID, and name.

132 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

https://github.com/SnowflakeDefinitiveGuide
https://github.com/SnowflakeDefinitiveGuide

Figure 4-13. Four distinct object keys for CITY data in the VARIANT column

Let’s now manually break out some of the CITY data and list them in a more logical
order (as shown in Figure 4-14):

SELECT v:city:id, v:city:name, v:city:country, v:city:coord
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

Figure 4-14. Detail of the CITY data in the VARIANT column

The latitude and longitude details are nested in the coordinate information. Let’s sep‐
arate those out and give the columns some appropriate names:

SELECT v:city:id AS ID, v:city:name AS CITY,
 v:city:country AS COUNTRY, v:city:coord:lat AS LATITUDE,
 v:city:coord:lon AS LONGITUDE
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

Introduction to Data Types Supported by Snowflake | 133

We can convert a variant data type to another data type. In the next example, we’ll
cast the city and country VARIANT data to a VARCHAR data type, and we’ll assign mean‐
ingful labels to the columns:

SELECT v:city:id AS ID, v:city:name::varchar AS city,
 v:city.country::varchar AS country, v:city:coord:lon
 AS longitude, v:city:coord:lat AS latitude
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

The results are shown in Figure 4-15.

Figure 4-15. Casting of the city and country VARIANT data to a VARCHAR data type

We can confirm that we successfully cast the two columns by asking Snowflake to
describe the results of our last query:

DESC RESULT LAST_QUERY_ID();

Next, let’s look at more data in the VARIANT column:

SELECT v:data
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

Once the results are returned, click V:DATA at the top of the column. This will high‐
light the column and give you column details that you’ll see on the right side (as
shown in Figure 4-16). You’ll notice that there is one array in this column relating to
the DATA information.

134 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

Figure 4-16. The weather data array in the VARIANT column

Because the DATA information is stored as an array, we can look at a particular ele‐
ment in the array. Be sure to click each result row to see that only one element was
selected for each row:

SELECT v:data[5]
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

We can further limit the information returned by taking a look at the humidity value
for a particular day for a specific city and country:

SELECT v:city:name AS city, v:city:country AS country,
 v:data[0]:humidity AS HUMIDITY
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 10;

Now let’s do a quick review. When we look at the DATA array, v:data AS DATA in the
following statement, we notice that each row contains a complete data array. Within
each data array there are 16 elements for each distinct piece of data (as shown in
Figure 4-17). In our SQL query, we’ll include the first two data elements for the
humidity and the day temperature:

SELECT v:data[0]:dt::timestamp AS TIME,
v:data[0]:humidity AS HUMIDITY0, v:data[0]:temp:day AS DAY_TEMP0,
v:data[1]:humidity AS HUMIDITY1, v:data[1]:temp:day AS DAY_TEMP1,
v:data AS DATA
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL
LIMIT 100;

Introduction to Data Types Supported by Snowflake | 135

Figure 4-17. One DATA array element (path) per row

Let’s see how we can leverage the FLATTEN table function. The FLATTEN function pro‐
duces a lateral view of a VARIANT, OBJECT, or ARRAY column. We’ll demonstrate
how FLATTEN works on the DATA array in the sample weather data table:

SELECT d.value:dt::timestamp AS TIME,
 v:city:name AS CITY, v:city:country AS COUNTRY,
 d.path AS PATH, d.value:humidity AS HUMIDITY,
 d.value:temp:day AS DAY_TEMP,v:data AS DATA
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL,
LATERAL FLATTEN(input => daily_16_total.v:data) d
LIMIT 100;

You’ll notice that the same DATA array appears for each of the 16 flattened rows, but
the HUMIDITY and DAY_TEMP reported in each row are associated with the specific
PATH of the array (as shown in Figure 4-18).

Figure 4-18. The flattened DATA array

The temperature information in the DATA array has six nested values: day, eve, max,
min, morn, and night. We can use a nested FLATTEN to further flatten the DATA array.
When we do this, each DATA row appears 96 times, six times for each of the 16
PATH values (as shown in Figure 4-19):

136 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

SELECT d.value:dt::timestamp AS TIME,
t.key,
v:city:name AS CITY, v:city:country AS COUNTRY,
d.path AS PATH,
d.value:humidity AS HUMIDITY,
d.value:temp:day AS DAY_TEMP,
d.value:temp:night AS NIGHT_TEMP,
v:data AS data
FROM SNOWFLAKE_SAMPLE_DATA.WEATHER.DAILY_16_TOTAL,
LATERAL FLATTEN(input => daily_16_total.v:data) d,
LATERAL FLATTEN(input => d.value:temp) t
WHERE v:city:id = 1274693
LIMIT 100;

Figure 4-19. The flattened, nested DATA array

As we’ve just seen, the Snowflake FLATTEN function is used to convert semi-structured
data to a relational representation.

It is possible to combine a LATERAL JOIN with a FLATTEN function
to separate events into individual JSON objects while preserving
the global data.

Unstructured Data Types
There are many advantages to using unstructured data to gain insight. Unstructured
data is often qualitative, but it can also be quantitative data lacking rows, columns, or
delimiters, as would be the case with a PDF file that contains quantitative data. Media
logs, medical images, audio files of call center recordings, document images, and
many other types of unstructured data can be used for analytical purposes and for the
purpose of sentiment analysis. Storing and governing unstructured data is not easy.
Unstructured data is not organized in a predefined manner, which means it is not
well suited for relational databases. Typically, unstructured data has been stored in

Introduction to Data Types Supported by Snowflake | 137

blob storage locations, which has several inherent disadvantages, making it difficult
and time-consuming to search for files.

To improve searchability of unstructured data, Snowflake recently launched built-in
directory tables. Using a tabular file catalog for searches of unstructured data is now
as simple as using a SELECT * command on the directory table. Users can also build a
table stream on top of a directory table, which makes it possible to create pipelines
for processing unstructured data. Additionally, Snowflake users can create secure
views on directory tables and, thus, are also able to share those secure views with
others.

How Snowflake Supports Unstructured Data Use
Unstructured data represents an increasingly larger percentage of data being gener‐
ated today. Examples of unstructured data types include video, audio, or image files,
logfiles, sensor data, and social media posts. Unstructured data, which can be human
generated or machine generated, has an internal structure but not one that is storable
in a structured database format.

There are many reasons why you’d want to make use of all this unstructured data.
Such use cases could include deriving insights like sentiment analysis from call center
recordings; extracting text for analytics by using optical character recognition pro‐
cesses on insurance cards or prescription pills; using machine learning on DICOM
medical images; or extracting key-value pairs from stored PDF documents.

It’s no secret that unstructured data is complex; hence, there are many challenges to
storing, searching, and analyzing it. Traditional data warehouses and data lakes have
been unable to adequately support the workload demands of today’s data formats,
especially unstructured data. However, Snowflake is not your traditional data ware‐
house or data lake. Instead, it is a data platform built from the ground up for the
cloud; therefore, it has removed much of the difficulty associated with storing,
searching, and analyzing or processing unstructured data.

The first consideration in using unstructured data is how and where to store the
unstructured files. When using Snowflake, there are two ways to do this: internal
stages and external stages. We’d use an internal stage if we wanted to store data inter‐
nally on Snowflake; especially if we were looking for a simple, easy-to-manage solu‐
tion. That is because Snowflake automatically manages the scalability, encryption,
data compression, and other aspects of storage. We’d alternatively use an external
stage, known as bring your own storage, if we have legacy data stored elsewhere across
the cloud as there is no need to move all your data into Snowflake.

While it is possible to store unstructured data internally in a Snowflake table using
the VARIANT column type, it is usually not recommended because there is a file
storage limitation of 16 MB. If we instead use a stage, there are no size limitations

138 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

other than those imposed by the major cloud providers upon which your Snowflake
instance is built: 5 TB of data for AWS and GCP or 256 GB of data for Azure.

Whether you use internal or external Snowflake stages, control access to data is easily
achieved through role-based access controls. By using GRANT and REVOKE statements,
privileges can be given to Snowflake resources like stages by granting permissions to
roles which are then granted to individuals. It’s easy to understand and learn how to
give fine-grain access to data in an internal or external stage, or to a subset of the data
stored in views which are Snowflake objects created on top of stages. For a refresher
about Snowflake access controls, refer to Chapter 5.

Using Snowflake, storing and granting access to unstructured data can be done in
three different ways: stage file URLs, scoped URLs, or presigned URLs.

Stage file URL access
A stage file URL is used to create a permanent URL to a file on a Snowflake stage and
is used most frequently for custom applications. Access to a file URL is through a GET
request to the REST API endpoint along with the authorization token. Note that the
user must have read privileges on the stage. Stage file URLs have a unique feature in
that they can be listed in a Snowflake directory table.

The ability to create a directory table, like a file catalog, which you can easily search to
retrieve file URLs to access the staged files as well as other metadata, is a unique fea‐
ture that Snowflake provides for unstructured data. Snowflake roles that have been
granted privileges can query a directory table to retrieve URLs to access staged files.

Whether you want to, for example, sort by file size or by last modified date, or only
take the top 100 files or the largest files, it is possible to do so with Snowflake direc‐
tory tables. You can also use Snowflake streams and tasks with directory tables for a
powerful combination. Using table streams, for example, you can easily find all the
new files that were recently added. Because a directory table is a table, you can per‐
form fine-grain select and search operations. Search operations in regular blob stores
are extremely difficult because they don’t have the catalog information in a tabular
format.

A Snowflake directory table is a built-in read-only table. As such, you cannot add
more columns or modify the columns in a directory table. What you can do is use
Snowflake streams and tasks to calculate values and put them into a new table with a
column containing the results of the calculation. You’ll then be able to join that table
with the directory table by creating a view. You can also add tags, if desired.

Scoped URL access
A scoped URL is frequently used for custom applications; especially in situations
where access to the data will be given to other accounts using the data share

Introduction to Data Types Supported by Snowflake | 139

functionality or when ad hoc analysis is performed internally using Snowsight. Shar‐
ing unstructured data securely in the cloud is easy with Snowflake. No privileges are
required on the stage. Instead, you’d create a secure view, and using the scoped URL,
you would share the contents of the secure view. The scoped URL is encoded, so it is
not possible to determine the account, database, schema, or other storage details from
the URL.

Access to files in a stage using scoped URL access is achieved in one of two ways. One
way is for a Snowflake user to click a scoped URL in the results table in Snowsight.
The other way is to send the scoped URL in a request which results in Snowflake
authenticating the user, verifying the scoped URL has not expired, and then redirect‐
ing the user to the staged file in the cloud storage service. Remember, the location of
the staged file in the cloud storage is encoded, so the user is unable to determine the
location. The scoped URL in the output from the API call is valid for 24 hours, the
current length of time the result cache exists.

For security reasons, it is impossible to share a scoped URL that has
been shared with you. If you were to share the link with someone
else who does not have similar access granted to them, the message
access denied would appear.

Presigned URL access
A presigned URL is most often used for business intelligence applications or report‐
ing tools that need to display unstructured file contents for open files. Because the
presigned URLs are already authenticated, a user or application can directly access or
download files without the need to pass an authorization token.

The GET_PRESIGNED_URL function generates the presigned URL to a stage file using
the stage name and relative file path as inputs. Access to files in a stage using a pre‐
signed URL can be accomplished in three different ways: use the presigned URL in a
web browser to directly navigate to the file, click a presigned URL in the results table
in Snowsight, or send the presigned URL in a REST API call request.

Processing unstructured data with Java functions and external functions
The ability to run processes on the unstructured data inside files is one of the most
exciting features offered by Snowflake. Currently, there are two ways to process
unstructured data using Snowflake: Java functions and external functions. In the
future, Snowflake plans to add the ability to process unstructured data using Python
functions.

If you already have Java code that you’ve written for use on unstructured data, it
makes sense to use a Java user-defined function (UDF). Note that Java UDFs are exe‐
cuted directly in Snowflake, using a Snowflake virtual warehouse. As such, Java UDFs

140 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

do not make any API calls outside the boundaries of Snowflake. Everything is tightly
secured and managed within the Snowflake environment.

If there are external API services such as machine learning models, geocoders, or
other custom code that you want to utilize, external functions can be used. External
functions make it possible to use existing machine learning services to extract text
from images, or to process PDF files to extract key-value pairs. In an external func‐
tion, you can use any of the AWS, Azure, or GCP functionalities, including AWS
Rekognition or Azure Cognitive Services. External functions executed on unstruc‐
tured data, whether stored within internal or external stages, can be used to eliminate
the need to export and reimport data.

Snowflake SQL Functions and Session Variables
Snowflake offers users the ability to create UDFs and to use external functions, as well
as to access many different built-in functions. Session variables also extend Snowflake
SQL capabilities.

Using System-Defined (Built-In) Functions
Examples of Snowflake built-in functions include scalar, aggregate, window, table,
and system functions.

Scalar functions accept a single row or value as an input and then return one value as
a result, whereas aggregate functions also return a single value but accept multiple
rows or values as inputs.

Scalar functions
Some scalar functions operate on a string or binary input value. Examples include
CONCAT, LEN, SPLIT, TRIM, UPPER and LOWER case conversion, and REPLACE. Other
scalar file functions, such as GET_STAGE_LOCATION, enable you to access files staged in
Snowflake cloud storage.

Additionally, you can do many things in Snowflake with date and time data types.
Some examples of scalar date and time functions and data generation functions
include the following:

• Construct/deconstruct (extract) using month, day, and year components.
• Truncate or “round up” dates to a higher level.
• Parse and format dates using strings.
• Add/subtract to find and use date differences.
• Generate system dates or a table of dates.

Snowflake SQL Functions and Session Variables | 141

Aggregate functions
A Snowflake aggregate function will always return one row even when the input con‐
tains no rows. The returned row from an aggregate function where the input contains
zero rows could be a zero, an empty string, or some other value. Aggregate functions
can be of a general nature, such as MIN, MAX, MEDIAN, MODE, and SUM. Aggregate func‐
tions also include linear regression, statistics and probability, frequency estimation,
percentile estimation, and much more.

Snowflake window functions are a special type of aggregate function that can operate
on a subset of rows. This subset of related rows is called a window. Unlike aggregate
functions which return a single value for a group of rows, a window function will
return an output row for each input row. The output depends not only on the indi‐
vidual row passed to the function but also on the values of the other rows in the win‐
dow passed to the function.

Window functions are commonly used for finding a year-over-year percentage
change, a moving average, and a running or cumulative total, as well as for ranking
rows by groupings or custom criteria.

Let’s compare an aggregate function with a window function. In this first example,
we’ll create an aggregate function by using the vowels in the alphabet and their corre‐
sponding locations:

SELECT LETTER, SUM(LOCATION) as AGGREGATE
FROM (SELECT 'A' as LETTER, 1 as LOCATION
 UNION ALL (SELECT 'A' as LETTER,1 as LOCATION)
 UNION ALL (SELECT 'E' as LETTER,5 as LOCATION)
) as AGG_TABLE
GROUP BY LETTER;

The results of this query are shown in Figure 4-20.

Figure 4-20. Results of an aggregate function query

Next, we’ll create a window function using the same logic:

SELECT LETTER, SUM(LOCATION) OVER (PARTITION BY LETTER) as WINDOW_FUNCTION
FROM (SELECT 'A' as LETTER, 1 as LOCATION
 UNION ALL (SELECT 'A' as LETTER, 1 as LOCATION)
 UNION ALL (SELECT 'E' as LETTER, 5 as LOCATION)
) as WINDOW_TABLE;

142 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

Notice, in Figure 4-21, how the letter A has the same sum value in the window func‐
tion as in the aggregate function, but repeats in the results because the input has two
separate A listings.

Figure 4-21. Results of a window function

Table functions
Table functions, often called tabular functions, return results in a tabular format with
one or more columns and none, one, or many rows. Most Snowflake table functions
are 1-to-N functions where each input row generates N output rows, but there exist
some M-to-N table functions where a group of M input rows produces a group of
N output rows. Table functions can be system defined or user defined. Some exam‐
ples of system-defined table functions include VALIDATE, GENERATOR, FLATTEN,
RESULT_SCAN, LOGIN_HISTORY, and TASK_HISTORY.

System functions
Built-in system functions return system-level information or query information, or
perform control operations.

One oft-used system information function is SYSTEM$CLUSTERING_INFORMATION,
which returns clustering information, including the average clustering depth, about
one or more columns in a table.

System control functions allow you to execute actions in the system. One example of
a control function is SYSTEM$CANCEL_ALL_QUERIES and requires the session ID. You
can obtain the session ID by logging in as the ACCOUNTADMIN. From the Main
menu in Snowsight, go to Activity → Query History and then use the Column button
to select the session ID so that it will be displayed. Alternatively, go to Account →
Sessions in the Classic Console interface:

SELECT SYSTEM$CANCEL_ALL_QUERIES(<session_id>);

If you need to cancel queries for a specific virtual warehouse or user rather than the
session, you’ll want to use the ALTER command along with ABORT ALL QUERIES
instead of a system control function.

Snowflake SQL Functions and Session Variables | 143

Creating SQL and JavaScript UDFs and Using Session Variables
SQL functionality can be extended by SQL UDFs, Java UDFs, Python UDFs, and ses‐
sion variables. We took a deep dive into both SQL and JavaScript UDFs in Chapter 3,
so we’ll focus on learning more about session variables in this section.

Snowflake supports SQL variables declared by the user, using the SET command.
These session variables exist while a Snowflake session is active. Variables are distin‐
guished in a Snowflake SQL statement by a $ prefix and can also contain identifier
names when used with objects. You must wrap a variable inside the identifier, such as
IDENTIFIER($Variable), to use a variable as an identifier. Alternatively, you can
wrap the variable inside an object in the context of a FROM clause.

To see all the variables defined in the current session, use the SHOW VARIABLES
command.

Some examples of session variable functions include the following:

• SYS_CONTEXT and SET_SYS_CONTEXT
• SESSION_CONTEXT and SET_SESSION_CONTEXT
• GETVARIABLE and SETVARIABLE

All variables created during a session are dropped when a Snowflake session is closed.
If you want to destroy a variable during a session, you can use the UNSET command.

External Functions
An external function is a type of UDF that calls code which is stored and executed
outside of Snowflake. Snowflake supports scalar external functions, which means the
remote service must return exactly one row for each row received. Within Snowflake,
the external function is stored as a database object that Snowflake uses to call the
remote service.

It is important to note that rather than calling a remote service directly, Snowflake
most often calls a proxy service to relay the data to the remote service. The Amazon
API Gateway and Microsoft Azure API management service are two examples of
proxy services that can be used. A remote service can be implemented as an AWS
Lambda function, a Microsoft Azure function, or an HTTPS server (e.g., Node.js)
running on an EC2 instance.

Any charges by providers of remote services will be billed separately. Snowflake
charges normal costs associated with data transfer and virtual warehouse usage when
using external functions.

144 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

There are many advantages of using external functions. External functions can be
created to be called from other software programs in addition to being called from
within Snowflake. Also, the code for the remote services can be written in languages
such as Go or C#—languages that cannot be used within other Snowflake UDFs. One
of the biggest advantages is that the remote services for Snowflake external functions
can be interfaced with commercially available third-party libraries, such as machine
learning scoring libraries.

Code Cleanup
Code cleanup for this chapter is simple. You can use the following command to drop
the database we created earlier:

DROP DATABASE DEMO4_DB;

Notice that we don’t have to remove all the tables first, because dropping the database
will automatically drop the associated tables.

Summary
In this chapter, we created and executed all our Snowflake queries using the SYSAD‐
MIN role. This was done intentionally so that we could focus on learning the basics of
Snowflake SQL commands, functions, statements, and data types without adding the
complexity of needing to navigate Snowflake access controls. Now it’s time to build
on this foundational knowledge, along with what we learned in Chapter 3 about cre‐
ating and managing architecture objects.

In the next chapter, we’ll take a deep dive into leveraging Snowflake access controls. If
you expect to be assigned administrator responsibilities for one of the core admin
roles, the next chapter will likely be one of the most important chapters for you in
your Snowflake journey of learning. Even if you never expect to perform administra‐
tor duties, you’ll still need to know how to leverage the full functionality of Snowflake
within the permissions you are assigned. Also, even if you are not assigned a Snow‐
flake admin role, it’s still likely that you will be given access to perform some func‐
tions once reserved only for administrators.

Snowflake has taken great care to design and build access controls that address some
of the weaknesses of other platforms. One example of this is that Snowflake has pur‐
posely designed an access control system that removes the concept of a super user, a
major risk of many platforms. That said, it is important to recognize that there is still
much you can learn about Snowflake’s unique access controls even if you have experi‐
ence with access controls built for other platforms.

Code Cleanup | 145

Knowledge Check
The following questions are based on the information contained in this chapter:

1. What can you use to ensure that a line of text is a comment rather than having it
be treated as code?

2. Snowflake’s string data types are supported by string constants. What delimiters
can be used to enclose strings?

3. What are some advantages of using external functions?
4. What is the default duration Snowflake uses to determine when to cancel long-

running queries? Can you change that duration and, if so, how would you do
that?

5. What are the risks of using floating-point number data types?
6. How does a window function differ from an aggregate function?
7. Does Snowflake support unstructured data types?
8. What semi-structured data types does Snowflake support?
9. Does Snowflake’s TIMESTAMP data type support local time zones and daylight sav‐

ing time? Explain.
10. What are derived columns and how can they be used in Snowflake?
11. What are the three ways you can gain access to unstructured data files in

Snowflake?
12. List some examples of unstructured data.
13. What type of table is a directory table?

Answers to these questions are available in Appendix A.

146 | Chapter 4: Exploring Snowflake SQL Commands, Data Types, and Functions

CHAPTER 5

Leveraging Snowflake Access Controls

An organization’s data repositories may be filled with valuable, confidential informa‐
tion. Thus, securing and protecting this data is essential and is often a regulatory or
statutory requirement. Though critical, the need for data security must be reasonably
balanced against business needs for efficient data access. In other words, data access
should not be so restrictive as to hobble a business’s ability to operate effectively and
efficiently for the sake of security. Rather, the necessary data must be made available
to just the right users at just the right time without sacrificing security. To achieve that
balance, developing a good security model must encompass planning and involve‐
ment with the right stakeholders. Snowflake makes achieving this balance easy.

Creating multiple layers of security that take advantage of Snowflake’s built-in secu‐
rity options is among the best practices for managing security. The outer security
layer (the outermost concentric square in Figure 5-1) relies on network policies, key
pair authentication, multifactor authentication (MFA), and secure private networks as
options to ensure that only authenticated users gain access to a Snowflake account.
Snowflake provides data security protection through data encryption. Both of these
outer layers of security are discussed in more detail in Chapter 7.

Figure 5-1. All data within a Snowflake account is encrypted and is protected by
authentication

147

In this chapter, we’ll learn about the next layer, user management and object security.
This security type uses role-based access control and discretionary access control to
open access to certain data for users (see Figure 5-2). Beyond that, data privacy access
restrictions, also covered in Chapter 7, are those things that restrict access, such as
dynamic data masking, row-level security, and use of secure views and secure user-
defined functions (UDFs), to provide limited access to sensitive and private data.

Figure 5-2. Layered security of Snowflake data within a Snowflake account

In this chapter, you will learn how access control is used to secure Snowflake objects
by going through a series of examples which build upon each other. Here are the steps
you will work through:

• Learn about Snowflake’s access control model
• Create securable objects
• Create custom roles
• Assign role hierarchies
• Grant privileges to roles
• Assign roles to users
• Test and validate the work
• Perform user management
• Code cleanup
• Knowledge check

Prep Work
Create a new worksheet titled Chapter5 Snowflake Access Controls. Refer to “Navigat‐
ing Snowsight Worksheets” on page 8 if you need help creating a new worksheet. To
set the worksheet context, make sure you are using the SYSADMIN role and the
COMPUTE_WH virtual warehouse.

148 | Chapter 5: Leveraging Snowflake Access Controls

Snowflake’s hybrid access control provides for access at a granular level. A combina‐
tion of discretionary access control and role-based access control approaches deter‐
mines who can access what object and perform operations on those objects, as well as
who can create or alter the access control policies themselves. Discretionary access
control (DAC) is a security model in which each object has an owner who has control
over that object. Role-based access control (RBAC) is an approach in which access
privileges are assigned to roles and roles are then assigned to one or more users.

In the Snowflake hybrid approach, all securable objects are owned by a role rather
than a user. Further, each securable object is owned by only one role, which is usually
the role used to create the object. Note that because a role can be assigned to more
than one user, every user granted the same role also has inherent privileges in a
shared, controlled fashion. Object ownership can be transferred from one role to
another. The Snowflake access control key concepts are described by the following
definitions and Figure 5-3:

Securable object
Entity such as a database or table. Access to a securable object is denied unless
specifically granted.

Role
Receives privileges to access and perform operations on an object or to create or
alter the access control policies themselves. Roles are assigned to users. Roles can
also be assigned to other roles, creating a role hierarchy.

Privileges
Inherent, assigned, or inherited access to an object.

User
A person, service account, or program that Snowflake recognizes.

Figure 5-3. Access control key concepts

Prep Work | 149

As explained in Chapter 3, every securable database object resides in a logical con‐
tainer within a hierarchy that includes a schema and a database, with the account as
the top container for all securable objects. Figure 5-4 illustrates Snowflake objects
along with the system-defined role that inherently owns each type of securable object.

Figure 5-4. Snowflake account objects

Resource monitors are always owned by the ACCOUNTADMIN
role. Only the ACCOUNTADMIN can create or drop this object.
The ACCOUNTADMIN cannot grant this privilege to any other
role, but can grant another role the ability to modify a resource
monitor already created.

Creating Snowflake Objects
To illustrate how Snowflake access controls work, it is necessary to have Snowflake
objects in your Snowflake account on which to practice. Let’s start by creating a few
virtual warehouses, which are needed to perform SELECT statements and Data Manip‐
ulation Language (DML) operations. First, the SYSADMIN role is used to create new
virtual warehouses. The SHOW command, as demonstrated by Figure 5-5, can then be
used to confirm that the virtual warehouses were created:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE WAREHOUSE VW1_WH WITH WAREHOUSE_SIZE='X-SMALL'
INITIALLY_SUSPENDED=true;

150 | Chapter 5: Leveraging Snowflake Access Controls

CREATE OR REPLACE WAREHOUSE VW2_WH WITH WAREHOUSE_SIZE='X-SMALL'
INITIALLY_SUSPENDED=true;
CREATE OR REPLACE WAREHOUSE VW3_WH WITH WAREHOUSE_SIZE='X-SMALL'
INITIALLY_SUSPENDED=true;
SHOW WAREHOUSES;

Figure 5-5. Newly created virtual warehouses

Next, the SYSADMIN role is used again to create two databases and three schemas.
Before creating these objects, see how the SHOW DATABASES command returns differ‐
ent results depending on the role that is used to issue the command. The difference
occurs because the results are meant to return only the databases to which the role
has access.

Three databases are included and made available to every role, including the PUBLIC
role, at the time when a Snowflake account is created. Therefore, using role
SYSADMIN or role PUBLIC to view the list of databases will return the same results,
as seen in Figure 5-6:

USE ROLE SYSADMIN;
SHOW DATABASES;

Now try using the PUBLIC role:

USE ROLE PUBLIC;
SHOW DATABASES;

Figure 5-6. Existing Snowflake databases available to the PUBLIC role

However, a user assigned the ACCOUNTADMIN role will observe a fourth database
listed, shown in Figure 5-7. The additional database is a system-defined and read-
only shared database provided by Snowflake:

USE ROLE ACCOUNTADMIN;
SHOW DATABASES;

Creating Snowflake Objects | 151

Figure 5-7. Existing Snowflake databases available to the ACCOUNTADMIN role

Let’s use the SYSADMIN role to create the databases and schemas.

The order in which the SQL commands are written to create data‐
bases and schemas is important. You’ll need to create schemas
immediately after creating the database or else use the fully quali‐
fied object names for creating the schema.

For DB1 we’ll create the schema at the end using the fully qualified object name, and
for DB2 we’ll create the schemas right after creating the database:

USE ROLE SYSADMIN;
CREATE OR REPLACE DATABASE DB1;
CREATE OR REPLACE DATABASE DB2;
CREATE OR REPLACE SCHEMA DB2_SCHEMA1;
CREATE OR REPLACE SCHEMA DB2_SCHEMA2;
CREATE OR REPLACE SCHEMA DB1.DB1_SCHEMA1;
SHOW DATABASES;

The results are shown in Figure 5-8.

Figure 5-8. Existing Snowflake databases available to the SYSADMIN role

Resource monitors will be described in more detail in Chapter 8. Only an account
administrator can create a resource monitor. The following code is used to create a
resource monitor:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR1_RM WITH CREDIT_QUOTA=10000
TRIGGERS ON 75 PERCENT DO NOTIFY
 ON 98 PERCENT DO SUSPEND
 ON 105 PERCENT DO SUSPEND_IMMEDIATE;
SHOW RESOURCE MONITORS;

The result of the preceding code is shown in Figure 5-9.

152 | Chapter 5: Leveraging Snowflake Access Controls

Figure 5-9. A resource monitor created by the ACCOUNTADMIN role

Later in this chapter we’ll explore Snowflake user management in detail. For now, let’s
create a few users with minimal information:

USE ROLE USERADMIN;
CREATE OR REPLACE USER USER1 LOGIN_NAME=ARNOLD;
CREATE OR REPLACE USER USER2 LOGIN_NAME=BEATRICE;
CREATE OR REPLACE USER USER3 LOGIN_NAME=COLLIN;
CREATE OR REPLACE USER USER4 LOGIN_NAME=DIEDRE;

We were able to successfully create the users. Let’s see what happens when we attempt
to use the USERADMIN role to show a list of users:

USE ROLE USERADMIN;
SHOW USERS;

Figure 5-10 shows the result.

Figure 5-10. An error was displayed because USERADMIN has insufficient privileges

The listing of all users can be viewed by using the role in the hierarchy just above the
USERADMIN role, as shown in Figure 5-11:

USE ROLE SECURITYADMIN;
SHOW USERS;

Figure 5-11. A listing of Snowflake users

Creating Snowflake Objects | 153

Snowflake System-Defined Roles
A Snowflake role, which is assigned to a user, is an entity to which privileges can be
assigned. Assigned privileges do not come with the GRANT option, the ability to grant
the assigned privilege to another role, unless specifically assigned. Roles can also be
granted to other roles, which creates a role hierarchy. With this role hierarchy struc‐
ture, privileges are also inherited by all roles above a particular role in the hierarchy.
A user can have multiple roles and can switch between roles, though only one role
can be active in a current Snowflake session. The exception would be if the USE SEC‐
ONDARY ROLES option is used in an active session. As illustrated in Figure 5-12,
there are a small number of system-defined roles in a Snowflake account.

Figure 5-12. System-defined account roles

As shown in Figure 5-12, the account administrator (ACCOUNTADMIN) is at the
top level of system-defined account roles and can view and operate on all objects in
the account, with one exception. The account administrator will have no access to an
object when the object is created by a custom role without an assigned system-
defined role.

The ACCOUNTADMIN role can stop any running SQL statements and can view and
manage Snowflake billing. Privileges for resource monitors are unique to the
ACCOUNTADMIN role. None of the inherent privileges that come with the resource
monitor privileges come with the GRANT option, but the ACCOUNTADMIN can
assign the ALTER RESOURCE MONITOR privilege to another role. It is a best practice to

154 | Chapter 5: Leveraging Snowflake Access Controls

limit the ACCOUNTADMIN role to the minimum number of users required to
maintain control of the Snowflake account, but to no fewer than two users.

Snowflake has no concept of a super user or a super role. All access
to securable objects, even by the account administrator, requires
access privileges granted explicitly when the ACCOUNTADMIN
creates objects itself, or implicitly by being in a higher hierarchy
role. As such, if a custom role is created without assignment
to another role in a hierarchy that ultimately leads to the
ACCOUNTADMIN role, any securable objects created by that role
would be inaccessible by the ACCOUNTADMIN role.

In addition to ACCOUNTADMIN, other system-defined roles can manage security
for objects in the system by using the inherent privileges assigned to them. Those
privileges can be granted to other roles in Snowflake, including custom roles, to
assign the responsibility for managing security in the system. An example of when
the ACCOUNTADMIN assigns the Apply Masking Policy privilege to a custom role
will be demonstrated later in the chapter.

The security administrator (SECURITYADMIN) is inherently given the MANAGE
GRANTS privilege and also inherits all the privileges of the USERADMIN role. The
user administrator (USERADMIN) is responsible for creating and managing users
and roles.

The system administrator (SYSADMIN) role is a system-defined role with privileges
to create virtual warehouses, databases, and other objects in the Snowflake account.
The most common roles created by the USERADMIN are assigned to the SYSAD‐
MIN role, thus enabling the system or account administrator to manage any of the
objects created by custom roles.

The PUBLIC role is automatically granted to every role and every user in the Snow‐
flake account. Just like any other role, the PUBLIC role can own securable objects.

It is important to remember that any privileges or object access
provided to the PUBLIC role is available to all roles and all users in
the account.

Creating Custom Roles
Creating and managing custom roles is one of the most important functions in Snow‐
flake. Before creating custom roles, planning should be undertaken to design a cus‐
tom role architecture that will secure and protect sensitive data but will not be
unnecessarily restrictive. Involved in the planning discussion should be the data

Creating Custom Roles | 155

stewards, governance committee, staff who understand the business needs, and IT
professionals. There is an example in this chapter of an approach for creating custom
roles. The approach I’ve taken is to divide the custom roles into functional-level cus‐
tom roles, which include business and IT roles, and system-level custom roles, which
include service account roles and object access roles.

Let’s look at the roles that exist in the Snowflake account we created in preparation
for creating new custom roles. The command to show roles will return a list of the
role names as well as some additional information:

USE ROLE USERADMIN;
SHOW ROLES;

In Figure 5-13, for the USERADMIN role, we see that the is_current status is Y and
the is_inherited status is Y for the PUBLIC role. This means the USERADMIN role is
the role currently in use and above the public role in the hierarchy; thus, it will inherit
any privileges assigned to the PUBLIC role.

Figure 5-13. Showing the USERADMIN role as the current user

As shown in Figure 5-14, the security administrator role inherits privileges from the
USERADMIN and PUBLIC roles. Here is the command to show the roles:

USE ROLE SECURITYADMIN;
SHOW ROLES;

Figure 5-14. Showing SECURITYADMIN as the current user

156 | Chapter 5: Leveraging Snowflake Access Controls

Functional-Level Business and IT Roles
You’ll notice that in Figure 5-15, a decision was made to use suffixes to differentiate
between levels, such as Sr for senior analyst and Jr for junior analyst. A decision was
also made to use prefixes for roles in which different environments might be needed,
such as SBX for Sandbox, DEV for Development, and PRD for Production.

Figure 5-15. Example of functional-level custom roles to be created by the USERADMIN
role

We use the USERADMIN role to create our 10 functional custom roles:

USE ROLE USERADMIN;
CREATE OR REPLACE ROLE DATA_SCIENTIST;
CREATE OR REPLACE ROLE ANALYST_SR;
CREATE OR REPLACE ROLE ANALYST_JR;
CREATE OR REPLACE ROLE DATA_EXCHANGE_ASST;
CREATE OR REPLACE ROLE ACCOUNTANT_SR;
CREATE OR REPLACE ROLE ACCOUNTANT_JR;
CREATE OR REPLACE ROLE PRD_DBA;
CREATE OR REPLACE ROLE DATA_ENGINEER;
CREATE OR REPLACE ROLE DEVELOPER_SR;

Creating Custom Roles | 157

CREATE OR REPLACE ROLE DEVELOPER_JR;
SHOW ROLES;

By using the SHOW command, you’ll find that none of the custom roles has been gran‐
ted to other roles. It is otherwise important to have all custom roles assigned to
another role in the hierarchy with the top custom role being assigned to either the
SYSADMIN role or the ACCOUNTADMIN role, unless there is a business need to
isolate a custom role. Later in this chapter we’ll complete the hierarchy of custom
roles by assigning the custom roles to a system-defined role.

System-Level Service Account and Object Access Roles
For system-level custom roles (see Figure 5-16), I’ve created two different types of
roles. The service account roles are typically roles used for loading data or connecting
to visualization tools. The object access roles are roles for which data access privi‐
leges, such as the ability to view the data in a particular schema or to insert data into a
table, will be granted. These object access roles then will be assigned to other roles
higher in the hierarchy.

First let’s use the USERADMIN role to create system service account roles:

USE ROLE USERADMIN;
CREATE OR REPLACE ROLE LOADER;
CREATE OR REPLACE ROLE VISUALIZER;
CREATE OR REPLACE ROLE REPORTING;
CREATE OR REPLACE ROLE MONITORING;

Next, we’ll create the system object access roles:

USE ROLE USERADMIN;
CREATE OR REPLACE ROLE DB1_SCHEMA1_READONLY;
CREATE OR REPLACE ROLE DB1_SCHEMA1_ALL;
CREATE OR REPLACE ROLE DB2_SCHEMA1_READONLY;
CREATE OR REPLACE ROLE DB2_SCHEMA1_ALL;
CREATE OR REPLACE ROLE DB2_SCHEMA2_READONLY;
CREATE OR REPLACE ROLE DB2_SCHEMA2_ALL;

CREATE OR REPLACE ROLE RM1_MODIFY;

CREATE OR REPLACE ROLE WH1_USAGE;
CREATE OR REPLACE ROLE WH2_USAGE;
CREATE OR REPLACE ROLE WH3_USAGE;

CREATE OR REPLACE ROLE DB1_MONITOR;
CREATE OR REPLACE ROLE DB2_MONITOR;
CREATE OR REPLACE ROLE WH1_MONITOR;
CREATE OR REPLACE ROLE WH2_MONITOR;
CREATE OR REPLACE ROLE WH3_MONITOR;
CREATE OR REPLACE ROLE RM1_MONITOR;

158 | Chapter 5: Leveraging Snowflake Access Controls

Figure 5-16. Example of system-level custom roles to be created by the USERADMIN
role

Role Hierarchy Assignments: Assigning Roles to
Other Roles
As discussed earlier, we want to assign the object access roles to other roles in the role
hierarchy. As part of Figure 5-17, you’ll see that it is necessary to also assign a virtual
warehouse to any role that we expect would need the ability to run queries.

Role Hierarchy Assignments: Assigning Roles to Other Roles | 159

Figure 5-17. Assignment of system-level custom roles to be granted to other roles by the
USERADMIN role

We’ll now complete the system-level role hierarchy assignments:

USE ROLE USERADMIN;
GRANT ROLE RM1_MONITOR TO ROLE MONITORING;
GRANT ROLE WH1_MONITOR TO ROLE MONITORING;
GRANT ROLE WH2_MONITOR TO ROLE MONITORING;
GRANT ROLE WH3_MONITOR TO ROLE MONITORING;
GRANT ROLE DB1_MONITOR TO ROLE MONITORING;
GRANT ROLE DB2_MONITOR TO ROLE MONITORING;
GRANT ROLE WH3_USAGE TO ROLE MONITORING;

GRANT ROLE DB1_SCHEMA1_ALL TO ROLE LOADER;
GRANT ROLE DB2_SCHEMA1_ALL TO ROLE LOADER;
GRANT ROLE DB2_SCHEMA2_ALL TO ROLE LOADER;
GRANT ROLE WH3_USAGE TO ROLE LOADER;

GRANT ROLE DB2_SCHEMA1_READONLY TO ROLE VISUALIZER;
GRANT ROLE DB2_SCHEMA2_READONLY TO ROLE VISUALIZER;
GRANT ROLE WH3_USAGE TO ROLE VISUALIZER;

GRANT ROLE DB1_SCHEMA1_READONLY TO ROLE REPORTING;
GRANT ROLE DB2_SCHEMA1_READONLY TO ROLE REPORTING;
GRANT ROLE DB2_SCHEMA2_READONLY TO ROLE REPORTING;

GRANT ROLE WH3_USAGE TO ROLE REPORTING;
GRANT ROLE MONITORING TO ROLE ACCOUNTANT_SR;
GRANT ROLE LOADER TO ROLE DEVELOPER_SR;
GRANT ROLE VISUALIZER TO ROLE ANALYST_JR;

160 | Chapter 5: Leveraging Snowflake Access Controls

GRANT ROLE REPORTING TO ROLE ACCOUNTANT_JR;
GRANT ROLE RM1_MODIFY TO ROLE ACCOUNTANT_SR;

Completing the functional-level role hierarchy assignments means we’ll also want to
assign the top-level custom role to either the SYSADMIN or ACCOUNTADMIN role
as a final step in the hierarchy assignment process. As before, we’ll also want to assign
a virtual warehouse to any role that we expect would need the ability to run queries.
This is demonstrated in Figure 5-18.

Figure 5-18. Assignment of functional-level custom roles to be granted to other roles by
the USERADMIN role

The USERADMIN role is used to complete the functional role hierarchy assignments:

USE ROLE USERADMIN;
GRANT ROLE ACCOUNTANT_JR TO ROLE ACCOUNTANT_SR;
GRANT ROLE ANALYST_JR TO ROLE ANALYST_SR;
GRANT ROLE ANALYST_SR TO ROLE DATA_SCIENTIST;
GRANT ROLE DEVELOPER_JR TO ROLE DEVELOPER_SR;
GRANT ROLE DEVELOPER_SR TO ROLE DATA_ENGINEER;
GRANT ROLE DATA_ENGINEER TO ROLE PRD_DBA;
GRANT ROLE ACCOUNTANT_SR TO ROLE ACCOUNTADMIN;
GRANT ROLE DATA_EXCHANGE_ASST TO ROLE ACCOUNTADMIN;
GRANT ROLE DATA_SCIENTIST TO ROLE SYSADMIN;
GRANT ROLE PRD_DBA TO ROLE SYSADMIN;

Next, be sure to grant usage of virtual warehouse VW2_WH directly to IT roles and
usage of virtual warehouse VW2_WH to business roles:

GRANT ROLE WH1_USAGE TO ROLE DEVELOPER_JR;
GRANT ROLE WH1_USAGE TO ROLE DEVELOPER_SR;

GRANT ROLE WH1_USAGE TO ROLE DATA_ENGINEER;
GRANT ROLE WH1_USAGE TO ROLE PRD_DBA;

Role Hierarchy Assignments: Assigning Roles to Other Roles | 161

GRANT ROLE WH2_USAGE TO ROLE ACCOUNTANT_JR;
GRANT ROLE WH2_USAGE TO ROLE ACCOUNTANT_SR;
GRANT ROLE WH2_USAGE TO ROLE DATA_EXCHANGE_ASST;
GRANT ROLE WH2_USAGE TO ROLE ANALYST_JR;
GRANT ROLE WH2_USAGE TO ROLE ANALYST_SR;
GRANT ROLE WH2_USAGE TO ROLE DATA_SCIENTIST;

Granting Privileges to Roles
Snowflake privileges are a defined level of access to a securable object. The granular‐
ity of access can be granted by using different distinct privileges. Privileges can also
be revoked if necessary. Each securable object has a specific set of privileges which
can be granted on it. For existing objects, these privileges must be granted on the
individual object. To make grant management more flexible and simpler, future
grants can be assigned on objects created in a schema. I’ve elected here to assign the
following privileges to the roles shown in Figure 5-19. These particular privileges are
privileges that only the ACCOUNTADMIN can assign.

Figure 5-19. Snowflake-assigned privileges granted by the ACCOUNTADMIN role

The ACCOUNTADMIN role is required to grant direct global privileges to the func‐
tional roles. We also will need to use the ACCOUNTADMIN role to grant privileges
to custom roles that only the ACCOUNTADMIN can grant:

162 | Chapter 5: Leveraging Snowflake Access Controls

USE ROLE ACCOUNTADMIN;
GRANT CREATE DATA EXCHANGE LISTING ON ACCOUNT TO ROLE DATA_EXCHANGE_ASST;
GRANT IMPORT SHARE ON ACCOUNT TO ROLE DATA_EXCHANGE_ASST;
GRANT CREATE SHARE ON ACCOUNT TO ROLE DATA_EXCHANGE_ASST;
GRANT IMPORTED PRIVILEGES ON DATABASE SNOWFLAKE TO ROLE MONITORING;
GRANT MONITOR ON RESOURCE MONITOR MONITOR1_RM TO ROLE MONITORING;
GRANT MONITOR USAGE ON ACCOUNT TO ROLE ACCOUNTANT_JR;
GRANT APPLY MASKING POLICY ON ACCOUNT TO ROLE ACCOUNTANT_SR;
GRANT MONITOR EXECUTION ON ACCOUNT TO ROLE ACCOUNTANT_SR;
GRANT MODIFY ON RESOURCE MONITOR MONITOR1_RM TO ROLE ACCOUNTANT_SR;

A number of different custom roles need privileges to interact with data in objects
and need the ability to use a virtual warehouse to make that interaction. For the abil‐
ity to view data in a table, a role needs privileges to use the database and schema in
which the table resides as well as the ability to use the SELECT command on the table.
The privileges will be assigned for any existing objects in the schema when these priv‐
ileges are granted. We’ll also want to consider assigning FUTURE GRANT privileges so
that the role can access tables created in the future. Future grants can only be assigned
by the ACCOUNTADMIN; therefore, we’ll have to assign future grant access in a
later step.

Following is a summarized list of assigned privileges. None of the privileges has a
GRANT option. You’ll notice that the object monitoring privilege is set at the database
level; thus, the role will be able to monitor databases we created as well as all objects
below the databases in the hierarchy:

DB1_SCHEMA1_READONLY
• USAGE on database DB1
• USAGE on schema DB1.DB1_SCHEMA1
• SELECT on all tables in schema DB1.DB1_SCHEMA1
• SELECT on future tables in schema DB1.DB1_SCHEMA1

DB2_SCHEMA1_READONLY
• USAGE on database DB2
• USAGE on schema DB2.DB2_SCHEMA1
• SELECT on all tables in schema DB2.DB2_SCHEMA1

DB2_SCHEMA2_READONLY
• USAGE on database DB2
• USAGE on schema DB2.DB2_SCHEMA2
• SELECT on all tables in schema DB2.DB2_SCHEMA2
• SELECT on future tables in schema DB2.DB2_SCHEMA1

Granting Privileges to Roles | 163

DB1_SCHEMA1_ALL
• ALL on schema DB1.DB1_SCHEMA1
• SELECT on future tables in schema DB1.DB1_SCHEMA1

DB2_SCHEMA1_ALL
• ALL on schema DB2.DB1_SCHEMA1
• SELECT on future tables in schema DB2.DB1_SCHEMA1

DB2_SCHEMA2_ALL
• ALL on schema DB2.DB2_SCHEMA2
• SELECT on future tables in schema DB2.DB2_Schema2

DB1_MONITOR
• MONITOR on database DB1

DB2_MONITOR
• MONITOR on database DB2

WH1_MONITOR
• MONITOR on virtual warehouse VW1_WH

WH2_MONITOR
• MONITOR on virtual warehouse VW2_WH

WH3_MONITOR
• MONITOR on virtual warehouse VW3_WH

WH1_USAGE
• USAGE on virtual warehouse VW1_WH

WH2_USAGE
• USAGE on virtual warehouse VW2_WH

WH3_USAGE
• USAGE on virtual warehouse VW3_WH

Notice that the SYSADMIN role, not the USERADMIN role, is required to grant
privileges. Use the SYSADMIN role to grant direct assigned privileges to system-level
object access roles:

USE ROLE SYSADMIN;
GRANT USAGE ON DATABASE DB1 TO ROLE DB1_SCHEMA1_READONLY;
GRANT USAGE ON DATABASE DB2 TO ROLE DB2_SCHEMA1_READONLY;
GRANT USAGE ON DATABASE DB2 TO ROLE DB2_SCHEMA2_READONLY;
GRANT USAGE ON SCHEMA DB1.DB1_SCHEMA1 TO ROLE DB1_SCHEMA1_READONLY;
GRANT USAGE ON SCHEMA DB2.DB2_SCHEMA1 TO ROLE DB2_SCHEMA1_READONLY;
GRANT USAGE ON SCHEMA DB2.DB2_SCHEMA2 TO ROLE DB2_SCHEMA2_READONLY;

164 | Chapter 5: Leveraging Snowflake Access Controls

GRANT SELECT ON ALL TABLES IN SCHEMA DB1.DB1_SCHEMA1
 TO ROLE DB1_SCHEMA1_READONLY;
GRANT SELECT ON ALL TABLES IN SCHEMA DB2.DB2_SCHEMA1
 TO ROLE DB2_SCHEMA1_READONLY;
GRANT SELECT ON ALL TABLES IN SCHEMA DB2.DB2_SCHEMA2
 TO ROLE DB1_SCHEMA1_READONLY;

GRANT ALL ON SCHEMA DB1.DB1_SCHEMA1 TO ROLE DB1_SCHEMA1_ALL;
GRANT ALL ON SCHEMA DB2.DB2_SCHEMA1 TO ROLE DB2_SCHEMA1_ALL;
GRANT ALL ON SCHEMA DB2.DB2_SCHEMA2 TO ROLE DB2_SCHEMA2_ALL;

GRANT MONITOR ON DATABASE DB1 TO ROLE DB1_MONITOR;
GRANT MONITOR ON DATABASE DB2 TO ROLE DB2_MONITOR;
GRANT MONITOR ON WAREHOUSE VW1_WH TO ROLE WH1_MONITOR;
GRANT MONITOR ON WAREHOUSE VW2_WH TO ROLE WH2_MONITOR;
GRANT MONITOR ON WAREHOUSE VW3_WH TO ROLE WH3_MONITOR;

GRANT USAGE ON WAREHOUSE VW1_WH TO WH1_USAGE;
GRANT USAGE ON WAREHOUSE VW2_WH TO WH2_USAGE;
GRANT USAGE ON WAREHOUSE VW3_WH TO WH3_USAGE;

Use the ACCOUNTADMIN role to grant FUTURE direct assigned privileges:

USE ROLE ACCOUNTADMIN;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB1.DB1_SCHEMA1
 TO ROLE DB1_SCHEMA1_READONLY;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB2.DB2_SCHEMA1
 TO ROLE DB2_SCHEMA1_READONLY;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB2.DB2_SCHEMA2
 TO ROLE DB2_SCHEMA2_READONLY;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB1.DB1_SCHEMA1 TO ROLE DB1_SCHEMA1_ALL;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB2.DB2_SCHEMA1 TO ROLE DB2_SCHEMA1_ALL;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DB2.DB2_SCHEMA2 TO ROLE DB2_SCHEMA2_ALL;

Assigning Roles to Users
We created four users earlier in the chapter. Now let’s assign roles to each of those
four users. It is possible to assign more than one role to each user, but only one role
can be used at any given time (i.e., assigned roles cannot be “layered” or combined).
Remember that for any role that is assigned for which there are roles below it in the
hierarchy, the user has already inherited that role. For example, the Data Scientist role
inherits the Analyst Sr and Analyst Jr roles and will see those roles in their account.
Accordingly, it would be redundant to assign either of those two roles to a user who is
assigned the Data Scientist role:

USE ROLE USERADMIN;
GRANT ROLE DATA_EXCHANGE_ASST TO USER USER1;
GRANT ROLE DATA_SCIENTIST TO USER USER2;
GRANT ROLE ACCOUNTANT_SR TO USER USER3;
GRANT ROLE PRD_DBA TO USER USER4;

Assigning Roles to Users | 165

Testing and Validating Our Work
Now is when we get to test and validate the work we completed to establish our access
control security.

When running any of the queries using any of the custom roles,
you’ll need to have a running virtual warehouse to complete the
queries. If, at any time, you receive an error message that there is
no running virtual warehouse, you can always use the SHOW com‐
mand to find a list of available virtual warehouses for that role and
the USE command to get the virtual warehouse running.

For example, the role PRD_DBA has available the VW1_WH virtual warehouse,
which was assigned to the role, and the WV3_WH virtual warehouse, which was
inherited. This is evidenced in Figure 5-20.

Figure 5-20. Current Snowflake virtual warehouses available to the PRD_DBA role

Now let’s test to see if the access works as we had intended. We granted access to the
SNOWFLAKE database to only a few people, as is a best practice. The
ACCOUNTADMIN role has access to the SNOWFLAKE database, and earlier we
used the ACCOUNTADMIN role to grant access to the senior accountant. Therefore,
we would expect an error to be returned if the junior accountant role attempted to
access the table:

USE ROLE ACCOUNTANT_JR;
SELECT * FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY WHERE QUERY_TYPE = 'GRANT';

This is confirmed in Figure 5-21.

166 | Chapter 5: Leveraging Snowflake Access Controls

Figure 5-21. An error is returned because the junior accountant role has not been
granted access

You may want to refresh the Snowsight web UI screen or log out
and log back in before attempting to test the custom roles.

If a user with the senior accountant role ran the same query, as shown in the follow‐
ing code, they would receive the query results shown in Figure 5-22:

USE ROLE ACCOUNTANT_SR;
USE WAREHOUSE VW2_WH;
SELECT * FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY WHERE QUERY_TYPE ='GRANT';

Figure 5-22. Results shown because the senior accountant has been granted access

Right now, our Snowflake account has no tables created by us. Whenever the SYSAD‐
MIN role creates a new table, it must assign other roles the necessary privileges for
that table or else they can’t access the table. However, we used a future grants option
earlier to grant access to any future objects, like tables, that we created in the three
schemas. Therefore, no action is needed to assign privileges on a newly created table.
Let’s test to see if the future grants privilege we assigned will work as intended.

First, you can see that there are two databases accessible to the SYSADMIN role:

USE ROLE SYSADMIN;
SHOW DATABASES;

Now you can see that no tables currently exist in the DB1 schema:

USE SCHEMA DB1_SCHEMA1;
SHOW TABLES;

Let’s create a simple table and confirm that the table was created, as shown in
Figure 5-23:

CREATE OR REPLACE TABLE DB1.DB1_SCHEMA1.TABLE1 (a varchar);
INSERT INTO TABLE1 VALUES ('A');
SHOW TABLES;

Testing and Validating Our Work | 167

Figure 5-23. Confirmation that the table was created

Next, we’ll test to see if the REPORTING role can access the table we just created:

USE ROLE REPORTING;
USE WAREHOUSE VW3_WH;
SELECT * FROM DB1.DB1_SCHEMA1.TABLE1;

Based on the future grants privileges we assigned to the role that was then assigned to
the REPORTING role, we expect that the REPORTING role should be able to access
the table. This is confirmed in Figure 5-24.

Figure 5-24. Confirmation that the REPORTING role can access the newly created table

We did not grant DB1 access to the VISUALIZER role, so that role will not be able to
see the table, as evidenced in Figure 5-25:

USE ROLE VISUALIZER;
SELECT * FROM DB1.DB1_SCHEMA1.TABLE1;

Figure 5-25. The VISUALIZER role does not have access to the newly created table

Here are some additional queries you can try on your own that will give you some
useful information:

USE ROLE ACCOUNTANT_SR;
USE WAREHOUSE VW3_WH;
SELECT * FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS;
SHOW GRANTS ON ACCOUNT;
SHOW GRANTS ON DATABASE DB1;
SHOW GRANTS OF ROLE ANALYST_SR;
SHOW FUTURE GRANTS IN DATABASE DB1;
SHOW FUTURE GRANTS IN SCHEMA DB1.DB1_SCHEMA1;

Any of the global privileges, privileges for account objects, and privileges for schemas
can be revoked from a role. As an example, we’ll have the account administrator grant
a role to the junior analyst and then the USERADMIN will revoke that role:

168 | Chapter 5: Leveraging Snowflake Access Controls

USE ROLE ACCOUNTADMIN;
GRANT MONITOR USAGE ON ACCOUNT TO ROLE ANALYST_JR;
USE ROLE USERADMIN;
REVOKE MONITOR USAGE ON ACCOUNT FROM ROLE ANALYST_JR;

During a session, a user can change their role if they are assigned more than one role.
When a user attempts to execute an action on an object, Snowflake compares the
privileges required to complete the action against any privileges that the current role
inherited, or that were inherently given or assigned. The action is allowed if the role
in the session has the necessary privileges.

User Management
A User object in Snowflake stores all the information about a user, including their
login name, password, and defaults. A Snowflake user can be a person or a program.
From previous discussions, we know that Snowflake users are created and managed
by the USERADMIN system-defined role. The user name is required and should be
unique when creating a user. Even though all other properties are optional, it is a best
practice to include many of them. At a minimum, you should include some basic
details and assign an initial password which you require the user to change at the next
login. Here is an example:

USE ROLE USERADMIN;
CREATE OR REPLACE USER USER10
PASSWORD='123'
LOGIN_NAME = ABARNETT
DISPLAY_NAME = AMY
FIRST_NAME = AMY
LAST_NAME = BARNETT
EMAIL = 'ABARNETT@COMPANY.COM'
MUST_CHANGE_PASSWORD=TRUE;

You can add new properties or change existing user properties by using the ALTER
command. For example, you may have a user to whom you want to grant temporary
access to your Snowflake account. That can be accomplished by setting up an expira‐
tion time for the user:

USE ROLE USERADMIN;
ALTER USER USER10 SET DAYS_TO_EXPIRY = 30;

Adding defaults for the user makes it easier for the user. You can make it so that the
user has a default role or default virtual warehouse, for example.

User Management | 169

Adding a default virtual warehouse for the user does not verify that
the virtual warehouse exists. We never created a WAREHOUSE52,
yet the code to assign that virtual warehouse as a default will be
executed successfully with no errors or warning:

USE ROLE USERADMIN;
ALTER USER USER10 SET DEFAULT_WAREHOUSE=WAREHOUSE52_WH;

We also can attempt to assign to a user a default role that does exist:
USE ROLE USERADMIN;
ALTER USER USER10 SET DEFAULT_ROLE=IMAGINARY_ROLE;

However, if we did not previously grant that role to the user, we
cannot make it the default role. In other words, setting a default
role does not assign the role to the user. The same thing applies for
access to a database. When we attempt to assign defaults that have
not previously been assigned to a user, no warning is given, but the
command is not actually executed successfully.

To see for yourself, log out of your Snowflake account and log in as USER10. Remem‐
ber that when we created the user ABARNETT we required the user to reset the pass‐
word. As a result, you’ll need to create a new acceptable password for USER10
(Figure 5-26 shows the UI for creating a new password).

Figure 5-26. A new password is required for USER10 when signing in for the first time

When you create a new password and attempt to log in, you’ll receive an error mes‐
sage because there is a default role set for ABARNETT that hasn’t been granted to the
user. As such, login will fail. Go ahead and log back in as yourself and we’ll make the
needed corrections.

170 | Chapter 5: Leveraging Snowflake Access Controls

Let’s set some defaults for USER10 that are correct, as shown in Figure 5-27. We’ll log
back out of our admin account and log back in as USER10 once we’re done:

USE ROLE USERADMIN;
GRANT ROLE ACCOUNTANT_SR TO USER USER10;
ALTER USER USER10 SET DEFAULT_NAMESPACE=SNOWFLAKE.ACCOUNT_USAGE;
ALTER USER USER10 SET DEFAULT_WAREHOUSE=VW2_WH;
ALTER USER USER10 SET DEFAULT_ROLE = ACCOUNTANT_SR;
ALTER USER USER10 UNSET DEFAULT_WAREHOUSE;

Figure 5-27. USER10 has been granted the default role of ACCOUNTANT_SR

A common user management problem is users who are unable to log in to their
account. The Snowflake system will lock out a user who failed to log in successfully
after five consecutive attempts. The Snowflake system will automatically clear the
lock after 15 minutes. If the user cannot wait, the timer can immediately be reset:

USE ROLE USERADMIN;
ALTER USER USER10 SET MINS_TO_UNLOCK=0;

Note that the original method we used to create the password will not work, because
123 is not an acceptable password:

USE ROLE USERADMIN;
ALTER USER USER10 SET PASSWORD = '123'
MUST_CHANGE_PASSWORD = TRUE;

If we try to use the 123 password, an error will be returned, as shown in Figure 5-28.

Figure 5-28. The password was rejected because the minimum length was not achieved

User Management | 171

The password submitted by the USERADMIN to reset a forgotten password must be
at least eight characters in length, and contain at least one digit, one uppercase letter,
and one lowercase letter:

USE ROLE USERADMIN;
ALTER USER USER10 SET PASSWORD = '123456Aa'
MUST_CHANGE_PASSWORD = TRUE;

Keep in mind that because the USERADMIN role rolls up to the SECURITYADMIN
role, which itself rolls up to the ACCOUNTADMIN role, the two higher roles can
also run any command that the USERADMIN role can run. Here is an example:

USE ROLE SECURITYADMIN;
ALTER USER USER10 SET PASSWORD = '123456Bb'
MUST_CHANGE_PASSWORD = TRUE;

There may be a time when it is necessary to abort a user’s currently running queries
and prevent the person from running any new queries. To accomplish this and to
immediately lock the user out of Snowflake, use the following command:

USE ROLE USERADMIN;
ALTER USER USER10 SET DISABLED = TRUE;

To describe an individual user and get a listing of all the user’s property values and
default values, use the DESCRIBE command:

USE ROLE USERADMIN;
DESC USER USER10;

The results are shown in Figure 5-29.

Figure 5-29. Description of USER10

172 | Chapter 5: Leveraging Snowflake Access Controls

To reset one of the property values of the user back to the default value, you can use
this command:

USE ROLE USERADMIN;
ALTER USER USER10 SET DEFAULT_WAREHOUSE = DEFAULT;

USE ROLE USERADMIN;
DESC USER USER10;

We discovered earlier that the SECURITYADMIN role, not the USERADMIN role,
has inherent privileges to see a list of all users. The relevant code follows, and the
results are shown in Figure 5-30:

USE ROLE SECURITYADMIN;
SHOW USERS;

Figure 5-30. A list of users in the Snowflake account

You’ll notice that the list of users includes the initial user that set up the account and
all the users that you created. In addition, there is one more user that came with the
account. The SNOWFLAKE user is a special user that is only used by Snowflake sup‐
port with the permission of the ACCOUNTADMIN when there is a need to trouble‐
shoot account issues.

It is possible to delete the SNOWFLAKE user, but once it’s deleted,
you can’t simply create another SNOWFLAKE user that can be
used for support. Therefore, it is highly recommended that you do
not delete this user.

Wildcards are supported when using the SHOW command. You can use the LIKE com‐
mand with an underscore to match any single character and with a percent sign to
match any sequence of zero or more characters. The following is an example:

USE ROLE SECURITYADMIN;
SHOW USERS LIKE 'USER%';

User Management | 173

Just as users can be created, they can also be dropped. Notice that nothing needs to be
done to anything prior to dropping the user, such as revoking their role. Just issue the
DROP command:

USE ROLE USERADMIN;
DROP USER USER10;

The ACCOUNTADMIN has access to a list of all users by querying
the SNOWFLAKE.ACCOUNT_USAGE.USERS table, including
those users who have been deleted.

Thus far, we’ve been using the Snowflake worksheet for user management. There is
another place for us to manage users, too. Navigate to the Main menu by clicking the
Home icon. Once at the Main menu, change your role to SECURITYADMIN and
then click Admin → Users & Roles. You’ll see a list of six users including your user
account, the SNOWFLAKE user, and users 1 through 4. If you click the ellipsis on the
far-right side, for USER4, you’ll see a list of options (as shown in Figure 5-31).

Figure 5-31. Menu options for managing users

You’ll notice how easy it is to grant a role to a user or to disable or drop the user. Let’s
click Edit to see the Edit User screen (as shown in Figure 5-32).

174 | Chapter 5: Leveraging Snowflake Access Controls

Figure 5-32. The Edit User screen

From this screen, you can assign a default role and/or a default virtual warehouse.
Setting a default role and virtual warehouse determines the role and virtual ware‐
house associated with the user at the time the Snowflake session is initiated by the
user. However, users can change roles or select a different virtual warehouse at any
time.

User Management | 175

Role Management
In addition to managing users from the Admin menu, you can also manage roles (as
shown in Figure 5-33).

Figure 5-33. Role management in the Admin menu

Within the Roles submenu, you have the choice to manage roles via graph or table.
The Graph view can be especially useful (as shown in Figure 5-34).

Take some time to navigate both the Graph and Table sections of the Roles submenu.
You’ll notice that you can edit the roles you’ve already created. In addition, there is a
+ Role button in the upper-right corner of the screen where you can create a new
role.

176 | Chapter 5: Leveraging Snowflake Access Controls

Figure 5-34. The Graph view and details for the ACCOUNTANT_SR role

Previously, it was mentioned that a default role can be designated for any user. When
a user first logs in, their primary role is whatever default role was assigned to them. A
user’s current role in a session is considered their primary role.

If a Snowflake user was assigned more than one role, they can switch between the
roles. There are only primary and secondary roles: any role not being used as the pri‐
mary is a secondary role.

Secondary roles can be handled in different ways. One way is to keep all roles sepa‐
rate so the user can only use one role at a time. Another way is to grant a secondary
role to a primary role, in effect creating a persistent access layering of a specific secon‐
dary role to a primary role for everyone who uses the primary role. We’ll see an exam‐
ple of that in Chapter 7. If, instead, some secondary roles should be granted only to
select users, then it is possible to implement a session-based access layering of all secon‐
dary roles by employing the USE SECONDARY ROLES statement.

Role Management | 177

Snowflake Multi-Account Strategy
In this chapter, we’ve explored how to manage a single Snowflake account. There are
many times, however, when it makes sense to have a multi-account strategy to take
advantage of the separation of accounts. One use case for needing multiple accounts
is to use different accounts for different environments, such as development, testing,
and production. While it is certainly possible to use a single account to accomplish
separation of environments, choosing a multi-account approach means different
environments can have different security features selected. This makes it possible to
balance differently how productivity versus security risk is handled for each account.
There is also the ability to save money by using a higher-grade feature set only for
production and not for development or testing. This is possible when using a multi-
account strategy.

Sometimes a company faces regulatory constraints that prevent it from using a spe‐
cific cloud provider or region in one subsidiary. In that case, a new Snowflake
account can be created for that particular subsidiary whereby an acceptable cloud
provider and region can be selected. Other times, multi-account choices are made for
many different strategic reasons. Many of today’s organizations are global and need
their data located geographically in certain regions. Sometimes organizations opt for
a multicloud approach to reduce dependency on a single vendor or to make it easier
to merge with an acquired company that operates on a different cloud provider.

Snowflake makes it easy for companies to adopt a multi-account strategy with the
Snowflake organization object and the ORGADMIN role. A Snowflake organization
simplifies account management and billing, database replication and failover/fail‐
back, Secure Data Sharing, and other administrative tasks.

An ORGADMIN can create a new Snowflake account and can view
account properties. However, an ORGADMIN does not have
access to the account data by default.

It takes approximately 30 seconds for the DNS changes to propagate before you can
access a newly created Snowflake account. The maximum number of accounts in a
Snowflake organization cannot exceed 25 by default; however, you can contact Snow‐
flake support to have the limit raised.

Managing Users and Groups with SCIM
Snowflake supports SCIM 2.0 for integration with identity providers Okta and
Microsoft Azure AD as well as with other identity providers which require
customization.

178 | Chapter 5: Leveraging Snowflake Access Controls

The specific Snowflake SCIM role must own any users and roles
that are imported from the identity provider. If the Snowflake
SCIM role does not own the imported users or roles, updates in the
identity provider will not be synced to Snowflake. Also, ensure that
you do not make user and group changes in Snowflake if using an
identity provider, because those changes made directly in Snow‐
flake will not synchronize back to the identity provider.

Code Cleanup
Let’s perform code cleanup so that you can remove the objects in your Snowflake
account in preparation for working on another chapter example.

Note that there is no need to drop objects in the hierarchy below the database before
dropping the databases, nor to revoke the virtual warehouse usage privileges
before dropping the virtual warehouses:

USE ROLE SYSADMIN;
DROP DATABASE DB1;
DROP DATABASE DB2;
SHOW DATABASES;
DROP WAREHOUSE VW1_WH; DROP WAREHOUSE VW2_WH; DROP WAREHOUSE VW3_WH;
SHOW WAREHOUSES;

Just as the ACCOUNTADMIN had to create resource monitors, the same role must
be used to drop resource monitors. After you drop the resource monitor and use the
SHOW command, you’ll see there is no longer a resource monitor on the account:

USE ROLE ACCOUNTADMIN;
DROP RESOURCE MONITOR MONITOR1_RM;
SHOW RESOURCE MONITORS;

Next, the USERADMIN role will want to drop all the custom roles that were created:

USE ROLE USERADMIN;
DROP ROLE DATA_SCIENTIST; DROP ROLE ANALYST_SR; DROP ROLE ANALYST_JR;
DROP ROLE DATA_EXCHANGE_ASST; DROP ROLE ACCOUNTANT_SR; DROP ROLE ACCOUNTANT_JR;
DROP ROLE PRD_DBA; DROP ROLE DATA_ENGINEER; DROP ROLE DEVELOPER_SR; DROP
ROLE DEVELOPER_JR; DROP ROLE LOADER; DROP ROLE VISUALIZER; DROP ROLE REPORTING;
DROP ROLE MONITORING; DROP ROLE RM1_MODIFY; DROP ROLE WH1_USAGE;
DROP ROLE WH2_USAGE; DROP ROLE WH3_USAGE; DROP ROLE DB1_MONITOR; DROP
ROLE DB2_MONITOR; DROP ROLE WH1_MONITOR; DROP ROLE WH2_MONITOR; DROP ROLE
WH3_MONITOR; DROP ROLE RM1_MONITOR; DROP ROLE DB1_SCHEMA1_READONLY; DROP ROLE
DB1_SCHEMA1_ALL; DROP ROLE DB2_SCHEMA1_READONLY; DROP ROLE DB2_SCHEMA1_ALL;
DROP ROLE DB2_SCHEMA2_READONLY; DROP ROLE DB2_SCHEMA2_ALL;
SHOW ROLES;

And now we are able to drop the users we created:

USE ROLE USERADMIN;
DROP USER USER1; DROP USER USER2; DROP USER USER3;DROP USER USER4;

Code Cleanup | 179

We can confirm that all the users have now been dropped:

USE ROLE SECURITYADMIN;
SHOW USERS;

Summary
In this chapter, we learned about Snowflake’s access control model. With many
hands-on examples, we created securable objects and custom roles, we assigned role
hierarchies, and we granted privileges to roles. Afterward, we assigned roles to users
and then tested and validated our work before performing user management and see‐
ing where we could perform role management in the Snowsight web UI.

Throughout, we also came to understand some best practices when using role-based
access control (RBAC) and discretionary access control (DAC). In future chapter
examples, you’ll notice how we use some of these best practices, such as making sure
to create new securable objects with the standard SYSADMIN role unless a custom
role is created and used for that purpose.

In the next chapter, we’ll start by using the SYSADMIN role to create some objects in
Snowsight as part of our prep work. We’ll also get introduced to SnowSQL, Snow‐
flake’s command-line interface (CLI). With the SnowSQL CLI, we’ll have to set the
context for roles using SQL as there is no intuitive web interface with drop-down
menus in SnowSQL like there is in Snowsight. The easy and intuitive Snowsight web
user interface is where you’ll likely spend most of your time as a Snowflake user, but
there are times when SnowSQL is necessary, most often when you’re focused on load‐
ing and unloading data.

Knowledge Check
The following questions are based on the information contained in this chapter:

1. How would you define inherent privileges? Give a few examples.
2. Can you name all the Snowflake system-defined account roles? To which of the

system-defined roles should most custom roles be assigned in the role hierarchy?
3. What are some of the important considerations to keep in mind when assigning

defaults, such as default role or default virtual warehouse, to a user?
4. What is one thing that an ACCOUNTADMIN role can do that no other role can

ever do?
5. Can you name the privileges a role needs in order to view the contents of a table?
6. What is unique about the SNOWFLAKE database that is included in the

account?
7. How many Snowflake accounts can an entity create?

180 | Chapter 5: Leveraging Snowflake Access Controls

8. What does it mean if privileges come with GRANT options?
9. Under what circumstances can a user execute either the SHOW WAREHOUSES or

SHOW DATABASES command and get different results?
10. Does Snowflake have the concept of a super user or super role? Explain.

Answers to these questions are available in Appendix A.

Knowledge Check | 181

CHAPTER 6

Data Loading and Unloading

Data engineers are responsible for managing the ingestion and transformation of raw
data sets from various disparate sources to deliver the data in a state that end users
need in order to gain actionable insights. This chapter provides the foundational
knowledge anyone can use to learn more about how to achieve the best data engi‐
neering results on the Snowflake cloud data platform.

The chapter begins with a summary of basic concepts of Snowflake data loading and
unloading, including data types, compression methods, file format types, and Snow‐
flake stages. In the data loading tools section, we’ll take a deep dive into learning how
to use SQL insert statements in the Snowflake worksheet to load both structured and
semi-structured data. We’ll also learn how to load data using the web UI Load Data
wizard and the SnowSQL command-line interface (CLI). For a more automated
approach to data loading, we can use data pipelines, connectors, and third-party
tools. We’ll explore some of these automated data loading options later in the chapter.
In addition, we’ll look at some alternatives to data loading, such as creating material‐
ized views on external stages and accessing shared data. Finally, we’ll discuss unload‐
ing data files from Snowflake.

For our hands-on examples, we’ll be completing most of the work in Snowsight, the
default web UI. However, we’ll need to switch to the Snowflake Classic Console
briefly to use the Load Data wizard and when we need to download SnowSQL. Before
diving in, let’s first take care of the prep work needed for the hands-on examples in
this chapter.

183

Prep Work
Create a new worksheet titled Chapter6 Data Loading and Unloading. Refer to “Navi‐
gating Snowsight Worksheets” on page 8 if you need help creating a new worksheet.
To set the worksheet context, make sure you are using the SYSADMIN role and the
COMPUTE_WH virtual warehouse.

In this chapter, all our work will be completed in one database. For each uploading
type, we’ll create a separate schema. Also, we’ll be including comments throughout
for all our CREATE statements. Execute the following SQL statements from within the
Snowsight web UI worksheet:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE DATABASE DEMO6_DB
 COMMENT = "Database for all Chapter 6 Examples";
CREATE OR REPLACE SCHEMA WS COMMENT = "Schema for Worksheet Insert Examples";
CREATE OR REPLACE SCHEMA UI COMMENT = "Schema for Web UI Uploads";
CREATE OR REPLACE SCHEMA SNOW COMMENT = "Schema for SnowSQL Loads";
CREATE OR REPLACE WAREHOUSE LOAD_WH
 COMMENT = "Warehouse for CH 6 Load Examples";

You’ll also need a CSV file to upload using the web UI Load Data wizard and the
SnowSQL CLI. There are files on GitHub for this chapter, including the CSV file, that
you can download and use. Alternatively, you can create your own file by using the
data in Table 6-1. You can save the table as a CSV comma-delimited file named
TABLE20.

Table 6-1. Data for the CSV file to be used in the chapter’s hands-on exercises

ID F_NAME L_NAME CITY
1 Anthony Robinson Atlanta
2 Peggy Mathison Birmingham
3 Marshall Baker Chicago
4 Kevin Cline Denver

Basics of Data Loading and Unloading
Before we get to our hands-on examples for data loading and unloading, we need to
review a few important concepts. In this section, we’ll spend some time learning
about the data types for semi-structured data. We’ll also learn about the file format
types and data file compression methods supported by Snowflake. In addition, we’ll
discuss the difference in the frequency of data load options, and review Snowflake
stages and how we reference different types of stages in our SQL statements. Finally,
we’ll make note of some of the different data sources that are applicable for data
loading.

184 | Chapter 6: Data Loading and Unloading

Data Types
Snowflake data types were introduced in Chapter 4, where we took a deep dive
into Snowflake data types that support structured data. In this chapter, we’ll be using
several data types for structured data, and we’ll be diving deeper into the semi-
structured data types of VARIANT, OBJECT, and ARRAY.

Semi-structured data types
Snowflake provides flexible schema data types for loading semi-structured data. No
transformations are needed prior to loading semi-structured data because Snowflake
automatically converts semi-structured data to allow for SQL querying of the data in
a fully relational manner.

Three Snowflake data types are used to support semi-structured data types: VARIANT,
OBJECT, and ARRAY. Interestingly, the VARIANT data type can store the values of any
other Snowflake data type, including OBJECT and ARRAY. Thus, VARIANT is considered
a universal data type.

The VARIANT data type has a size limit of 16 MB of compressed
data. Therefore, it is recommended that you flatten your object and
key data into separate relational columns if your semi-structured
data stored in a VARIANT data type column includes arrays, num‐
bers with strings, or dates and timestamps. This is especially
important for dates and timestamps loaded into a VARIANT data
type, because those data types end up being stored as strings in a
VARIANT column.

The Snowflake VARIANT data type is a good choice if you are not yet sure what types
of operations you want to perform on the semi-structured data you load into
Snowflake.

The Snowflake OBJECT data type represents collections of key-value pairs, where the
key is a nonempty string and the values are of a VARIANT data type. The Snowflake
ARRAY data type represents dense or sparse arrays of an arbitrary size, where the index
is a non-negative integer and the values are of a VARIANT data type.

File Formats
File formats are Snowflake objects that can be used with COPY commands. A file for‐
mat defines the data file with parameters such as compression and file type. It also
defines format options such as trim space and field delimiter for CSV files, and strip
outer array for JSON files. A listing of different file format parameters for CSV and
JSON files is presented later in this section.

Basics of Data Loading and Unloading | 185

Snowflake-supported file format types for data unloading include JSON and Parquet
for semi-structured data, and delimited file formats such as CSV and TSV for struc‐
tured data. Data loading file format types supported by Snowflake include the same
format types for unloading, plus XML, Avro, and ORC.

When loading data into Snowflake from delimited files such as CSV or TSV files, the
default character set is UTF-8; other character sets are accepted for delimited files,
but they are converted by Snowflake to UTF-8 before being stored in tables. For all
other supported file formats, UTF-8 is the only supported character set when loading
data. For unloading data, UTF-8 is the only supported character set no matter the file
format type.

Snowflake supports both the Newline delimited JSON (NDJSON)
standard format, and the comma-separated JSON format for load‐
ing data into Snowflake tables. When unloading to files, Snowflake
outputs only to the NDJSON format.

Many format options are available when loading and unloading data into and out of
Snowflake. The format options available depend on the type of file format. Table 6-2
includes the format options for the CSV file format type.

Table 6-2. Format options for the CSV file format type

Format options Parameters Loading/
unloading

Description Default

ENCODING = '<string>' |

UTF8

Loading String that specifies the
character set of source data

UTF8

ERROR_ON_COLUMN

_COUNT_MISMATCH =

TRUE | FALSE Loading Boolean that specifies whether
to generate a parsing error if
the number of delimited
columns in an input file
doesn’t match the number of
columns in the corresponding
table

TRUE

REPLACE_INVALID

_CHARACTERS =

TRUE | FALSE Loading Boolean that specifies whether
to replace invalid UTF-8
characters with Unicode
replacement characters

FALSE

SKIP_BLANK_LINES = TRUE | FALSE Loading Specifies whether to skip blank
lines in the files

FALSE

SKIP_BYTE_ORDER_MARK = TRUE | FALSE Loading Boolean that specifies whether
to skip the byte order mark

TRUE

VALIDATE_UTF8 = TRUE | FALSE Loading Boolean that specifies whether
to validate UTF-8 character
encoding

TRUE

186 | Chapter 6: Data Loading and Unloading

Format options Parameters Loading/
unloading

Description Default

SKIP_HEADER= <integer> Loading Number of lines at the start of
the file to skip

0

TRIM_SPACE = TRUE | FALSE Loading Boolean that specifies whether
to remove whitespace from
fields

FALSE

BINARY_FORMAT = HEX | BASE64 |

UTF8

Loading,
unloading

Defines the encoding format
for binary input and output

HEX

DATE_FORMAT = '<string>' |

AUTO

Loading,
unloading

Defines the format of date
values

AUTO

EMPTY_FIELD_AS_NULL = TRUE | FALSE Loading,
unloading

Specifies whether to insert SQL
NULL for empty fields in a file

TRUE

ESCAPE = '<character>' |

NONE

Loading,
unloading

Single character string used as
the escape character for
enclosed and unenclosed
values

NONE

ESCAPE_UNENCLOSED

_FIELD =

'<character>' |

NONE

Loading,
unloading

Single character string used as
the escape character for
unenclosed values only

/

(backslash)

FIELD_DELIMITER = '<character>' |

NONE

Loading,
unloading

One or more characters that
separate fields in a file

, (comma)

FIELD_OPTIONALLY

_ENCLOSED_BY =

'<character>' |

NONE

Loading,
unloading

Character used to enclose
strings, often used with Escape

NONE

NULL_IF = ('<string> [,

'<string>, …})

Loading,
unloading

String used to convert to and
from SQL NULL

NULL

(\\N)

RECORD_DELIMITER = '<character>' |

NONE

Loading,
unloading

One or more characters that
separate records in a file

Newline
character

TIME_FORMAT = '<string>' |

AUTO

Loading,
unloading

Defines the format of time
values

AUTO

TIMESTAMP_FORMAT = '<string>' |

AUTO

Loading,
unloading

Defines the format of
timestamp values

AUTO

FILE_EXTENSION = '<string>' Unloading Specifies the extension for files
unloaded to a stage

NULL

Table 6-3 includes the format options for the JSON file format type. The JSON
file format type is one of several semi-structured data types supported by Snowflake.
Format type options for other semi-structured data types, such as Avro,
ORC, Parquet, and XML, can be found in the Snowflake online documentation.

Basics of Data Loading and Unloading | 187

https://oreil.ly/F1BvG

Table 6-3. Format options for the JSON file format type

Format options Parameters Loading/
unloading

Description Default

ALLOW_DUPLICATE TRUE | FALSE Loading Boolean that specifies whether
to allow duplicate object field
names (only the last one is
preserved)

FALSE

BINARY_FORMAT = HEX | BASE64 |

UTF8

Loading Defines the encoding format
for binary string values

HEX

DATE_FORMAT = '<string>' | AUTO Loading Defines the format of date
values

AUTO

ENABLE_OCTAL = TRUE | FALSE Loading Boolean that enables parsing of
octal numbers

FALSE

IGNORE UTF8_ERRORS = TRUE | FALSE Loading Boolean that specifies whether
UTF-8 encoding errors produce
conditions

FALSE

NULL_IF = ('<string> [,

'<string>, …})

Loading String used to convert to and
from SQL NULL

NULL

(\\N)

REPLACE_INVALID

_CHARACTERS =

TRUE | FALSE Loading Boolean that specifies whether
to replace invalid UTF-8
characters with Unicode
replacement characters

FALSE

SKIP_BYTE_ORDER_MARK = TRUE | FALSE Loading Boolean that specifies whether
to skip the byte order mark

TRUE

STRIP_NULL_VALUES = TRUE | FALSE Loading Boolean that instructs the JSON
parser to remove object fields
or array elements containing
null values

FALSE

STRIP_OUTER_ARRAY = TRUE | FALSE Loading Boolean that instructs the JSON
parser to remove outer
brackets

FALSE

TIME_FORMAT = '<string>' | AUTO Loading Defines the format of time
values

AUTO

TIMESTAMP_FORMAT = '<string>' | AUTO Loading Defines the format of
timestamp values

AUTO

TRIM_SPACE = TRUE | FALSE Loading Boolean that specifies whether
to remove whitespace from
strings

FALSE

FILE_EXTENSION = '<string>' Unloading Specifies the extension for files
unloaded to a stage

NULL

Creating file formats for Snowflake data loading is optional. It is recommended that
you create file format objects if you foresee that you’ll be able to reuse them with COPY
commands for loading similarly structured files.

188 | Chapter 6: Data Loading and Unloading

Data File Compression
You can load compressed and uncompressed data into Snowflake. All data stored in
Snowflake by default is compressed using gzip, without you having to select the col‐
umns or choose a compression algorithm. You can compress your data files prior to
loading the data into Snowflake; it is recommended that you compress your files
if they are large in size. Snowflake supports the GZIP, BZIP2, DEFLATE,
RAW_DEFLATE, BROTLI, and ZSTANDARD (ZSTD) compression methods, and
can automatically detect all of them except for BROTLI and ZSTANDARD (ZSTD).
For those compression methods, you’ll need to specify the compression method at
the time of data load.

Snowflake also supports the Lempei-Ziv-Oberhumer (LZO) and
SNAPPY compression methods for the Parquet file format type.

Frequency of Data Processing
Data processing begins with raw data that is prepared, processed, and then stored. It
is possible to stream live data to storage for immediate availability, but more fre‐
quently, data is processed in near-real time. Sometimes data is processed in batches.
Let’s take a look at the differences between the types of data processing.

Batch processing
Batch processing involves automatically processing a large amount of data that has
accumulated over a specified period of time. Payroll systems are a good example of
batch processing since the data may only need to be processed biweekly. Any data
that is only accessible to you in batches, situations where data freshness is not mission
critical, and anytime you are working with complex algorithms on large data sets may
be good use cases for batch processing. The most important benefit of batch process‐
ing is that it’s typically less expensive than the other types of data processing. It’s less
expensive because compute resources are only used when the processing is executed,
and since batch processes execute less frequently than near–real-time processing, the
overall cost is less. The trade-off, though, is data freshness.

Streaming, continuous loading, and micro-batch processing
The terms streaming, stream processing, continuous loading, near–real-time processing,
and micro-batch processing are often used interchangeably because in practice they
achieve similar results. Continuous loading, near–real-time processing, and micro-
batch processing are synonymous; however, there are differences between those three
terms and the terms streaming and stream processing.

Basics of Data Loading and Unloading | 189

For micro-batch processing implementations, batch processes are executed on small
amounts of data which can be processed in less than 60 seconds. If the data routinely
takes longer than 60 seconds to load, you may want to consider reducing the size of
each batch. The time between loading each micro-batch could be greater than 60 sec‐
onds but is usually no more than a few minutes between loads. This achieves near–
real-time results.

In contrast, pure-play stream processing solutions would use tools such as a Kafka
Streams API or Confluent’s KSQL in situations in which actual real-time data is criti‐
cal. Examples of when real-time data is important include security situations in which
data applications provide immediate fraud detection capabilities, and operational sit‐
uations in which it is important to have a real-time view of ecommerce data or Inter‐
net of Things (IoT) data, such as security cameras or patient medical devices.

In the next section, we’ll discuss ways to load data using all methods, but we’ll focus
mostly on continuous loading implementations. Unlike batch processing, continuous
loading has either a small state or no state at all and typically involves relatively sim‐
ple transformations. Continuous loading is most often used when we need fresh,
near–real-time data without needing to know what happened in the last two or three
seconds. Some situations when we might want to use continuous loading are for web
analytics and human resources systems.

Snowflake Stage References
Snowflake stages were introduced in Chapter 3. We’ll briefly review a few important
things about stages here, since they are an important part of Snowflake data loading
and unloading.

Snowflake stages are temporary storage spaces used as an intermediate step to lead
files to Snowflake tables or to unload data from Snowflake tables into files. There are
two main types of stages: internal and external. For external stages, the files are stored
in an external location such as an S3 bucket, and they are referenced by the external
stage. Access to these external locations was previously managed through cloud iden‐
tity and access management (IAM) roles and access control lists (ACLs). Today, how‐
ever, the best practice is to create a storage integration. A storage integration is a
Snowflake object that stores a generated IAM entity for external cloud storage and
optionally includes allowed or blocked storage locations for Amazon S3, Google
Cloud Storage, or Microsoft Azure.

Internal stage types include internal named stages, user stages, and table stages. Note
that all stage types in Snowflake are referred to using the @ symbol.

190 | Chapter 6: Data Loading and Unloading

Named stages
Internal named stages are database objects; thus, they can be used by any user who
has been granted a role with the appropriate privileges. SQL statements in which a
named stage is referenced will need the @ symbol along with the name of the stage.
To list named stages, you can run the LIST @<stage name> statement.

User stages
Each Snowflake user has a stage for storing files which is accessible only by that user.
A user stage is not a separate database object, and it cannot be altered or dropped.
The data in a user stage is accessible only to the specific user who executed the SQL
commands. SQL statements in which a user stage is referenced will need the @~ sym‐
bols. The LIST @~ SQL statement can be used to list user stages. Once you run the list
command for a user stage, your results should be similar to those shown in
Figure 6-1.

Figure 6-1. Results of the list command for the user stage

Table stages
A table stage is not a separate database object; rather, it is an implicit stage tied to the
table itself. Just like user stages, a table stage cannot be altered or dropped. Addition‐
ally, the data in table stages is accessible only to those Snowflake roles which have
been granted the privileges to read from the table. SQL statements in which a table
stage is referenced will need the @% symbols as well as the name of the table. LIST @%
<name of table> is the statement you can use to list table stages.

Data Sources
Data can be loaded into Snowflake from a local file system, Amazon S3 bucket, Azure
container, or GCP bucket. Loading your data from different sources is not limited by
the cloud platform that hosts your Snowflake account. With the exception of some
auto-ingest Snowpipe use cases, you can load data from any of the sources previously
mentioned, whether your Snowflake account is hosted on Amazon, Azure, or GCP.

Using Snowflake or third-party tools, you can load data into Snowflake from virtually
any data source, including files, APIs, enterprise applications, and databases.

Basics of Data Loading and Unloading | 191

In this chapter, we’ll get hands-on experience with inserting and loading structured
and semi-structured data, and we’ll discover ways to ingest other data sources, such
as IoT and web/log data, by using the Kafka Connector, Snowpipe, and/or third-party
tools.

Data Loading Tools
In this section, we’ll explore five different ways to load data into Snowflake. The first
way, which we’ve been using throughout the chapters thus far, is to insert data into
tables via SQL command statements in the Snowflake worksheets. Next, we’ll learn
how to upload files directly in the web UI. We’ll also explore the SnowSQL CLI,
where we’ll use COPY INTO and PUT commands. Rounding out this section on data
loading, we’ll learn about data pipelines and third-party ETL and ELT tools.

Snowflake Worksheet SQL Using INSERT INTO and INSERT ALL
Commands
We’ll begin our data loading examples by using the SQL INSERT command in the
Snowflake worksheet. We have frequently used the INSERT INTO command in our
chapter examples because it is the quickest way to insert data into tables when you
have just a few rows of data. So, the examples in this section should be familiar to
you.

For all examples in this section, we’ll use one schema within which we’ll create all the
necessary tables. In preparation, we’ll execute the following two USE commands. Be
sure to execute these commands again if you create a new worksheet as you work to
complete examples in this section:

USE WAREHOUSE LOAD_WH;
USE DATABASE DEMO6_DB;
USE SCHEMA WS;

All the INSERT commands we’ll be demonstrating in this chapter
are Data Manipulation Language (DML) commands, not to be con‐
fused with the Snowflake INSERT string and binary function.

Single-row inserts for structured and semi-structured data
We’ll first create our TABLE1 table for the single-row insert example for structured
data. Then we’ll insert one row using explicitly specified values in the INSERT INTO
command:

192 | Chapter 6: Data Loading and Unloading

CREATE OR REPLACE TABLE TABLE1
 (id integer, f_name string, l_name string, city string)
COMMENT = "Single-Row Insert for Structured Data
 using Explicitly Specified Values";

INSERT INTO TABLE1 (id, f_name, l_name, city)
VALUES (1, 'Anthony', 'Robinson', 'Atlanta');
SELECT * FROM TABLE1;

You should now see that one record has been entered into the table. Let’s go ahead
and insert another single row:

INSERT INTO TABLE1 (id, f_name, l_name, city)
VALUES (2, 'Peggy', 'Mathison', 'Birmingham');
SELECT * FROM TABLE1;

Now let’s turn our attention to learning how we would insert semi-structured data in
Snowflake. For the semi-structured data examples in this chapter, we’ll use JSON
data.

For a single-row data insert for semi-structured data, we can’t use the VALUES clause
like we did for structured data. Instead, we’ll use a query clause as an alternative.
Notice that VARIANT is our data type:

CREATE OR REPLACE TABLE TABLE2
 (id integer, variant1 variant)
COMMENT = "Single-Row Insert for Semi-Structured JSON Data";

INSERT INTO TABLE2 (id, variant1)
SELECT 1, parse_json(' {"f_name": "Anthony", "l_name": "Robinson",
 "city": "Atlanta" } ');
SELECT * FROM TABLE2;

We now have one single row of semi-structured data in our TABLE2 table. Let’s go
ahead and insert one more JSON record:

INSERT INTO TABLE2 (id, variant1)
SELECT 2, parse_json(' {"f_name": "Peggy", "l_name": "Mathison",
 "city": "Birmingham" } ');
SELECT * FROM TABLE2;

The results of your SELECT statement should show two rows, as seen in Figure 6-2.

Figure 6-2. Results of inserting two semi-structured data rows into the TABLE2 table

Data Loading Tools | 193

Our examples thus far have demonstrated how to add a single row of data, either
structured or semi-structured, to a Snowflake table. Next, we’ll take a look at how to
add multiple rows of data at a time with one SQL statement.

Multirow inserts for structured and semi-structured data
First we’ll create a new table and then insert two rows with one SQL statement:

CREATE OR REPLACE TABLE TABLE3
 (id integer, f_name string, l_name string, city string)
COMMENT = "Multi-row Insert for Structured Data using Explicitly Stated Values";
INSERT INTO TABLE3 (id, f_name, l_name, city) VALUES
 (1, 'Anthony', 'Robinson', 'Atlanta'), (2, 'Peggy', 'Mathison',
 'Birmingham');
SELECT * FROM TABLE3;

Your results should look like those shown in Figure 6-3.

Figure 6-3. Results of inserting two records, with a structured data type, using one
INSERT command

Now let’s try inserting data into a new table from an existing table. We’ll create the
new table with exactly the same columns as the existing table. Notice that we’ll apply
a condition so that only specific records from the existing table are inserted into the
new table:

CREATE OR REPLACE TABLE TABLE4
 (id integer, f_name string, l_name string, city string)
COMMENT = "Multi-row Insert for Structured Data using Query, All Columns Same";
INSERT INTO TABLE4 (id, f_name, l_name, city)
 SELECT * FROM TABLE3 WHERE CONTAINS (city, 'Atlanta');
SELECT * FROM TABLE4;

You can see the results of the INSERT command in Figure 6-4. Only one row was
inserted into the new table because only that row met the criteria. More than one row
would have been inserted if more than one row in the existing table had met the con‐
ditions for selection.

Figure 6-4. Results of inserting data into a new table from an existing table where a con‐
dition was applied

194 | Chapter 6: Data Loading and Unloading

In this next example, we’ll create another table with the same rows as an existing
table, but we’ll insert fewer column values into the new table than are available in the
existing table:

CREATE OR REPLACE TABLE TABLE5
 (id integer, f_name string, l_name string, city string)
COMMENT = "Multi-row Insert for Structured Data using Query, Fewer Columns";

If we attempt to use a SELECT * command, as we did in the previous example, an
error will be returned:

INSERT INTO TABLE5
 (id, f_name, l_name) SELECT * FROM TABLE3 WHERE CONTAINS (city, 'Atlanta');

Our INSERT INTO command will be successful if we specify in the SELECT command
the columns we want to insert:

INSERT INTO TABLE5 (id, f_name, l_name)
 SELECT id, f_name, l_name FROM TABLE3 WHERE CONTAINS (city, 'Atlanta');
SELECT * FROM TABLE5;

The results of the SELECT command for the TABLE5 table, shown in Figure 6-5,
include a null value for the CITY column. This is because we didn’t insert that col‐
umn value from the existing table.

Figure 6-5. Results of inserting fewer columns from an existing source table into a new
target table

Our next example will demonstrate how multiple rows for structured data can be
inserted into a table using a common table expression (CTE), a named subquery
defined in a WITH clause. A CTE functions as a temporary view in a statement, except
it does not store the definition in metadata. In order to demonstrate this example,
we’ll first need to create a table that will be used as part of the next demo:

CREATE OR REPLACE TABLE TABLE6
 (id integer, first_name string, last_name string, city_name string)
COMMENT = "Table to be used as part of next demo";

INSERT INTO TABLE6 (id, first_name, last_name, city_name) VALUES
 (1, 'Anthony', 'Robinson', 'Atlanta'),
 (2, 'Peggy', 'Mathison', 'Birmingham');

Data Loading Tools | 195

Now we’ll create a new table, TABLE7, into which we will insert data by using a CTE
which gets data from the TABLE6 table:

CREATE OR REPLACE TABLE TABLE7
 (id integer, f_name string, l_name string, city string)
COMMENT = "Multi-row Insert for Structured Data using CTE";

INSERT INTO TABLE7 (id, f_name, l_name, city)
 WITH CTE AS
 (SELECT id, first_name as f_name, last_name as l_name,
 city_name as city FROM TABLE6)
 SELECT id, f_name, l_name, city
 FROM CTE;
SELECT * FROM TABLE7;

Figure 6-6 displays the results of the INSERT command from the CTE example. CTEs
are used to improve code readability, to make it easier to maintain code, and to take
advantage of recursive programming.

Figure 6-6. Results of the INSERT command from the CTE example

Next, we’ll explore how to insert records into a new table by creating an inner join on
two tables using a zip code column. We first need to create the two tables from which
we will create an inner join. The first table will include an identifier column, first and
last names, and a zip code column:

CREATE OR REPLACE TABLE TABLE8
 (id integer, f_name string, l_name string, zip_code string)
COMMENT = "Table to be used as part of next demo";
INSERT INTO TABLE8 (id, f_name, l_name, zip_code)
VALUES (1, 'Anthony', 'Robinson', '30301'), (2, 'Peggy', 'Mathison', '35005');

The next table will include identifier, zip code, city, and state columns:

CREATE OR REPLACE TABLE TABLE9
(id integer, zip_code string, city string, state string)
COMMENT = "Table to be used as part of next demo";
INSERT INTO TABLE9 (id, zip_code, city, state) VALUES
 (1, '30301', 'Atlanta', 'Georgia'),
 (2, '35005', 'Birmingham', 'Alabama');

Now we’ll create a new table which we will use to insert records using an inner join
from the two new tables we just created:

196 | Chapter 6: Data Loading and Unloading

CREATE OR REPLACE TABLE TABLE10
 (id integer, f_name string, l_name string, city string,
 state string, zip_code string)
COMMENT = "Multi-row inserts from two tables using an Inner JOIN on zip_code";

INSERT INTO TABLE10 (id, f_name, l_name, city, state, zip_code)
SELECT a.id, a.f_name, a.l_name, b.city, b.state, a.zip_code
FROM TABLE8 a
 INNER JOIN TABLE9 b on a.zip_code = b.zip_code;
SELECT *FROM TABLE10;

Figure 6-7 shows the results of the INSERT command using an inner join.

Figure 6-7. Results of the INSERT command in a new table using an inner join on two
existing tables

Until now, our examples for multirow inserts have all been with structured data. Let’s
take a look at an example for a multirow insert with semi-structured data:

CREATE
OR REPLACE TABLE TABLE11
 (variant1 variant)
COMMENT = "Multi-row Insert for Semi-structured JSON Data";

You’ll notice that for our next INSERT command, we’ll include an underscore in front
of the ID column for the first value. For the second value, we will not put an under‐
score in front of the ID column:

INSERT INTO TABLE11
 select parse_json(column1)
 from values
 ('{ "_id": "1",
 "name": { "first": "Anthony", "last": "Robinson" },
 "company": "Pascal",
 "email": "anthony@pascal.com",
 "phone": "+1 (999) 444-2222"}'),
 ('{ "id": "2",
 "name": { "first": "Peggy", "last": "Mathison" },
 "company": "Ada",
 "email": "Peggy@ada.com",
 "phone": "+1 (999) 555-3333"}');
SELECT * FROM TABLE11;

The results of the INSERT command are shown in Figure 6-8. You’ll notice that the
columns appear in alphabetical order, not in the order in which they were listed in

Data Loading Tools | 197

the INSERT statement. Because the ID column for the first record has an underscore
in front of it, the ID column is the first column listed.

Figure 6-8. Results of a multirow insert for semi-structured JSON data

In our prior examples, we’ve been inserting data into a single table. In the next sec‐
tion, we’ll learn how to insert data into more than one table at a time.

Multitable inserts
It is possible to update multiple tables at a time by inserting one or more rows into
the tables using a query statement. The inserts can be unconditional or conditional.
Conditional multitable inserts create inserts by using WHEN-ELSE clauses to determine
the table(s) into which each row will be inserted.

The first example will demonstrate how an unconditional multitable insert works.
First we’ll create the source table:

CREATE OR REPLACE TABLE TABLE12
(id integer, first_name string, last_name string, city_name string)
COMMENT = "Source Table to be used as part of next demo for Unconditional Table
Inserts";
INSERT INTO TABLE12 (id, first_name, last_name, city_name) VALUES
(1, 'Anthony', 'Robinson', 'Atlanta'), (2, 'Peggy', 'Mathison', 'Birmingham');

Let’s create the two target tables:

CREATE OR REPLACE TABLE TABLE13
(id integer, f_name string, l_name string, city string)
COMMENT = "Unconditional Table Insert - Destination Table 1 for unconditional
 multi-table insert";

CREATE OR REPLACE TABLE TABLE14
(id integer, f_name string, l_name string, city string)
COMMENT = "Unconditional Table Insert - Destination Table 2 for unconditional
 multi-table insert";

We can now use the data in the TABLE12 table to insert into the two new tables.
You’ll notice that we have several commands that will insert data into the tables. First
we’ll insert all the data from the TABLE12 table into the TABLE13 table. Then we’ll
insert select values into the TABLE13 and TABLE14 tables. Pay particular attention to
the INSERT ALL statement lines:

198 | Chapter 6: Data Loading and Unloading

INSERT ALL
 INTO TABLE13
 INTO TABLE13 (id, f_name, l_name, city)
 VALUES (id, last_name, first_name, default)
 INTO TABLE14 (id, f_name, l_name, city)
 INTO TABLE14 VALUES (id, city_name, last_name, first_name)
SELECT id, first_name, last_name, city_name FROM TABLE12;

Let’s see what our INSERT ALL statement accomplished. First, take a look at the data
in the original table by using the SELECT * FROM TABLE12; statement.

Next, take a look at what data exists in the TABLE13 table by using the SELECT *
FROM TABLE13; statement. You’ll see in Figure 6-9 that four records were inserted into
the TABLE13 table. Notice that the third and fourth records have no values in the
CITY column.

Figure 6-9. One of two target tables of a multitable INSERT statement

What about the TABLE14 table? Use the SELECT * FROM TABLE14; statement to see
what exists in that table (as shown in Figure 6-10).

Figure 6-10. The second of two target tables of a multitable INSERT statement

We can see that there are also four rows in the TABLE14 table. The first two records
are the same as those that exist in the TABLE12 and TABLE13 tables. However, rows
3 and 4 are different. Review the previous INSERT statement to see how the different
values were inserted into the various rows.

Our previous example demonstrated an unconditional multitable insert example.
Now we’ll look at a conditional multitable insert example. Let’s create the source table
for this example:

CREATE OR REPLACE TABLE TABLE15
(id integer, first_name string, last_name string, city_name string)

Data Loading Tools | 199

COMMENT = "Source Table to be used as part of next demo for
 Conditional multi-table Insert";
INSERT INTO TABLE15 (id, first_name, last_name, city_name)
VALUES
(1, 'Anthony', 'Robinson', 'Atlanta'),
(2, 'Peggy', 'Mathison', 'Birmingham'),
(3, 'Marshall', 'Baker', 'Chicago'),(4, 'Kevin', 'Cline', 'Denver'),
(5, 'Amy', 'Ranger', 'Everly'),(6, 'Andy', 'Murray', 'Fresno');

Next, we will create the two target tables:

CREATE OR REPLACE TABLE TABLE16
 (id integer, f_name string, l_name string, city string)
COMMENT = "Destination Table 1 for conditional multi-table insert";

CREATE OR REPLACE TABLE TABLE17
 (id integer, f_name string, l_name string, city string)
COMMENT = "Destination Table 2 for conditional multi-table insert";

We are now ready to demonstrate a conditional multitable insert:

INSERT ALL
 WHEN id <5 THEN
 INTO TABLE16
 WHEN id <3 THEN
 INTO TABLE16
 INTO TABLE17
 WHEN id = 1 THEN
 INTO TABLE16 (id, f_name) VALUES (id, first_name)
 ELSE
 INTO TABLE17
SELECT id, first_name, last_name, city_name FROM TABLE15;

Using the SELECT * FROM TABLE16 statement, we can see seven rows were inserted
into the table (as shown in Figure 6-11).

Figure 6-11. Results of a conditional multitable insert into the first target table

From the previous INSERT statement, you’ll notice that the TABLE16 table was
included in three different conditional statements. One of those conditional

200 | Chapter 6: Data Loading and Unloading

statements inserted values into two of the four columns, which is why there are two
null values for the last record.

Using the SELECT * FROM TABLE17 statement, we can see in Figure 6-12 that those
four rows were inserted into the table.

Figure 6-12. Results of a conditional multitable insert into the second target table

You’ll notice that the records with the IDs for 5 and 6 only appear in the second target
table. Those two records were inserted as a result of the ELSE portion of the INSERT
statement.

In the examples thus far, we’ve loaded structured data and semi-structured data. The
semi-structured data we loaded was in the JSON file format type and we used the
Snowflake VARIANT data type to load the data. The VARIANT type is just one data type
for semi-structured data. There are two other Snowflake data types for semi-
structured data. We’ll first look at an example for the ARRAY data type and then the
OBJECT data type; we’ll load data for an ARRAY and an OBJECT using the VARIANT uni‐
versal data type.

ARRAY_INSERT

The ARRAY_INSERT Snowflake function provides us with a way to directly insert data
into a table. We’ll create a new table which we can use to demonstrate the
ARRAY_INSERT data function:

CREATE OR REPLACE TABLE TABLE18
 (Array variant)
COMMENT = "Insert Array";

The syntax for the ARRAY_INSERT function is as follows:

ARRAY_INSERT (<array>, <position>, <new element>)
WHERE <array> INCLUDES ARRAY_CONSTRUCT(<values>)

As you can see, the ARRAY_INSERT function inserts an array followed by a new array
value in a specific position in the array. We’ll use two different examples to see how it
works. First, let’s insert an array with a new value that would naturally come next in
the array:

INSERT INTO TABLE18
SELECT ARRAY_INSERT(array_construct(0, 1, 2, 3), 4, 4);

Data Loading Tools | 201

Run a SELECT * statement on the TABLE18 table and you’ll get the result shown in
Figure 6-13.

Figure 6-13. Result of using the ARRAY_INSERT command

Now let’s see what happens if we insert the value that would naturally come next in
the array, but insert it into a different position:

INSERT INTO TABLE18
SELECT ARRAY_INSERT(array_construct(0, 1, 2, 3), 7, 4);

If we run a SELECT * statement again, we’ll see the results shown in Figure 6-14.

Figure 6-14. Results of using the ARRAY_INSERT command a second time

As shown in Figure 6-14, the number 4 was inserted into the seventh position. For
positions four through six, there is an undefined value since no values were given for
those positions.

OBJECT_INSERT

OBJECT_INSERT is a Snowflake semi-structured data function. To demonstrate how
the function works, let’s first create a new table:

CREATE OR REPLACE TABLE TABLE19
 (Object variant)
COMMENT = "Insert Object";

The syntax for the OBJECT_INSERT function is as follows:

OBJECT_INSERT (<object>, <key>, <value>)
WHERE <object> INCLUDES OBJECT_CONSTRUCT(<key-value pairs>)

Now let’s insert into a new table some key-value pairs using the OBJECT_INSERT
function:

INSERT INTO TABLE19
 SELECT OBJECT_INSERT(OBJECT_CONSTRUCT('a', 1, 'b', 2, 'c', 3), 'd', 4);
SELECT * FROM TABLE19;

As shown in Figure 6-15, the key-value pairs were inserted as expected.

202 | Chapter 6: Data Loading and Unloading

Figure 6-15. Result of using the OBJECT_INSERT function

Next, we’ll use OBJECT_INSERT to see how null values are handled. First we’ll insert a
blank value, a null value with the word null enclosed in quotes, and then a null value
without the quotes:

INSERT INTO TABLE19 SELECT
 OBJECT_INSERT(object_construct('a', 1, 'b', 2, 'c', 3), 'd', ' ');
INSERT INTO TABLE19 SELECT
 OBJECT_INSERT(object_construct('a', 1, 'b', 2, 'c', 3), 'd', 'null');
INSERT INTO TABLE19 SELECT
 OBJECT_INSERT(object_construct('a', 1, 'b', 2, 'c', 3), 'd', null);
INSERT INTO TABLE19 SELECT
 OBJECT_INSERT(object_construct('a', 1, 'b', 2, 'c', 3), null, 'd');
SELECT * FROM TABLE19;

The results of all the INSERT commands can be seen in Figure 6-16. You’ll notice from
the last two inserted records that whenever the key-value pair includes a null value,
the key-value pair is not inserted.

Figure 6-16. Results of inserting rows using the OBJECT_INSERT function

We’ve taken a look at several different ways data can be inserted into a Snowflake
table using SQL statements in the Snowflake worksheet. We used the Snowflake
worksheet to demonstrate many of the concepts because it is simple to use. Many of
the concepts we learned about in this section are also applicable when we use the
Snowflake web UI to load data files or when it makes sense to use the SnowSQL CLI.

In the next section, we’re going to use the web UI Load Data wizard to load both
structured data files and semi-structured data files. The wizard is intended only for
manually loading a few small files at a time.

Data Loading Tools | 203

Before we move on to a different schema, let’s review the table comments for all the
tables we’ve been working with in this schema:

SHOW TABLES LIKE '%TABLE%';

We’ve been using comments for all the tables we’ve created in this chapter. If we
wanted, we could also use comments for any individual field that we create within a
table.

Web UI Load Data Wizard
In prior examples of inserting data into Snowflake tables, we used SQL statements to
insert data directly into the tables. We’re now going to explore one way we can load
files of data. In this section, we’ll load some structured data and semi-structured data
files, each of them less than 50 MB in size.

It is important to adhere to the small file size recommendation
when using the Snowflake web UI Load Data wizard. Doing so will
help to ensure better performance. It will also prevent your browser
from crashing, because as the file size increases, more memory
consumption will be required to encrypt the files. If you need to
load larger files, please refer to the next section, which describes
how to use the Snowflake SnowSQL CLI.

Whereas we previously loaded data directly into a Snowflake table using an INSERT
command, the wizard indirectly loads the data into a Snowflake table by seamlessly
combining two phases: one phase to stage the files and the next phase to load the
staged files into a table (as shown in Figure 6-17).

Figure 6-17. Loading file(s) into a Snowflake target table via a Snowflake stage

204 | Chapter 6: Data Loading and Unloading

To accomplish this, the wizard uses the PUT and COPY commands behind the scenes.
The PUT command places the file(s) in a stage and the COPY command moves the data
from the Snowflake stage to the Snowflake table. When done loading the data into a
Snowflake table from the stage, the wizard then deletes all the staged files.

At this time, the Snowflake web UI Load Data wizard is available only in the Classic
Console. It is anticipated that the wizard will be available for Snowsight sometime in
early 2023.

While we are still in Snowsight, let’s go ahead and create the table we’ll need for our
hands-on examples. Be sure to use the UI schema for this example:

USE SCHEMA UI;
CREATE OR REPLACE TABLE TABLE20
 (id integer, f_name string, l_name string, city string)
COMMENT = "Load Structured Data file via the Web UI wizard";

Now we’ll need to navigate to the Classic Console to complete the examples in this
section. In the upper-left corner of your screen, click the Home icon and then click
the Classic Console button (as shown in Figure 6-18).

Figure 6-18. Clicking the Home Icon and the Classic Console button to navigate from
Snowsight to the Classic Console

Once in the Classic Console, click the Databases tab and then drill down into the
DEMO6_DB database. Next, click the TABLE20 table name, which is what we will be
using to insert a file with structured data. Your screen should now look like what is
shown in Figure 6-19.

Data Loading Tools | 205

Figure 6-19. The Classic Console after clicking the Databases tab, DEMO6_DB
database, and TABLE20 table

You will notice the Load Table upload icon. That is what we’ll use to upload a file with
structured data to the TABLE20 Snowflake table.

Structured data example
We’re ready to proceed with our structured data example. Once you click the Load
Table icon, you’ll be asked to select the virtual warehouse you want to use to load the
files (as shown in Figure 6-20).

Figure 6-20. The virtual warehouse selection for loading the file using the wizard

Select the LOAD_WH virtual warehouse we created at the beginning of this chapter
and then click the Next button. Select the CSV file from your computer by clicking
the Select Files button and then selecting the TABLE20 CSV file saved on your com‐
puter as shown in Figure 6-21. Click the Next button.

206 | Chapter 6: Data Loading and Unloading

Figure 6-21. Selecting the CSV file from your computer using the wizard

Now is when we’ll have to select the file format, if we have one that is already created.
Otherwise, we’ll create a new file format. In our examples, we have not created any
file formats thus far, so we’ll need to create a new file format. To create a new file for‐
mat, click the + (plus sign) button (as shown in Figure 6-22).

Figure 6-22. Creating a new file format in the wizard

Once we click the + button, we’ll have the option to make choices about the file for‐
mat we want to create. The file format options in Figure 6-23 should be familiar to
you. Refer back to Table 6-2 to see these same options, which can be selected if you
choose to create a new file format using SQL in a worksheet.

Data Loading Tools | 207

Figure 6-23. Creating a file format from within the Snowflake Load Data wizard

Because our CSV file has a header, we’ll want to change the “Header lines to skip”
option from 0 to 1. If you were to click the Show SQL link, the SQL code shown in
Figure 6-24 would be revealed.

Figure 6-24. The SQL code to create a Snowflake file format with the default options
from the wizard

Click the Close button if you took a look at the SQL, and then click the Finish button
and then the Next button. At this time, you’ll see what load options you have available
for error handling (as shown in Figure 6-25).

208 | Chapter 6: Data Loading and Unloading

Figure 6-25. Error handling options in the Snowflake Load Data wizard

I recommend you click each option and then select the Show SQL option so that you
can see how you’d write the SQL code, if needed.

If you are working in the SnowSQL CLI and are unsure how to
write the SQL needed to create a particular file format, or if you
want more help with creating the error handling, you can return to
the Snowflake Load Data wizard by making your selections and
then clicking the Show SQL option.

Now click the Load button and you’ll see messaging stating that Snowflake is in the
process of staging the file (as shown in Figure 6-26).

Figure 6-26. Messaging indicating that Snowflake has encrypted the file and is in the
process of putting it in a stage

Once Snowflake has completed the data load, you’ll see the load results that indicate
four rows were parsed and loaded. Let’s go ahead and return to Snowsight by clicking
the Snowsight tab in the upper-right corner of the screen (as shown in Figure 6-27).

Figure 6-27. The Snowsight tab from the Snowflake Classic Console

Data Loading Tools | 209

Navigate back to the worksheet and execute the following commands:

USE DATABASE DEMO6_DB;
USE SCHEMA UI;
SELECT * FROM TABLE20;

By running a SELECT * command using the DEMO6_DB database and the UI
schema, you’ll notice that four records were successfully inserted into the TABLE20
table.

In the next section, we’ll use the same CSV data file, but this time we will upload the
file using the SnowSQL CLI.

SnowSQL CLI SQL PUT and COPY INTO Commands
SnowSQL is the CLI for connecting to Snowflake. It can be used to execute SQL quer‐
ies and perform all Data Definition Language (DDL) and DML operations. SnowSQL
can be downloaded from the Snowflake Classic Console by clicking the Help tab and
then selecting the Download option. You’ll then have the option to download the
SnowSQL CLI for Linux, Windows, or macOS. Instructions on how to install
SnowSQL for each operating system can be found in the Snowflake online documen‐
tation.

After you download and install SnowSQL, you can log in to SnowSQL from your
command prompt by using the following as an example. Note that JKAVILA2022 is
my username and dx58224.us-central11.gcp is my Snowflake account name. The -a
option is to indicate your Snowflake account and -u is to identify the username to
connect to Snowflake. The account name and username shown here are just exam‐
ples. They are not actual usable information but were from when I previously created
a trial Snowflake account:

c:\>snowsql -a dx58224.us-central1.gcp -u JKAVILA2022 <enter>
Password: ********* <enter>

Let’s get started in SnowSQL by indicating the role, virtual warehouse, database, and
schema we want to use for this example:

USE ROLE ACCOUNTADMIN;
USE WAREHOUSE LOAD_WH;
USE DATABASE DEMO6_DB;
USE SCHEMA SNOW;

You can see the last SQL statement and the result of all the previous SQL
statements, which shows the command-line prompt of <username>#<virtual ware
house>@<database>.<schema> (Figure 6-28).

210 | Chapter 6: Data Loading and Unloading

https://oreil.ly/Vqfxr
https://oreil.ly/Vqfxr

Figure 6-28. Result of using the stated role, virtual warehouse, database, and schema

Now let’s create a new table using the following SQL statement:

CREATE OR REPLACE TABLE TABLE20 (id integer, f_name string,
 l_name string, city string);

Once you have created the table, you are ready to use the PUT command to load the
CSV file into the table stage:

Put file:///users/joyce/documents/TABLE20.csv @"DEMO6_DB"."SNOW".%"TABLE20";

Be sure to replace users/joyce/documents with your own file path. Also be sure to
place a space between the file path on your computer and the @ symbol. Figure 6-29
shows the result of using the PUT command to load the CSV file into the table stage.

Figure 6-29. Result of using the PUT command to load the CSV file into the table stage

Next, we’ll copy the files from the table stage with the result shown in Figure 6-30:

COPY INTO "TABLE20" FROM @"DEMO6_DB"."SNOW".%"TABLE20"
 file_format=(type=csv SKIP_HEADER=1);

Figure 6-30. Result of using the COPY INTO command to load data from the stage into
the target table

For this example, we put the files into the table stage because we were loading into a
single table. We could just as easily have created an internal named stage and put the
files there instead. It is recommended to use an internal named stage if you share files
with multiple users or if files are loaded into multiple tables.

Data Loading Tools | 211

While using the COPY INTO command, it is possible to perform basic transformations
such as reordering columns or performing casts using a SELECT command. More
information about transforming during a load can be found in the Snowflake
documentation.

We’ve seen how we can use the web UI Load Data wizard and SnowSQL to take files
and manually load them into Snowflake tables by first putting them into a stage and
then copying the data from the stage to the Snowflake table. In the next section, we’ll
discover how to have data automatically loaded into Snowflake.

Data Pipelines
A data pipeline is a data transportation conduit that uses automated processing steps
to move data to a target repository. A pipeline’s data origin, sometimes referred to as
the data pipeline definition, is the final point of data collection before the data is
moved through the pipeline. The movement of the data through the pipeline is
known as the dataflow. Pipeline architecture can be of either a batch processing or a
stream processing type, with continuous loading architecture somewhere between the
two.

One data collection approach in which large batches of data are moved at a specific
time and different storage areas preserve the data as it moves through the pipeline is
known as an extract, transform, load (ETL) approach. ETL tools need processing
engines to complete the transformations before loading the data into the target repos‐
itory. ETL can be an ideal solution when the destination requires a specific data for‐
mat that is different from the pipeline definition.

As an alternative to ETL, there is a data pipeline process known as extract, load,
transform (ELT), which uses processing engines at the destination to transform the
data once it is within the repository. This is a more streamlined approach because it
removes the intermediate step and allows organizations to transform their raw data
only when necessary. The ELT approach is often the preferred approach when the
destination is a cloud native data warehouse.

In an ELT approach, a Snowflake Snowpipe is the extract part. Some transformations,
such as changing column names or changing the order of columns, can be accom‐
plished, and then the COPY INTO command loads the data into the target destination.

Semi-structured data types, such as JSON and Avro, are supported
by Snowpipe.

212 | Chapter 6: Data Loading and Unloading

https://oreil.ly/uMeaE
https://oreil.ly/uMeaE

To complete the ELT data pipeline using Snowpipe, we would also need to use Snow‐
flake objects such as streams and tasks to transform data in which things such as
string concatenation or number calculations are required.

When using Snowflake’s Snowpipe, there are two different mechanisms for detecting
when the staged files are available: automate Snowpipe using cloud messaging and
call Snowpipe REST endpoints.

One thing to note is that you can speed up Snowpipe by ingesting smaller data files.
Chunking large files into smaller ones not only allows Snowflake to process the data
more quickly but also makes the data available sooner.

As a rule of thumb, the optimal file size for loading into Snowpipe
is 100 to 250 MB of compressed data. Try to stage the data within
60-second intervals if the data arrives continuously. Remember, it is
possible to create a Snowpipe in such a way that latency can be
decreased and throughput can be significantly increased, but the
architectural design needs to be weighed against the increased
Snowpipe costs that occur as more frequent file ingestions are
triggered.

While Snowpipe latency reduction may be good enough for most near–real-time sit‐
uations, there are times when Snowpipe might not be fast enough. Ecommerce and
IoT are two examples in which actual real-time data processing might be needed. In
these cases, we’d need to utilize a pure-play stream processing tool such as Confluent’s
KSQL, which processes data directly in a Kafka Stream, or Apache Flink and Apache
Flume.

The next sections will provide more detail about Kafka and Snowpipe, the most com‐
mon choices for continuously loading data pipelines.

There are a few different considerations when deciding between
the two Snowpipe methods of auto-ingest or REST API. In situa‐
tions where files arrive continuously, you can use Snowflake’s auto-
ingest feature to create an event notification. Snowpipe auto-ingest
is the more scalable approach. REST API is the better option for
use cases in which data arrives randomly and/or if preprocessing
needs require using an ETL or ELT tool, or in situations in which
an external stage is unavailable.

Using Apache Kafka
Apache Kafka is a framework for connecting Kafka to external systems. Kafka was
originally created to enable messaging queue workloads which included producers
and consumers in a publisher and subscriber model (as shown in Figure 6-31). The

Data Loading Tools | 213

Kafka Producer and Consumer APIs are known for their simplicity. Data is sent asyn‐
chronously, which results in a callback. Although the Kafka Producer API can be
extended and built upon, it isn’t recommended to use the Kafka Producer or Con‐
sumer API for an ETL approach. Instead, you should consider using the Kafka
Connect source API.

Figure 6-31. Kafka Producer and Consumer workloads

Today the Kafka architecture includes other workloads. The Kafka Streams API and
KSQL can be used for applications wanting to consume from Kafka and produce
back into Kafka (as shown in Figure 6-32). The Kafka Streams API is a stream pro‐
cessing library written in the Java language and is recommended if you expect you’ll
be writing complex logic. Alternatively, you can use KSQL if you want to write a real-
time SQL-like job.

Figure 6-32. Kafka Streams and KSQL for real-time jobs

Kafka Streams requires that custom coding be undertaken, and it does come with
joins and aggregations. Unlike the Kafka Connector, the Kafka Streams include
exactly-once processing native capabilities. Apache Kafka also works with external
processing systems such as Apache Flink, Apache Spark, and Apache NiFi for stream
processing.

Another Kafka approach is the Kafka Connector source, typically used for bridging
between Kafka and a datastore such as Twitter, and the Kafka Connector sink. The
Kafka Connector, illustrated in Figure 6-33, is what we’ll focus on in this section.

214 | Chapter 6: Data Loading and Unloading

Figure 6-33. The Kafka Connector source API and Kafka Connector sink API

Kafka runs on a cluster of one or more servers, known as brokers, and partitions all
Kafka topics to be distributed across cluster nodes. A Kafka topic is a category, or
feed name, to which rows of records are stored.

One Kafka topic processes a stream of messages, consisting of rows, which are then
inserted into a Snowflake table. Within the Kafka configuration, a topic can be map‐
ped to an existing Snowflake table (as shown in Figure 6-34). For any unmapped top‐
ics, the Kafka Connector creates a new Snowflake table using the topic name.

Figure 6-34. Kafka Topic 1 is mapped to an existing Snowflake table, while the unmap‐
ped Topic 2 will result in a new table created by the Kafka Connector

The Kafka Connector will use the following rules to convert a topic name to a Snow‐
flake table name when creating a new table:

• Lowercase topic names are converted to uppercase table names.
• The Connector prepends an underscore to the table name unless the first charac‐

ter in the topic is an upper- or lowercase letter, or an underscore character.
• An underscore character replaces any topic name character that is not a Snow‐

flake table name legal character.

Data Loading Tools | 215

It is recommended that any Kafka topic names you create should
follow the rules for Snowflake identifier names. That way, under‐
score characters won’t be needed to replace Snowflake table name
illegal characters.

Now that we have a basic understanding of Kafka Connect, let’s look at the complete
Kafka ingest flow to a Snowflake table using a Kafka Connector (as shown in
Figure 6-35). It’s important to note that you configure the Kafka Connector by creat‐
ing a file with specified parameters for things such as the Snowflake login credential,
topic name(s), Snowflake table name(s), and more.

A Kafka Connector can ingest messages from multiple topics, but
the corresponding tables for connectors listed in one configuration
file must all be stored in a single database and schema.

Using the Kafka Connector does not itself incur any charges. However, there are
Snowpipe charges because Snowpipe is used to load the data that is read from the
Kafka Connector.

Some important things to remember about Snowpipe billing is that
Snowpipe doesn’t require a virtual warehouse, because it is a ser‐
verless model. In a serverless model, Snowflake provides and auto‐
matically manages compute resources based on the load. Also,
there is a utilization cost of 0.06 credits per 1,000 files notified. The
utilization cost applies to both Snowpipe REST and Snowpipe
AUTO_INGEST.

Figure 6-35. The Kafka ingest flow to a Snowflake table using the Kafka Connector

216 | Chapter 6: Data Loading and Unloading

From Figure 6-35, we can see that the Kafka Connect source API receives records
from a source database, REST API, or application such as Twitter. The Kafka cluster
receives those records and splits each topic into one or more Kafka partitions. It is
important to note that, in our example, we’re including only one topic and sink con‐
nector in Figure 6-35, but a Kafka cluster could have multiple topics and, thus, would
use multiple sink connectors.

Once a certain time has passed or a certain number of records have been received, the
Kafka sink connector writes the messages to a Snowflake internal named stage using
the PUT command. The sink connector then triggers Snowpipe to ingest the staged
files. You’ll notice in Figure 6-35 that there are two Snowpipes because there are two
Kafka topic partitions.

A Snowflake Snowpipe serverless compute cluster will use the COPY command to load
the data into a Snowflake table from the internal Snowflake stage. After confirming
the data was successfully loaded, the files in the internal stage will be deleted.

When the Snowflake table is created by the Kafka Connector, two columns of the
VARIANT data type will be created. The first column is the RECORD_CONTENT col‐
umn which contains the Kafka message.

Kafka messages are passed to Snowflake in either a JSON or Avro
format and each message is stored in one VARIANT column,
without the data being parsed. The field names and values within
the message are case sensitive.

The second VARIANT column created is the RECORD_METADATA column which
has the metadata about the message. Among other things, the metadata includes the
topic and the number of Kafka partitions within the topic.

It is possible to create custom Kafka code for performing in-flight
transformations or for making data available more quickly. In those
situations, the sink connector would be replaced by the custom
code using JDBC batch insert statements.

The Kafka Connector is but one of the many connectors available for data integra‐
tion. For complete information about Snowflake connectors and drivers, you can
view the Snowflake developer documentation.

Data Loading Tools | 217

https://oreil.ly/VXxLv

Automating Snowpipe using cloud messaging and optional on-premises Kafka clusters
Snowflake Snowpipe can be automated using cloud messaging from AWS, Azure, or
GCP. The auto-ingestion method uses cloud message event notification and a Snow‐
flake external stage. The external stage is important because an automated Snowpipe
only works with a Snowflake external stage object.

Optionally, in conjunction with automated Snowpipe using cloud
messaging, it is possible to utilize on-premises Kafka clusters to
stream topics to one of the cloud providers, where messages are
collected and stored and are then auto-ingested using event notifi‐
cation.

For each of the three cloud providers upon which Snowflake is built, there is an asso‐
ciated event notification type (as shown in Figure 6-36) that can be used for cloud
messaging.

Figure 6-36. Event notification types for GCP, AWS, and Microsoft

The cloud messaging service notifies Snowpipe of the arrival of new data files. In a
continuous serverless fashion, Snowpipe loads the data into the target table (as shown
in Figure 6-37).

218 | Chapter 6: Data Loading and Unloading

Figure 6-37. Snowpipe auto-ingestion using cloud messaging

Let’s consider an example of how to use Snowpipe auto-ingestion for loading data
into Snowflake. We’ll use Microsoft Azure as an example by considering, at a high
level, the pieces of information we need, and then we’ll look at the steps required.

First, you’ll need several pieces of information that are assigned from Azure:

• Tenant ID
• Storage queue notification URL, which will be in a form similar to

https://sflakesnowpipe.queue.core.windows.net/snowdata-queue
• Application name, which will be in a form similar to SnowflakePACInt1025
• Primary Azure blob storage endpoint, which will be in a form similar to

https://sflakesnowpipe.blob.core.windows.net/
• Blob services shared access signature, which will be in a form similar to

https://sflakesnowpipe.blob.core.windows.net/xxxx

Within Azure, you’ll need to create the following items: resource group, storage
account name, container name, queue name, event subscription name, and system
topic name.

You’ll also need to obtain the Azure consent URL assigned in Snowflake. It will be in
a form similar to https://login.microsoftonline.com/xxxx.

In Snowflake, you’ll need to make sure you have a database, schema, table with fields,
and stage created. You’ll also need to create an integration and pipe in Snowflake.

The stage link to a Snowflake integration is created using a hidden
ID rather than the name of the integration. Therefore, the associa‐
tion between a Snowflake integration and any stage that references
it will be broken if the integration is re-created, even with the same
name.

Data Loading Tools | 219

Here are the steps you’d need to take to create a Snowpipe auto-ingestion approach
for loading data from Microsoft Azure:

1. Log in to your Azure account and obtain your tenant ID.
2. In Azure, create the following items if they do not already exist: resource group,

storage account within the resource group, container, queue, and event
subscription.

3. In Azure, get the queue URI.
4. In Snowflake, create the following items if they do not already exist: database,

schema, and table.
5. In Snowflake, set your role to ACCOUNTADMIN and create a notification

integration:
 CREATE NOTIFICATION INTEGRATION <integration name>
 ENABLED=TRUE
 TYPE= QUEUE
 NOTIFICATION_PROVIDER=AZURE_STORAGE_QUEUE
 AZURE_STORAGE_QUEUE_PRIMARY_URI = '<URI>'
 AZURE_TENANT_ID = '<tenant id>';

6. In Snowflake, get the AZURE CONSENT URL:
 DESC NOTIFICATION INTEGRATION <integration name>;

7. In Azure, add the role assignment and get the endpoint.
8. In Azure, generate the shared access signature.
9. In Snowflake, create an external stage.

10. In Snowflake, create a Snowpipe:
 CREATE PIPE <database.schema.pipe_name>
 AUTO_INGEST=TRUE
 INTEGRATION=<integration name>
 AS
 COPY INTO <database.schema.target_table_name>
 FROM @<database.schema.external_stage_name>
 FILE_FORMAT=(TYPE='JSON');

To resolve data load errors related to data issues, it is strongly
recommended that you use the VALIDATE function as part of a post-
load validation process to ensure that all files have been success‐
fully loaded into target tables.

This section has provided the basic information about auto-ingest Snowpipe. You can
find more detailed information on the Snowflake website, where you’ll be able to

220 | Chapter 6: Data Loading and Unloading

https://oreil.ly/jT4OR

learn more about cloud storage service support for automated Snowpipe. It is impor‐
tant to note that cross-cloud support is currently available only to accounts hosted on
Amazon Web Services.

In addition to auto-ingest Snowpipe, Snowflake provides a REST API option to trig‐
ger data to Snowpipe. One important note is that Snowpipe REST APIs work with
internal as well as external Snowflake stages.

Calling Snowpipe REST endpoints
Another way to trigger a data loading event is by using Snowflake’s Snowpipe REST
API method. Using this method, a public REST endpoint with the name of a pipe and
a list of filenames is called. If new data files matching the filenames list are discov‐
ered, they are queued for loading. Snowpipe serverless compute resources will then
load the queued files into the Snowflake target table.

Cloud storage service support for Snowpipe REST API calls from Snowflake accounts
allows for cross-cloud support for all accounts hosted on Amazon Web Services,
Google Cloud Platform, or Microsoft Azure.

Table 6-4 describes the differences between the two methods for using Snowpipe.

Table 6-4. Differences between Snowpipe REST and Snowpipe AUTO_INGEST

Snowpipe REST Snowpipe AUTO_INGEST
Available for use with internal and external stages Available for use with external stages only
Manually call Snowpipe REST API endpoint, with the name of a pipe
and a list of filenames

A notification is received from cloud provider when a
new file arrives

Pass a list of files in the stage location Process new files when awakened

Snowflake offers a Getting Started with Snowpipe Quickstart if you’d like to learn
more about Snowpipe.

As we’ve learned, Snowpipe can add latency to your streaming data. It also requires
you to store your data in a stage prior to loading the data into a table, which increases
the storage costs. To help solve those problems, Snowflake has created a new stream‐
ing API. This new API allows you to use a Streaming Ingest SDK, which can be
implemented using Java. It is then possible to create a mapping of values and rows to
be inserted. If you’re currently using Kafka as part of your solution, it is relatively easy
to change the properties and begin taking advantage of the new Snowpipe Streaming
functionality.

Third-Party ETL and ELT Tools
Snowflake supports tools that transform data during loading (ETL) as well as tools
that transform data after loading (ELT). Many different third-party integration tools

Data Loading Tools | 221

https://oreil.ly/LE7Vn

are supported natively by Snowflake, including Fivetran, Informatica, Matillion,
Talend, and more. You can view a list of Snowflake-supported integration tools in the
Snowflake developer documentation pages.

Alternatives to Loading Data
Queries can be executed on data that isn’t loaded into Snowflake. One example would
be external tables created on data within a data lake. Using Snowflake external tables
allows you to query the existing data stored in external cloud storage, where the data
remains as the source of truth, without needing to load the data into Snowflake. This
solution is frequently used when large amounts of data exist in external cloud storage
but only a portion of the data is needed for analysis. In this case, we can create a
materialized view on the external table so that only a subset of the data is used; this
leads to improved query performance.

External tables and materialized views were introduced in Chapter 4. More detail
about materialized views is also included in Chapter 9.

Another alternative to loading data into a table is to use Snowflake data sharing to
access data that is owned by someone else and shared with you. The Snowflake Mar‐
ketplace includes many data offerings available to the public. Chapter 10 includes the
details for all the Snowflake secure data sharing options.

One other alternative to data loading would be to clone a table. Cloning a table with
the CREATE command results in a new table being created with the same data as the
existing table. It is also possible to replicate a table with existing data. An example of a
statement to clone a table would be as follows:

USE ROLE SYSADMIN; USE SCHEMA WS;
CREATE TABLE DEMO_CLONE CLONE TABLE1;

Finally, one newer alternative to loading data is to use Snowflake’s Snowpark func‐
tionality. Snowpark offers the ability to query and process data in a data pipeline
without moving data to the system where the application code runs. Snowpark is
described in more detail in Chapter 12.

Tools to Unload Data
The process for unloading data from Snowflake is the same as the data loading pro‐
cess, except in reverse. When the target location is a local file system, data is first
unloaded to a Snowflake internal stage using the COPY INTO command. The GET com‐
mand is then used to download from the internal stage to the local file system (as
shown in Figure 6-38).

222 | Chapter 6: Data Loading and Unloading

https://oreil.ly/0S8tw

Figure 6-38. Multiple ways of downloading data from a Snowflake table to a target
location

For data being unloaded to one of the three major cloud providers, there are two
options. Data files can be unloaded directly into a storage location for the cloud pro‐
vider for whom the Snowflake account is built upon. For example, if you selected
Google Cloud as your Snowflake provider, you could unload files directly to a GCP
container and then use Google Cloud Storage utilities to download locally. Alterna‐
tively, you can use the COPY INTO command to extract files from a Snowflake table
into a Snowflake external stage and then use cloud provider tools to download into
storage.

Data Loading Best Practices for Snowflake Data Engineers
This chapter has provided detailed information about loading data into Snowflake.
Some recommendations and tips were offered throughout the chapter, but it makes
sense to summarize a few best practices for Snowflake data engineers in this section.

Data Loading Best Practices for Snowflake Data Engineers | 223

Select the Right Data Loading Tool and Consider the Appropriate Data
Type Options
Your choice of data loading tool is influenced by many factors: whether the load is
intended to be a repeat process or a one-time load, whether the data is needed in real
time or near-real time by end users, the data type of the data to be loaded, the existing
skill set of your team, and more. Keeping these factors in mind, general best practice
recommendations can still be made.

In an ETL approach, it is possible to use third-party tools to transform data prior to it
being loaded into Snowflake. It often makes more sense, though, to take an ELT
approach to data loading rather than an ETL approach because of Snowflake’s ability
to scale out. In an ELT approach, some transformations, such as changing column
names or changing the order of columns, can be accomplished. After the data has
been ingested, more complex data transformations, such as string concatenation or
number calculations, can be accomplished with Snowflake streams and tasks or
stored procedures. Powerful options also exist for transforming data using the Snow‐
park API and Java UDFs.

JDBC and ODBC connectors are good choices in some situations, but they should
not be the tool of choice for large, regular data loads.

When considering the data being loaded, it is important to choose the appropriate
data type when creating your Snowflake table. For example, date and timestamp data
types are stored more efficiently in Snowflake than the VARCHAR data type.

Data file size limitations and recommendations, especially for semi-structured data,
should be adhered to. Parquet files greater than 3 GB could time out, so it is recom‐
mended they be split into 1 GB sizes or smaller.

Having awareness of some unique ways to natively load data into Snowflake is impor‐
tant because it opens up the possibilities of the tools you can consider. Two examples
of unique Snowflake tools available to you that you should consider are Snowpipe
and file formats for the many semi-structured data types supported by Snowflake.

Avoid Row-by-Row Data Processing
Query performance is greatly impacted in situations involving row-by-row data pro‐
cessing. Given that Snowflake is built to ingest and process billions of rows with ease,
the data process you design should focus on processing the entire data set, rather than
one row at a time. The negative impact of row-by-row data processing cannot be
emphasized strongly enough.

224 | Chapter 6: Data Loading and Unloading

Choose the Right Snowflake Virtual Warehouse Size and Split Files as
Needed
To prevent resource contention, be sure to isolate data load jobs from queries by dedi‐
cating separate virtual warehouses for each. Rather than assuming a larger virtual
warehouse will necessarily load massive data files any faster than a smaller virtual
warehouse (it likely won’t), make sure to instead try splitting large files into smaller
files of about 100 to 250 MB in size. Remember that the number of files being loaded
and the size of each file influences performance more than the size of the virtual
warehouse.

That said, it’s important to note that choosing the right Snowflake virtual warehouse
size is necessary when using the COPY command. However, a serverless approach
could be more ideal depending on the use case. If a serverless approach is desired,
Snowpipe could be used. In that case, there is no need to worry about virtual ware‐
house sizing.

Transform Data in Steps and Use Transient Tables for Intermediate
Results
When appropriate, transform data in multiple steps rather than having massive SQL
statement(s). This should result in simpler code and makes it possible to test inter‐
mediate results. For the intermediate results, it is recommended that you use transi‐
ent tables and truncate them prior to the next data load so that the Time Travel
storage fees will be reduced.

Code Cleanup
Because we created all our tables in one database, DEMO6_DB, our cleanup is simple.
We can’t drop a virtual warehouse we are currently using; thus, we’ll need to change
the virtual warehouse first:

USE WAREHOUSE COMPUTE_WH;
DROP DATABASE DEMO6_DB;
DROP WAREHOUSE LOAD_WH;

Summary
In this chapter, we took a deep dive into several different types of data loading tools
for both manually inserting a few rows of data into tables and creating automated
processes which we can use to load data files of a massive size. We also considered
some data load best practices for Snowflake data engineers.

Knowing how to best load data into Snowflake is not enough, though. We also need
to make sure we have a good understanding and appreciation for the ways we can

Code Cleanup | 225

protect our data. The next chapter provides important next steps that are needed to
gain a broader understanding and appreciation for data governance and data security.

Knowledge Check
The following questions are based on the information contained in this chapter:

1. What are the three Snowflake data types used for semi-structured data? Which
one of the three is the universal data type?

2. What are the types of Snowflake stages? Are stages Snowflake objects? Explain.
3. In what instances is the INSERT ALL SQL statement used?
4. What happens when a key-value pair includes a null value at the time of

insertion?
5. When using the Load Data wizard, what are the error handling options and

which one is the default?
6. Is it possible to perform transformations while using the COPY INTO command?
7. What are the semi-structured data types supported by Snowflake for loading and

unloading?
8. Of the two Snowpipe methods, which is the more scalable approach? When

would it be best to use each approach?
9. What is an example of a best practice for data loading, as it specifically relates to

virtual warehouses?
10. What is the Snowflake command to load data into a stage and the command to

unload data from a stage?

Answers to these questions are available in Appendix A.

226 | Chapter 6: Data Loading and Unloading

CHAPTER 7

Implementing Data Governance,
Account Security, and

Data Protection and Recovery

Much has been written about data governance and account security—two very broad
topics. While this chapter isn’t intended to make you an expert on these topics, it will
introduce you to many Snowflake data security features and governance tools which
will give you a broader understanding and appreciation for the many ways you can
implement data governance and security policies in Snowflake.

Traditionally, data governance was focused on having the right people available to
execute the right processes with the right data, at the right time and with the right
technology. The Data Governance 2.0 Framework, shown in Figure 7-1, extends that
focus by also emphasizing business value propositions. Specifically, the area of data
sharing as it relates to data discoverability offers so much business value that Chap‐
ter 11 is devoted to the topic.

227

Figure 7-1. The Data Governance 2.0 Framework

The focus of this chapter is to implement concepts from the Data Governance 2.0
Framework within Snowflake by using powerful but easy-to-use Snowflake features.
For example, you’ll learn how to manage network security policies and firewall
access. You’ll also learn more about Time Travel and fail-safe, database replication,
and failover/failback. In addition, this chapter includes many examples of ways you
can democratize data with data governance controls such as object tagging, classifica‐
tion, data masking, row access policies, external tokenization, and anonymization.
Several hands-on examples throughout the chapter were designed to deepen your
knowledge and understanding of data governance, account security, and data protec‐
tion and recovery in Snowflake.

Prep Work
We’ll be working through some examples to demonstrate how Time Travel, object
tagging, dynamic data masking, and row-level security work in Snowflake. Before we
get to each of those sections, we’ll need to do some setup work to create some roles
and tables and assign some permissions. This will also exercise some of the skills you
learned in earlier chapters.

Create a new folder titled Chapter 7 Security, Protection, Data Recovery. Refer to
“Navigating Snowsight Worksheets” on page 8 if you need help creating a new folder

228 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

and worksheet. To set the worksheet context, make sure you are using the
SYSADMIN role and the COMPUTE_WH virtual warehouse.

In the example in this chapter, we follow a new user named Adam, and use his cre‐
dentials to confirm that appropriate access was given.

You’ll need to replace ' YOUREMAIL@EMAIL.COM ' with your actual
email address or the following code will not work as intended. Be
sure to leave the single quotes around your email address.

Let’s now create a new user account for Adam:

USE ROLE USERADMIN;
CREATE OR REPLACE USER ADAM
PASSWORD = '123'
LOGIN_NAME=ADAM
DISPLAY_NAME=ADAM
EMAIL= ' YOUREMAIL@EMAIL.COM '
MUST_CHANGE_PASSWORD=TRUE;

We also need a few new roles. We’ll be using the Human Resources role, HR_ROLE,
to test out our dynamic data masking. The two AREA roles will be used later to
demonstrate row-level security:

USE ROLE USERADMIN;
CREATE OR REPLACE ROLE HR_ROLE;
CREATE OR REPLACE ROLE AREA1_ROLE;
CREATE OR REPLACE ROLE AREA2_ROLE;

The SYSADMIN role will be used to create some of the objects we’ll be using:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE DATABASE DEMO7_DB;
CREATE OR REPLACE SCHEMA TAG_LIBRARY;
CREATE OR REPLACE SCHEMA HRDATA;
CREATE OR REPLACE SCHEMA CH7DATA;
CREATE OR REPLACE TABLE DEMO7_DB.CH7DATA.RATINGS
(EMP_ID integer, RATING integer, DEPT_ID varchar, AREA integer);

We’ll also want to insert some arbitrary data:

INSERT INTO DEMO7_DB.CH7DATA.RATINGS VALUES
(1, 77, '100', 1),
(2, 80, '100', 1),
(3, 72, '101', 1),
(4, 94, '200', 2),
(5, 88, '300', 3),
(6, 91, '400', 3);

Prep Work | 229

Next, we’ll grant some permissions to roles and then assign those roles to our new
user. We’ll use the SECURITYADMIN role to grant virtual warehouse usage to the
three new roles so that they are able to perform query operations:

USE ROLE SECURITYADMIN;
GRANT USAGE ON WAREHOUSE COMPUTE_WH TO ROLE HR_ROLE;
GRANT USAGE ON WAREHOUSE COMPUTE_WH TO ROLE AREA1_ROLE;
GRANT USAGE ON WAREHOUSE COMPUTE_WH TO ROLE AREA2_ROLE;

We also need to grant those roles usage to the necessary objects:

GRANT USAGE ON DATABASE DEMO7_DB TO ROLE HR_ROLE;
GRANT USAGE ON DATABASE DEMO7_DB TO ROLE AREA1_ROLE;
GRANT USAGE ON DATABASE DEMO7_DB TO ROLE AREA2_ROLE;
GRANT USAGE ON SCHEMA DEMO7_DB.CH7DATA TO ROLE HR_ROLE;
GRANT USAGE ON SCHEMA DEMO7_DB.HRDATA TO ROLE HR_ROLE;
GRANT USAGE ON SCHEMA DEMO7_DB.CH7DATA TO ROLE AREA1_ROLE;
GRANT USAGE ON SCHEMA DEMO7_DB.CH7DATA TO ROLE AREA2_ROLE;
GRANT SELECT ON ALL TABLES IN SCHEMA DEMO7_DB.CH7DATA TO ROLE HR_ROLE;
GRANT SELECT ON ALL TABLES IN SCHEMA DEMO7_DB.CH7DATA TO ROLE AREA1_ROLE;
GRANT SELECT ON ALL TABLES IN SCHEMA DEMO7_DB.CH7DATA TO ROLE AREA2_ROLE;

And finally, we’ll want to assign the three roles to our new user. Two of the roles will
also be assigned back to the SYSADMIN role. We’ve chosen not to assign the
HR_ROLE back to the SYSADMIN role:

GRANT ROLE HR_ROLE TO USER ADAM;
GRANT ROLE AREA1_ROLE TO USER ADAM;
GRANT ROLE AREA2_ROLE TO USER ADAM;
GRANT ROLE AREA1_ROLE TO ROLE SYSADMIN;
GRANT ROLE AREA2_ROLE TO ROLE SYSADMIN;

We will now need to use the ACCOUNTADMIN role to grant future select and insert
privileges to the HR_ROLE. Afterward, let’s reset the role back to the SYSADMIN
role:

USE ROLE ACCOUNTADMIN;
GRANT SELECT ON FUTURE TABLES IN SCHEMA DEMO7_DB.HRDATA TO ROLE HR_ROLE;
GRANT INSERT ON FUTURE TABLES IN SCHEMA DEMO7_DB.HRDATA TO ROLE HR_ROLE;
USE ROLE SYSADMIN;

Snowflake Security
Keeping your Snowflake account and data secure is a collaborative effort between
Snowflake and you. Snowflake takes responsibility for the security of data in transit to
and from the Data Cloud as well as the security of data at rest, stored in tables. This is
accomplished by using strong encryption methods to protect data from external par‐
ties. Snowflake provides Soc 1 Type II and Soc 2 Type II compliance security valida‐
tions for all Snowflake accounts. In addition, Snowflake performs many penetration
tests each year and offers support for HIPAA compliance, PCI DSS compliance, and

230 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

FedRAMP Moderate compliance for Snowflake’s Business Critical Edition and higher
in certain regions. Snowflake is FedRAMP authorized Moderate with agencies such as
the Centers for Medicare & Medicaid Services, the GSA, and the Department of
Health and Human Services. Snowflake supports ITAR compliance, audited by a
third-party organization. Snowflake is in the process of obtaining FedRAMP High
authorization, which is expected winter of 2022 and based on agency and PMO avail‐
ability. In parallel, Snowflake is pursuing IL4, with the intention of being IL4 author‐
ized in 2023. Snowflake is also part of the HITRUST Shared Responsibility and
Inheritance Program (SRM) and has earned the HITRUST certification. The
HITRUST CSF is the leading information security framework for the healthcare
industry.

Snowflake also provides the tools you need to keep your site access secure, protect
your data, monitor user activity, and recover data, should it become necessary. In this
section, we’ll explore many of those tools, including native Snowflake authentication
methods, network security policies, Snowflake query monitoring via access history,
Time Travel, fail-safe, and replication and failover.

Controlling Account Access
Users wanting access to Snowflake need to identify and authenticate themselves,
demonstrating proof of who they are. That proof is used to authenticate, or verify,
that the user is indeed who they claim to be. In addition to authenticating users so
that only allowed users are granted access, Snowflake gives administrators the ability
to create security policies to also limit the location from where users can log in.

Of course, having too few access controls leads to increased risk. However, requiring
users to jump through too many hoops also creates risk. When users experience
excessive user authentication friction or other overly restrictive access controls, there
is a tendency to avoid the complexity by engaging in shadow IT activities which most
often results in information silos. While these shadow IT activities would most likely
be discovered at some point, it is better to consider how to strike the right balance
between implementing too many and not enough controls.

Authentication and user management
Snowflake supports authentication methods that can easily accommodate the differ‐
ent ways users can log in to Snowflake. Thus far, we’ve demonstrated how users can
attempt to access Snowflake data directly. Alternatively, users can indirectly access
Snowflake. Indirect access to Snowflake through business intelligence (BI) tools is
one example. Integration users can also be established to provide a more secure and
auditable way to move data in and out of Snowflake without relying on an existing
user’s account. Creating an integration user for Snowpipe, for example, is a best prac‐
tice. For integration users, key pair is the preferred authentication method.

Snowflake Security | 231

For users accessing Snowflake data through third-party applications, OAuth integra‐
tion is the preferred choice because it enables access to data without sharing the user’s
password and it decouples authentication and authorization. Credentials do not need
to be stored, because a token is used and tied to a Snowflake role instead.

When users need direct access to work within Snowflake, they can authenticate using
federated authentication. For federated authentication, a user is authenticated with
single sign-on (SSO) using an identity provider (IdP) such as Okta or Microsoft
Active Directory Federation Services (AD FS).

For Snowflake accounts not using SSO, Snowflake offers a multifactor authentication
(MFA) native solution which supports connection via the web UI, connections using
the SnowSQL command-line interface (CLI), and JDBC and ODBC client connec‐
tions. MFA is intended to be used in addition to strong passwords. Snowflake offers
self-service MFA to all account levels so that users can enroll themselves.

To enroll in MFA from the web UI, use the Home icon to go to the Main menu. From
there, in the upper-left corner, click the down arrow to the right of your name. Select
Profile, then click the Enroll button next to “Multi-factor authentication.” Next, click
the “Start setup” button (as shown in Figure 7-2).

Figure 7-2. The multifactor authentication setup screen

From there, you can indicate what type of device you want to add. As you go through
the enrollment process, you’ll need to install the Duo Mobile application (see
Figure 7-3) and scan a QR code.

Authentication helps to control account access but is just one part of what is needed
to keep data secure. Once users are authenticated, the data they can see and the activi‐
ties they can perform within Snowflake, such as creating tables and using the SELECT
command to view the data, need to be controlled as well. In Snowflake, we can

232 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

accomplish this by using role-based access controls (RBACs). Chapter 5 is devoted to
RBAC due to the importance of limiting data access.

Figure 7-3. The Duo Mobile setup screen for multifactor authentication

In Chapter 5, we discussed best practices. One example of a best practice that we rec‐
ommended is that custom roles be granted back to the system administrator role.
However, you may want to consider some exceptions to that practice for roles used to
access sensitive data, such as HR, financial, or medical data. Earlier in this chapter, we
created three new custom roles and we assigned two of those roles back to the system
administrator. However, you’ll notice we did not grant the HR role to an administra‐
tor. This was not an oversight, but intended, because there could be sensitive HR data
that not even the Snowflake administrator should be allowed to access. As a
reminder, you can see role relationships by using the role hierarchy visualization
explorer that was introduced in Chapter 5.

Managing network security policies and firewall access
By default, users can connect to Snowflake from any location. However, to reduce
security risks or to meet compliance requirements, you may need to restrict how and
where users can connect to Snowflake. This can be achieved by creating network pol‐
icy objects. For example, network policies can be created to allow traffic from certain
IP addresses or your organization’s virtual private networks (VPNs) and virtual pri‐
vate clouds (VPCs). You can specify a list of IP ranges to allow or disallow.

Snowflake Security | 233

Any defined blocked IP ranges should be a subset of the list of
allowed IP addresses because anything outside the list of allowed IP
ranges would automatically be disallowed anyway.

There are two types of network policies: account-level network policies and user-level
network policies. Account-level network security policies can be created via the web
interface or by using SQL. In contrast, user-level network policies can only be formed
using SQL.

You’ll need to use the account administrator role to set up a network policy. As an
account administrator, you can click Admin → Security from the Main menu. Make
sure your role is set to ACCOUNTADMIN. In the upper-right corner, click the +
Network Policy button. This will provide a screen, shown in Figure 7-4, where you
can create a new network policy.

Figure 7-4. The network policy creation screen

After an account-level network policy is created, it will need to be activated by associ‐
ating the policy to your Snowflake account. On the right side of the screen is an
Activate Policy button.

234 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

A SECURITYADMIN or ACCOUNTADMIN role can create an account-level net‐
work policy, but only one network policy can be activated at a time. Similarly, a user-
level network policy also needs to be activated before Snowflake will enforce the
policy, and only one user-level policy per user can be activated at a time. For any user
having both an account-level and user-level network policy, the user-level policy will
take precedence.

You can use the SHOW NETWORK POLICIES statement to see a list of all network policies
in your Snowflake account. Make sure you use the ACCOUNTADMIN role to exe‐
cute the statement. Executing the command does not require a running warehouse.

For firewall egress traffic, you can allow your organization’s firewall to connect client
applications to Snowflake, if your network has a firewall for egress traffic. If you’re
allowing a public endpoint, you can execute the SELECT SYSTEM$WHITELIST() func‐
tion. If you have an accessible private endpoint, you can execute the SELECT SYSTEM
$WHITELIST_PRIVATELINK() function. Note that if you are using a network proxy to
inspect egress traffic, you can set it up for SSL passthrough.

SSL terminating proxies are not supported by Snowflake.

Diagnosing and troubleshooting network connection issues can be accomplished
with the Snowflake Connectivity Diagnostic Tool, SnowCD. SnowCD leverages the
Snowflake hostname IP address and ports that were listed by the previous system
functions to run a series of connection checks to evaluate and help troubleshoot the
network connection to Snowflake. For instructions on how to download and install
SnowCD, review the Snowflake user guide documentation.

Monitoring Activity with the Snowflake ACCESS_HISTORY Account
Usage View
Designing and implementing access controls to limit access to certain data is a critical
piece of account security. In addition, a Snowflake tool exists that can be used to
monitor access. The Snowflake ACCESS_HISTORY view monitors access to enable
companies to satisfy their compliance audits and comply with regulatory require‐
ments. While performing monitoring for security reasons, it is recommended to use
the ACCESS_HISTORY view to also identify any unused tables or columns which
could be removed to optimize storage costs.

The Snowflake ACCESS_HISTORY view is used to query the access history of Snow‐
flake objects within the previous 365 days. It is accessible to the Snowflake

Snowflake Security | 235

https://oreil.ly/0S8tw

ACCOUNTADMIN role by default. The ACCESS_HISTORY view supports SQL
read and write operations. Columns in this view include QUERY_ID, the name of the
user who ran the query, the start time of the query, and the objects that were accessed
or modified by the user. Notice that the output for the accessed objects is given in
JSON form, as shown in Figure 7-5. As a result, we’ll want to flatten the output. We
first learned about the FLATTEN function in Chapter 4.

Figure 7-5. Output for accessed objects is in JSON form

The Snowflake ACCESS_HISTORY view supports most write operation commands,
including GET, PUT, DELETE, INSERT, MERGE, UPDATE, COPY INTO, and CREATE. The
operations to populate views or streams, as well as data movement resulting from
replication, are not included in the ACCESS_HISTORY view.

Let’s consider what specific information the ACCESS_HISTORY view can provide for
us. We can run a query to see the number of queries each user has run. We’ll list the
user with the most frequent number of queries first:

USE ROLE ACCOUNTADMIN;
SELECT USER_NAME, COUNT(*) USES FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY
GROUP BY USER_NAME ORDER BY USES DESC;

We can also query the Snowflake ACCESS_HISTORY view to find out the most fre‐
quently used tables:

SELECT OBJ.VALUE:objectName::STRING TABLENAME,
COUNT(*) USES FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
TABLE(FLATTEN(BASE_OBJECTS_ACCESSED)) OBJ GROUP BY TABLENAME ORDER BY USES DESC;

While both pieces of information are interesting, the information isn’t particularly
useful without some additional context. What we’d really like to know is what tables
are being accessed, by whom, and how frequently. This next statement will give us
that information:

SELECT OBJ.VALUE:objectName::string TABLENAME, USER_NAME,
COUNT(*) USES FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
TABLE(FLATTEN(BASE_OBJECTS_ACCESSED)) OBJ GROUP BY 1, 2 ORDER BY USES DESC;

236 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

The SNOWFLAKE ACCOUNT_USAGE schema includes other views useful for
monitoring. The LOGIN_HISTORY view is a log of every connection established
with Snowflake so that you can determine who logged in from where and using what
authentication method. The QUERY_HISTORY view provides a log of every query
run in Snowflake, including queries against metadata such as users or roles as well as
queries against data.

Data Protection and Recovery
Snowflake offers several native data protection and high availability features. Many of
those features, such as encryption and key management, are automatic and require
no involvement from you to function fully. Other data protection and recovery fea‐
tures, such as Time Travel and fail-safe, exist within Snowflake automatically and are
available for you to take advantage of them anytime you find it necessary. Lastly, there
are some Snowflake data protection and recovery native features, such as replication
and failover, that require some planning and implementation on your part to take
advantage of them. That said, let’s take a deeper dive into each of the three categories
of data protection and recovery features just mentioned.

Encryption and key management
Snowflake automatically provides end-to-end encryption (E2EE) for all Snowflake
editions, regardless of the edition type, so that not even the cloud provider on which
your Snowflake account is deployed can access your data. When you store a Snow‐
flake table, one or more files are created and stored using the cloud provider’s storage
service. Snowflake encrypts each file with a different key and then “wraps” each file
and file key together by encrypting them with a higher-level table master key. One
reason for this is to avoid having to store many individual file keys in a secure loca‐
tion. Table master keys, used to encrypt and decrypt the file keys, are themselves
encrypted with a higher-level account master key and stored in the table’s metadata.
Similarly, an account master key, used to encrypt and decrypt table master keys, is
encrypted with the root key. The root key, the only key stored in clear text, is used to
encrypt and decrypt an account master key.

To summarize, Snowflake’s hierarchical key model consists of the root key, account
master keys, table master keys, and file keys. An account key or table key is rotated by
Snowflake when the key is more than 30 days old. Note that result master keys and
stage master keys also exist at the table master key level.

Snowflake’s root key is in a hardware security module (HSM). Snowflake offers the
Tri-Secret Secure feature for organizations that need more control over keys and have
the Snowflake Business Critical Edition or higher. This feature allows you to generate
your own root key using a cloud provider’s key management service such that two
account master keys are used instead of just one. Each master key is wrapped by a

Snowflake Security | 237

root key; your root key wraps one account master key and Snowflake’s root key wraps
the other. As shown in Figure 7-6, both master keys are needed to decrypt the table,
result, or stage master keys.

Figure 7-6. The Tri-Secret Secure hierarchy of keys

With the Business Critical edition and higher, Snowflake can encrypt all data trans‐
mitted over the network within a VPC. Query statement encryption is supported on
Enterprise for Sensitive Data (ESD) accounts.

Time Travel and fail-safe retention periods, described in the next section, are not
affected by rekeying. Rekeying is transparent to both features. However, some addi‐
tional storage charges are associated with rekeying of data in fail-safe.

Time Travel and fail-safe
Snowflake provides native change data capture (CDC) features to ensure, for a speci‐
fied period of time, the continued availability of important data that has been
changed or deleted. Historical data in permanent databases and database objects can
be queried, cloned, and restored for a maximum of 90 days. Data in temporary and
transient objects can be accessed up to a maximum of 24 hours. Beyond those Time
Travel access periods, historical data in permanent databases and database objects can
be recovered by a Snowflake employee up to seven days later. The seven days of
recoverability are known as the fail-safe period.

Using the Time Travel feature, a Snowflake administrator can query data in the past
that has since been updated or deleted, and can create clones of entire tables, sche‐
mas, and databases at or before specific points in the past. Having Time Travel offers

238 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

protection from accidental data operations such as dropping a column or table by
mistake.

Time Travel is available for permanent, temporary, or transient tables, but not exter‐
nal tables. The following commands can be used for Time Travel: SELECT At/Before,
CLONE At/Before, and UNDROP. With Time Travel, a user can use the SELECT com‐
mand to query objects in one of three ways:

• Querying can be accomplished using a timestamp to see what an object looked
like before a given point in time.

• Querying can be accomplished using a time offset to see what an object looked
like previously based on a certain amount of time that has passed.

• It is possible to use Time Travel to view what an object looked like before running
a specific query. To obtain any query ID, you can click the Activity → Query His‐
tory menu option where you will then be able to see a listing of all queries,
including the query ID and status, as shown in Figure 7-7.

Figure 7-7. Query history as seen from the Query History submenu

The Time Travel retention period is automatically enabled for all Snowflake accounts,
and the default is 24 hours, or one day; however, it can be set to zero at the account
and object levels. For Snowflake Enterprise Edition and higher orgs, the retention
period can be set up to 90 days for permanent databases, schemas, and tables. Let’s go
ahead and set the retention period for our database to 90 days. Navigate back to the
worksheet and execute the following command:

USE ROLE SYSADMIN;
ALTER DATABASE DEMO7_DB SET DATA_RETENTION_TIME_IN_DAYS = 90;

Snowflake Security | 239

By setting the retention time as 90 days for the database, all the database objects will
also have a 90-day retention time period. We can confirm this by taking a look at the
database’s INFORMATION_SCHEMA TABLES view:

USE ROLE SYSADMIN;
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, RETENTION_TIME
FROM DEMO7_DB.INFORMATION_SCHEMA.TABLES;

You’ll then be able to see that the RATINGS table has a 90-day retention time, as
shown in Figure 7-8.

Figure 7-8. Details of the information schema showing a 90-day retention time for the
RATINGS table

While Time Travel cannot be disabled for an account, you can effectively disable
Time Travel for specific databases, schemas, or tables by changing the default data
retention time from one day to zero days. Information about dropped objects can still
be seen in Snowflake account usage but not the information schema.

There are nuances to be aware of if you change the retention periods. Changing the
data retention time at the schema level will result in all tables in the schema inheriting
the schema’s retention period unless the table is explicitly given a different retention
period. Another thing you should keep in mind is that the order in which you drop
objects does affect the retention period if there are differences. When you drop a
schema, all the existing tables will be available for the same time period as the
schema. If you want to make sure the data retention period for child objects is hon‐
ored, you’ll need to drop the child objects prior to dropping the parent object.

Let’s now look at some examples to see how Time Travel works. Let’s assume we make
a mistake and update all the values in a column, rather than just updating one value.
That could look something like the following statement:

USE ROLE SYSADMIN;
UPDATE DEMO7_DB.CH7DATA.RATINGS AREA SET AREA=4;

When we take a look at the table after the previous statement, we see that we did
indeed make a mistake. Using the SELECT * statement, we see that all the area values
have been changed to a value of 4 instead of just the value for one employee:

SELECT * FROM DEMO7_DB.CH7DATA.RATINGS;

We have a couple of ways we can revert the AREA column back to its previous values.
We can use one of the two approaches based on time values, either by using a specific
time in the past or by going back a certain amount of time from now, or we can use a

240 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

query ID. Since we realized our mistake right away, any of the three would be easy to
implement. For our example, we’ll go ahead and travel back in time by five minutes.
Let’s first confirm that going back in time five minutes will yield the result we want:

SELECT * FROM DEMO7_DB.CH7DATA.RATINGS at (offset => -60*5);

If the table looks correct, go ahead and proceed with the next statement. If not, adjust
the number of minutes until you find the correct time needed and then proceed with
the next statement:

CREATE OR REPLACE TABLE DEMO7_DB.CH7DATA.RATINGS
AS SELECT * FROM DEMO7_DB.CH7DATA.RATINGS at (offset => -60*5);

If we check now, we’ll see that the table has the previous values before we made the
update:

SELECT * FROM DEMO7_DB.CH7DATA.RATINGS;

Rather than going back in time using a time offset, we could’ve accomplished the
same thing by using a query ID from our history. That statement would look like this:

SELECT * from DEMO7_DB.CH7DATA.RATINGS before(statement =>
 '<Query ID from History>');

Something else that could possibly happen is that we might drop a table by mistake
and then, after realizing our mistake, we’ll want to go back in time before the table
was dropped. Let’s see how that would look. We’ll first drop the table:

DROP TABLE DEMO7_DB.CH7DATA.RATINGS;

Try running a SELECT * command and you’ll see that the table no longer exists. Now
UNDROP the table and try running the SELECT * command again:

UNDROP TABLE DEMO7_DB.CH7DATA.RATINGS;

It is important to remember that Time Travel works on permanent, transient, and
temporary objects, such as databases and database objects. It doesn’t work on users or
warehouses. If you drop a user, for example, you’ll have to re-create that user.

Whereas Time Travel allows a Snowflake user to access the data for a certain period
of time, only a Snowflake employee may be able to recover data from fail-safe storage.
Fail-safe storage exists as a best effort emergency measure that may be able to protect
data loss in permanent tables due to a catastrophic event such as a security breach or
system failure.

Next, we’ll summarize how Time Travel and fail-safe work together for permanent
tables and how that compares to how Time Travel works for transient and temporary
tables. In Figure 7-9, we can visualize a Time Travel and fail-safe timeline for perma‐
nent objects.

Snowflake Security | 241

Figure 7-9. The permanent object Time Travel and fail-safe timeline

It is possible to increase the Time Travel retention period for permanent objects.
When that is done, the data that exists in the current Time Travel retention period
will now be retained longer before moving to fail-safe. However, data that had previ‐
ously exceeded the current retention period and was already moved into the fail-safe
seven-day period will not be affected. It is not possible for data to move from the fail-
safe period back to the Time Travel period.

When a Time Travel retention period is reduced for permanent objects, the data in
fail-safe is not affected. The data in Time Travel will be affected. Any Time Travel data
whose time exceeds the new retention period will be moved to fail-safe where it will
be stored for seven days.

Snowflake transient objects are like permanent objects, except transient objects have
no fail-safe period. In addition, the maximum default Time Travel period for transi‐
ent objects is only one day, which is much less than the 90-day Time Travel period
possible for permanent objects. See Figure 7-10 for a visualization of the timeline.

Figure 7-10. The transient object Time Travel timeline

242 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Temporary objects have the same Time Travel default and maximum values as transi‐
ent objects. Just like transient objects, there is no fail-safe for temporary objects. The
difference between temporary objects and transient objects is that when the session
ends, the data in transient objects is no longer accessible through the Time Travel fea‐
ture. See Figure 7-11 for the timeline visualization for temporary Snowflake objects.

Figure 7-11. The temporary object Time Travel timeline

Both Time Travel and fail-safe, along with active storage, are part of the total calcula‐
ted storage that incurs storage costs. You can use the following statement to see how
much storage, in bytes, is attributed to each table in each of the three sections:

USE ROLE ACCOUNTADMIN;
SELECT TABLE_NAME,ACTIVE_BYTES,TIME_TRAVEL_BYTES,FAILSAFE_BYTES
FROM SNOWFLAKE.ACCOUNT_USAGE.TABLE_STORAGE_METRICS;

Replication and Failover
Healthcare, financial, and retail businesses are just a few types of organizations in
which no downtime is acceptable. Yet these organizations face a variety of challenges,
including natural disasters, network issues, and viruses, in maintaining 24/7 system
and data availability. This is where Snowflake replication and failover can help.

Snowflake replication, supported across regions and across cloud platforms, enables
an organization to replicate databases between Snowflake accounts. As such, replica‐
tion and failover almost instantly synchronize Snowflake data and, because cross-
cloud and cross-region replication is asynchronous, there is little to no performance
impact on primary databases.

Snowflake encrypts files for replication with a random unique key.

Snowflake Security | 243

It is important to be aware that cloned Snowflake objects are replicated physically,
rather than logically, to secondary databases. This means that there will be additional
data storage costs for any cloned objects. Replication charges also include data trans‐
fer costs and the cost of compute resources. Replication supports incremental
refreshes, and customers can determine the frequency at which the replication runs.
It is important to know that these charges will be billed on the target account.

Both permanent and transient primary databases can be replicated. When one of
these primary database types is replicated, the following items are also replicated to
the secondary database: automatic cluster of clustered tables, views including materi‐
alized views, stored procedures, masking and row access policies, tags, user-defined
functions (UDFs), file formats, and sequences.

Snowflake replication is supported for databases, but if an external table exists in the
primary database, it’s not possible to create or refresh a secondary database with an
external table. In addition, the following individual objects cannot be replicated:
warehouses, resource monitors, roles, users, pipes, and streams. Note that account-
level replication and the ability to create failover groups are available.

Before you replicate a database to a different geographic region or
country, it is recommended that you research whether your organi‐
zation has any legal or regulatory restrictions as to where your data
can be hosted.

Democratizing Data with Data Governance Controls
One goal of data governance is to establish effective controls to better manage risks
by identifying sensitive data and protecting it while continually monitoring the effec‐
tiveness of the controls. Increased governmental regulations and regulatory compli‐
ance requirements have made it more important than ever to focus on data
governance. As you would expect, data governance comes with an associated cost.
While it is tempting to think of data governance as something that comes at a cost
without providing any real positive benefits, that’s simply not true. In fact, well-
designed data governance controls provide the necessary framework to support data
democratization, one of the most competitive advantages an organization can
achieve.

Protecting sensitive data was often achieved by simply prohibiting access to all the
data for which the sensitive data was a part or by creating separate data storages
absent the sensitive data. This created data silos that often consisted of stale data and
came at a high cost to implement and maintain. In many cases, it was too time-
consuming or costly to provide the nonsensitive data to others in the organization.
As a result, it was not unusual for organizational groups to create their own non–IT-

244 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

approved data solutions. Not only was there poor decision-making based on stale,
incomplete data, but there was also increased risk about which the organization was
often unaware. It is not surprising that data governance has been viewed with such
negativity. Snowflake provides tools to help address these issues.

With Snowflake’s improved tools and methods available today, replicating data to
achieve data governance goals is neither required nor recommended. With Snow‐
flake’s many governance-related features, data can quickly and easily be secured to
allow for open access to real-time data. By providing access to data that is fresh and
complete, Snowflake makes it possible for data democratization to exist and thrive
within an organization. Because of effective data governance, data democratization
can increase access to data for all knowledge workers within an organization. If sensi‐
tive data exists within the data, we can simply identify it and restrict access to the
actual data but not the metadata.

The tangible benefits of all stakeholders in a data-driven organization being able to
make insightful data-driven decisions in real time cannot be overstated. It all starts
with embracing data governance as the framework for data democratization as well as
the necessary vehicle for data security, ensuring privacy, and adhering to regulatory
and compliance requirements.

Previously, we discussed Snowflake ACCESS_HISTORY, one of the main governance
features. Just like Snowflake ACCESS_HISTORY, the governance features described
in this section are available in Enterprise Edition and higher Snowflake orgs.
In this section, we’ll describe more governance features including the INFORMA‐
TION_SCHEMA Data Dictionary, object tagging, data masking, row access policies,
row-level security, external tokenization, and secure views.

INFORMATION_SCHEMA Data Dictionary
The INFORMATION_SCHEMA, also known as the Snowflake Data Dictionary,
includes usage metrics and metadata information. The information in the INFOR‐
MATION_SCHEMA includes views at the account and database levels. The
INFORMATION_SCHEMA was covered in detail in Chapter 3.

Object Tagging
Protecting data in Snowflake begins with understanding the type of data that is stored
in an object and annotating that information so that the necessary steps can be taken
to secure and protect the data. To help with the annotation process, Snowflake pro‐
vides a native feature that can be used to create a library of custom tags. These tags
can then be associated to Snowflake objects.

A Snowflake tag is a schema-level object that can be associated to different object
types, including columns as well as schema-, database-, and account-level objects.

Democratizing Data with Data Governance Controls | 245

The tag is stored as a key-value pair where the tag is the key, and each tag can have
many different string values. A tag identifier must be unique within each schema.
Snowflake limits the number of tags to 10,000 per account.

If you enclose an identifier in double quotes, it is case sensitive and
can include blank spaces. If an identifier is unquoted, it cannot be
case sensitive, cannot contain blank spaces, and must begin with a
letter or underscore.

To demonstrate how Snowflake object tagging works, we’ll start by creating a taxon‐
omy of the tags we intend to use:

USE ROLE SYSADMIN;
CREATE OR REPLACE SCHEMA DEMO7_DB.TAG_LIBRARY;

The first tag we want to set up is a tag associated at the table level to describe whether
the table will be classified as confidential, restricted, internal, or public. Notice that
we make sure to include a comment to list out the possible values we’d like to use for
that tag:

CREATE OR REPLACE TAG Classification;
ALTER TAG Classification set comment =
 "Tag Tables or Views with one of the following classification values:
 'Confidential', 'Restricted', 'Internal', 'Public'";

Next, we’ll create a tag associated at the column level that will identify fields that con‐
tain personally identifiable information (PII):

CREATE OR REPLACE TAG PII;
ALTER TAG PII set comment = "Tag Tables or Views with PII with one or more
 of the following values: 'Phone', 'Email', 'Address'";

And finally, we’ll create a tag associated at the column level that will identify fields
that contain sensitive PII such as Social Security numbers, passport information, and
medical information:

CREATE OR REPLACE TAG SENSITIVE_PII;
ALTER TAG SENSITIVE_PII set comment = "Tag Tables or Views with Sensitive PII
 with one or more of the following values: 'SSN', 'DL', 'Passport',
 'Financial', 'Medical'";

246 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

We’ll continue using the administrator roles to create a new EMPLOYEES table.
Remember that earlier we granted the HR role the ability to use the SELECT statement
on future tables in the HRDATA schema so that that role will have access to this new
table we are creating:

USE ROLE SYSADMIN;
CREATE OR REPLACE TABLE DEMO7_DB.HRDATA.EMPLOYEES (emp_id integer,
 fname varchar(50), lname varchar(50), ssn varchar(50), email varchar(50),
 dept_id integer, dept varchar(50));
INSERT INTO DEMO7_DB.HRDATA.EMPLOYEES (emp_id, fname, lname, ssn, email,
 dept_id, dept) VALUES
 (0, 'First', 'Last', '000-00-0000', 'email@email.com', '100', 'IT');

After creating the new EMPLOYEES table, we’ll assign tags by using the ALTER com‐
mand. First we assign the classification tag, with the value of "Confidential", to the
entire table:

ALTER TABLE DEMO7_DB.HRDATA.EMPLOYEES
 set tag DEMO7_DB.TAG_LIBRARY.Classification="Confidential";

Next, we’ll assign two tags to two individual columns:

ALTER TABLE DEMO7_DB.HRDATA.EMPLOYEES MODIFY EMAIL
 set tag DEMO7_DB.TAG_LIBRARY.PII = "Email";
ALTER TABLE DEMO7_DB.HRDATA.EMPLOYEES MODIFY SSN
 SET TAG DEMO7_DB.TAG_LIBRARY.SENSITIVE_PII = "SSN";

In addition to tags directly assigned to an object, objects can also
have inherited tags based on the Snowflake object hierarchy. For
example, any tag that is applied to a table is also applied to the col‐
umns in that table.

You can use the SHOW TAGS statement to see that all three tags were created.
Figure 7-12 shows the results.

Figure 7-12. Results of the SHOW TAGS statement

You can also query a table or column to see if a particular tag value is associated with
the table or column. First, let’s see if any Classification tag value is associated with
our EMPLOYEES table:

SELECT SYSTEM$GET_TAG('Classification', 'DEMO7_DB.HRDATA.EMPLOYEES', 'table');

Democratizing Data with Data Governance Controls | 247

We see that the Confidential tag value is associated. Now let’s see if any
SENSITIVE_PII tag is associated with a column. You’ll notice that we have to specify
the column we want to check:

SELECT SYSTEM$GET_TAG('SENSITIVE_PII', 'DEMO7_DB.HRDATA.EMPLOYEES.SSN',
 'column');

The SSN tag value is associated with the SSN column, as expected. Let’s see what hap‐
pens if we try checking for a tag value that doesn’t exist in a column:

SELECT SYSTEM$GET_TAG('SENSITIVE_PII', 'DEMO7_DB.HRDATA.EMPLOYEES.EMAIL',
 'column');

We’ll get a NULL value returned when there is no tag value in a column associated with
the specific tag we are inquiring about. In our example, we got the NULL value because
there is no SENSITIVE_PII tag in the EMAIL column. There is, however, a PII tag in
the EMAIL column, which you can confirm by changing the query.

Appropriately setting tags for tables, views, and columns allows us to query based on
tags to discover which database objects and columns contain sensitive information.
Then, data stewards can implement data masking policies or row access policies as
needed.

Let’s create a SQL statement to locate any object or column that has been tagged with
a PII or SENSITIVE_PII tag but does not have a masking policy. Let’s see what hap‐
pens when we run the following statement:

//Audit all columns with a sensitive tag without a masking policy
//Note that Latency may be up to 2 hours for tag_references
USE ROLE ACCOUNTADMIN;
WITH column_with_tag
AS (SELECT object_name table_name,
 column_name column_name,
 object_database db_name,
 object_schema schema_name
 FROM snowflake.account_usage.tag_references
 WHERE tag_schema='TAG_LIBRARY'
 AND (tag_name='SENSITIVE_PII' OR tag_name = 'PII')
 AND column_name is not null),
 column_with_policy
AS (SELECT ref_entity_name table_name,
 ref_column_name column_name,
 ref_database_name db_name,
 ref_schema_name schema_name
 FROM snowflake.account_usage.policy_references
 WHERE policy_kind='MASKING POLICY')
 SELECT *
 FROM column_with_tag
 MINUS
 SELECT *
 FROM column_with_policy;

248 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Most likely, the query was run successfully but returned no results. That is because
there exists up to a two-hour latency before you are able to query the Snowflake data‐
base for tag references. Thus, you’ll want to continue on with the rest of the chapter,
but remember to come back and rerun this statement later to see the results, as shown
in Figure 7-13.

Figure 7-13. Results showing which tagged columns do not have a masking policy

The way Snowflake tags are designed allows for different management approaches. In
a centralized approach, the administrator is responsible for creating and applying tags
to Snowflake objects. The administrator could create a TAG_ADMIN role to delegate
the handling of that responsibility. Alternatively, a TAG_ADMIN role could be used
in a decentralized manner such that individual teams apply tags to Snowflake objects.

In a later section of this chapter, we will discuss replication. For now, we’ll just men‐
tion that when a Snowflake primary database is replicated, the tags are also replicated
to the secondary database.

Snowflake classification is a new capability that automatically detects PII in a table,
view, or column and tags it. Once the tags produced by classification have been
assigned, they can be used for data governance, data sharing, and data privacy
purposes.

In this section, we focused on security concerns for our object tagging example.
Object tagging is also frequently used for tracking data and warehouse consumption
for cost reporting purposes. See Chapter 8 for that object tagging example.

Classification
Snowflake’s Data Classification analyzes columns in structured data for personal
information that may be considered sensitive. Classification functionality is built into
the Snowflake platform and includes predefined system tags to assist with classifying
the data. Once data has been classified, it is discoverable by querying the INFORMA‐
TION_SCHEMA. Then, classified data access can be audited through the
ACCESS_HISTORY view to ensure that the proper role-based policies and anonymi‐
zation have been put in place.

Classification category types
There are two category classification types: semantic and privacy. A semantic cate‐
gory identifies a column that is storing personal attributes, such as name, address,

Democratizing Data with Data Governance Controls | 249

age, or gender. Any column for which a semantic category is identified is further clas‐
sified with a privacy category.

Classification is available to all Enterprise Edition accounts and
above. To classify data in a table or view, the role used to classify
data must have the IMPORTED PRIVILEGES privileges on the
SNOWFLAKE database. Additionally, the USAGE privilege on the
database and schema is needed along with at least the SELECT
privilege on the table or view. Because the classification feature uses
tags, it is also necessary to have the APPLY TAG global privilege.

Snowflake classification supports three privacy categories as follows:

Identifier
Also known as a direct identifier. A direct identifier identifies an individual.
Examples of direct identifiers include name, Social Security number, and phone
number.

Quasi-identifier
Also known an indirect identifier. When combined with other attributes, quasi-
identifiers can be used to uniquely identify an individual. An example in which
an individual could be uniquely identified using quasi-identifiers is if a person’s
age, gender, and zip code were available.

Sensitive information
Includes personal attributes that aren’t directly or indirectly identifying, but are
private and thus shouldn’t be disclosed. Examples include salary details and med‐
ical status.

At this time, data in Snowflake can only be classified as sensitive or
as a direct/indirect identifier, but not both. Knowing this could
affect how you design rules for governed access.

Once a Snowflake table or view has been analyzed, the values for the system tags are
returned. To analyze columns in a table or view, generate semantic and privacy cate‐
gories using Snowflake’s EXTRACT_SEMANTIC_CATEGORIES function. Next, the columns
with semantic or privacy categories will need to be automatically or manually tagged.
We learned about manual tagging in the previous section. To automatically tag col‐
umns that have semantic or privacy categories associated with them, you can use the
ASSOCIATE_SEMANTIC_CATEGORY_TAGS stored procedure.

250 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Classification can be performed on all table and view types, including external tables,
materialized views, and secure views. Snowflake supports classifying data for all data
types except the GEOGRAPHY, BINARY, and VARIANT data types.

Data Masking
Revealing certain data to all users could have consequences, especially in situations
where there are legal and compliance requirements for keeping the data private and
secure. Restricting internal access to private or sensitive data reduces the risk that the
data could be leaked intentionally or unintentionally. Using object tagging is a neces‐
sary first step to identify data that needs to be secured. We can then use Snowflake’s
native governance controls such as data masking, column-level security, and row-
level policies. Row-level access controls will be discussed in the next section.

Snowflake masking policies are schema-level objects applied to individual columns in
tables or views. As such, a database and schema must exist before a masking policy
can be applied to a column. This column-level security feature uses the masking pol‐
icy to selectively mask plain-text data with either a partially masked value or a fully
masked value.

Dynamic data masking
Using dynamic data masking, the masking policy is applied to the column at query
runtime. The masking policy can incorporate role hierarchy and/or be based on
things like network security policies. Also, dynamic data masking can be used with
data sharing whereas external tokenization cannot.

In our first data masking example, we are going to create a role-based masking policy.
We want to allow the HR role to view the plain-text data while all others will see a
fully masked value. Remember that we’ll need to use the account administrator role
to create a masking policy:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE masking policy DEMO7_DB.HRDATA.emailmask
 AS (val string) returns string ->
 CASE WHEN current_role() in ('HR_ROLE') THEN val
 ELSE '**MASKED**' END;

ALTER TABLE DEMO7_DB.HRDATA.EMPLOYEES modify column EMAIL
 set masking policy DEMO7_DB.HRDATA.emailmask;

Now that we’ve created an email masking policy, we’ll want to create a second mask‐
ing policy for Social Security numbers:

Democratizing Data with Data Governance Controls | 251

CREATE OR REPLACE masking policy DEMO7_DB.HRDATA.SSNmask
 AS (val string) returns string ->
 CASE WHEN current_role() in ('HR_ROLE') THEN val
 ELSE '**MASKED**' END;

ALTER TABLE DEMO7_DB.HRDATA.EMPLOYEES modify column SSN
 set masking policy DEMO7_DB.HRDATA.SSNmask;

If we view the data with the ACCOUNTADMIN role, which has not been granted the
HR_ROLE, we’ll see masked data. This is intentional because Snowflake has removed
the concept of a Snowflake super user who has access to all data. This unique feature
greatly reduces risk because it allows for thoughtful consideration of who should be
granted access to different pieces of sensitive information:

USE ROLE ACCOUNTADMIN;
SELECT * FROM DEMO7_DB.HRDATA.EMPLOYEES;

Let’s confirm that the HR role can actually see the data. Be sure to log in as Adam, the
new user, before issuing the following SQL statements. If you do not log in as Adam,
you’ll receive an error message if you try to execute the command. That is because the
user you are logged in as was not granted the HR_ROLE and, thus, you cannot use
that role:

USE ROLE HR_ROLE;
USE WAREHOUSE COMPUTE_WH;
SELECT * FROM DEMO7_DB.HRDATA.EMPLOYEES;

Now that we feel confident that the HR data will be masked appropriately, let’s insert
some data into the table. You should still be logged in as the user Adam:

INSERT INTO DEMO7_DB.HRDATA.EMPLOYEES (emp_id, fname, lname, ssn, email,
dept_id, dept) VALUES
(1, 'Harry', 'Smith', '111-11-1111', 'harry@coemail.com', '100', 'IT'),
(2, 'Marsha', 'Addison', '222-22-2222', 'marsha@coemail.com', '100','IT'),
(3, 'Javier', 'Sanchez', '333-33-3333', 'javier@coemail.com', '101',
 'Marketing'),
(4, 'Alicia', 'Rodriguez', '444-44-4444', 'alicia@coemail.com', '200',
 'Finance'),
(5, 'Marco', 'Anderson', '555-55-5555', 'marco@coemail.com', '300', 'HR'),
(6, 'Barbara', 'Francis', '666-66-6666', 'barbara@coemail.com', '400', 'Exec');
SELECT * FROM DEMO7_DB.HRDATA.EMPLOYEES;

Because Adam has been granted the HR role, he sees all the data. Now let’s go back to
the main Snowflake account so that we’ll be ready to continue with our hands-on
example.

A role that can view an unmasked data column has the ability to
insert unmasked data into another column which might not be
protected by data masking.

252 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Conditional masking
Conditional masking specifies two arguments, using one column to determine
whether data in another column should be masked. The first argument indicates
which column will be masked whereas the second and subsequent arguments are
used as conditional columns.

In our example, we’ll want the employee ID to always be seen by the HR role, but the
employee ID for IT personnel should be the only employee IDs available to everyone.
All employee ID numbers other than IT should be masked to everyone except HR:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE masking policy DEMO7_DB.HRDATA.namemask
 AS (EMP_ID integer, DEPT_ID integer) returns integer ->
 CASE WHEN current_role() = 'HR_ROLE'
 then EMP_ID WHEN DEPT_ID = '100'
 then EMP_ID
 ELSE '**MASKED**' END;

Use the SELECT * command in both the main Snowflake account and as the user
Adam to see the difference in how the employee ID numbers are seen.

Static masking
Static masking is another way to mask Snowflake data. Rather than creating the
masking dynamically, we use ETL tools to transform a set of data to create one or
more tables that always have certain columns masked. We’re then able to grant access
to each table, built upon the same set of underlying data, based on specific roles.
Static masking allows for a clear separation of roles, but there is an increased cost, in
terms of time and money, due to additional table maintenance and the need to create
multiple, different tables.

Row Access Policies and Row-Level Security
Whereas data masking is column-based security, row access policies provide dynamic
row-level security. It is important to design these policies in tandem because a col‐
umn cannot have both a masking policy and a row access policy at the same time.
That is precisely why we want to keep the examples separate by using two different
schemas and tables to demonstrate masking policies and row access policies.

Added to a table or view when created or after the object is created, row access poli‐
cies restrict the rows returned in the query result based on information such as role
and/or geographic region. While row access policies can prevent rows from being
returned in a query, they cannot prevent existing rows from being updated or new
rows from being inserted.

Democratizing Data with Data Governance Controls | 253

One policy can be set on different tables and views, and row access policies can range
from simple to complex. An example of a complex row access policy would be a map‐
ping table. To illustrate how row policies work, we’ll create a row-level security exam‐
ple based on how two different roles would be given access to the same data. First
we’ll create a mapping table:

USE ROLE SYSADMIN;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
CREATE OR REPLACE TABLE AreaFiltering (role_name text, area_id integer);
INSERT INTO AreaFiltering (role_name, area_id) VALUES
 ('AREA1_ROLE', 1), ('AREA2_ROLE', 2);
SELECT * FROM AreaFiltering;

Next, we’ll create a secure view to hold the data from the RATINGS table so that that
role can access specific roles for which it is allowed access:

USE ROLE SYSADMIN;
CREATE OR REPLACE SECURE VIEW V_RATINGS_SUMMARY AS
SELECT emp_id, rating, dept_id, area
FROM RATINGS
WHERE area= (SELECT area_id FROM AreaFiltering
WHERE role_name=CURRENT_ROLE());

We are still using the SYSADMIN role, so we won’t see the data in the secure view. To
confirm, be sure to run the following SELECT statement:

SELECT * FROM v_ratings_summary;

Now let’s give the AREA1_ROLE the ability to see data in the secure view. The
AREA1-ROLE will be able to see the data when the value in the area column from the
DEMO7_DB.CH7DATA.RATINGS table is equal to AREA1:

GRANT SELECT ON ALL TABLES IN SCHEMA CH7DATA TO ROLE AREA1_ROLE;
GRANT SELECT ON AreaFiltering TO ROLE AREA1_ROLE;
GRANT SELECT ON v_ratings_summary TO ROLE AREA1_ROLE;

As the new user Adam, let’s try viewing the data using the AREA1 role:

USE ROLE AREA1_ROLE;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
SELECT * FROM v_ratings_summary;

Because there are three rows of data associated with AREA1, we expect that Adam
will be able to see three rows of data by using the AREA1_ROLE, and that is exactly
the result we get (see Figure 7-14).

254 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Figure 7-14. Result for the AREA1 role when accessing the secure view

Now let’s switch back to the main Snowflake user and grant privileges to the AREA2
role:

USE ROLE SYSADMIN;
GRANT SELECT ON ALL TABLES IN SCHEMA CH7DATA TO ROLE AREA2_ROLE;
GRANT SELECT ON AreaFiltering TO ROLE AREA2_ROLE;
GRANT SELECT ON v_ratings_summary TO ROLE AREA2_ROLE;

We can once again switch back to Adam’s user account and confirm that we can use
the AREA2 role to view the data associated with AREA2:

USE ROLE AREA2_ROLE;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
SELECT * FROM v_ratings_summary;

While it is possible for Adam to use the two area roles to view the data in the secure
view, it would be better if Adam could see at one time all the data that he should be
able to see. Fortunately, we have a way in Snowflake to make that happen. We’ll
replace the original secure view with a new secure view that allows for a multicondi‐
tion query. Be sure you are in the main Snowflake user account and run the following
statement.

We need to drop the secure view first:

USE ROLE SYSADMIN;
DROP VIEW v_ratings_summary;

Next, we will create a new secure view that uses the multicondition query:

USE ROLE SYSADMIN;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
CREATE SECURE VIEW v_ratings_summary AS
 SELECT emp_id, rating, dept_id, area
 FROM RATINGS
 WHERE area IN (SELECT area_id FROM AreaFiltering
 WHERE role_name IN
 (SELECT value FROM TABLE(flatten(input =>
 parse_json(CURRENT_AVAILABLE_ROLES())))));

Democratizing Data with Data Governance Controls | 255

And finally, we’ll give the necessary privileges to the roles:

GRANT SELECT ON AreaFiltering TO ROLE AREA1_ROLE;
GRANT SELECT ON v_ratings_summary TO ROLE AREA1_ROLE;
GRANT SELECT ON AreaFiltering TO ROLE AREA2_ROLE;
GRANT SELECT ON v_ratings_summary TO ROLE AREA2_ROLE;

Now for the interesting part! Go to Adam’s user account and see what happens if we
use either of the AREA roles:

USE ROLE AREA1_ROLE;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
SELECT * FROM v_ratings_summary;

Using either of the AREA roles, Adam will be able to see the combined results from
both the AREA1 and AREA2 query results (as shown in Figure 7-15).

Figure 7-15. Combined results from the AREA1 and AREA2 query results

Let’s see what happens if we use Adam’s other role to query the secure view:

USE ROLE HR_ROLE;
USE DATABASE DEMO7_DB;
USE SCHEMA CH7DATA;
SELECT * FROM v_ratings_summary;

Adam receives the message that the view does not exist, or he is not authorized. This
confirms for us that Adam can get full access to the results if he uses a role that has
access to the view. If, instead, Adam uses a role which does not have access to the
view, he will not be able to see any results.

External Tokenization
External tokenization functionality, which uses external functions, is available in the
Snowflake Standard Edition and above. If you want to integrate your tokenization
provider with Snowflake external tokenization, you’ll need to have Snowflake Enter‐
prise Edition or higher.

256 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

Secure Views and UDFs
It is a best practice to use secure views and secure UDFs instead of directly sharing
Snowflake tables if sensitive data exists in a database. In Chapter 3, we worked
through a market basket analysis example using a secure SQL UDF. Secure data shar‐
ing approaches are covered in detail in Chapter 10, where we will learn how to use a
mapping table to share data in a base table with many different accounts where we
want to share specific rows in the table with specific accounts.

We’ve previously been introduced to the PUBLIC schema available in all Snowflake
databases. It is a best practice to use a public schema for secure views and a private
schema for base tables.

Object Dependencies
The Snowflake object dependencies feature allows you to identify dependencies
among Snowflake objects and is frequently used for impact analysis, data integrity
assurance, and compliance purposes.

An object dependency is established when an existing object has to reference some
metadata on its behalf or for at least one other object. A dependency can be triggered
by an object’s name, its ID value, or both. One example of an object dependency is a
Snowflake external stage where the ID is used as a reference to the external storage
location.

It is important for data engineers to be aware of the object dependencies before mak‐
ing changes to Snowflake architecture. Before an engineer renames a table or drops a
table, for example, they could notify users of downstream views which are dependent
on those tables. In this way, the engineer could get the feedback necessary to assess
the impact of modifications before actually making changes.

Additionally, data analysts and data scientists can look upstream to see the lineage of
a view. Being able to do so now, with object dependencies functionality, gives them
the confidence that the view is backed by a trustworthy object source. Finally, the new
object dependencies feature is important for compliance officers and auditors who
need to be able to trace data from a given object to its original data source to meet
compliance and regulatory requirements.

Object dependencies appears as a view in the Snowflake Account Usage schema. A
Snowflake Account Administrator can query the OBJECT_DEPENDENCIES view
and the output can include the object name path, the referencing object name and
domain, along with the referenced object name and domain.

Snowflake’s object dependencies feature is one of the many comprehensive data gov‐
ernance–native features provided by Snowflake. This suite of features makes it easy to
efficiently know and protect your data. This is important because governing your data

Democratizing Data with Data Governance Controls | 257

is critical to ensure that your data is secure, trustworthy, and compliant with regula‐
tory requirements.

Code Cleanup
We can quickly and easily clean up our Snowflake org by dropping the Chapter 7
database and the new user we created:

USE ROLE ACCOUNTADMIN;
DROP DATABASE DEMO7_DB;
DROP USER ADAM;

Summary
In this chapter, information was provided to help you more effectively understand
your Snowflake data and to better protect it. We learned how classification and object
tagging help us understand what data exists in our Snowflake account, where it is
stored, and how it is accessible to different roles. We also learned how to manage net‐
work security policies and firewall access as well as how to monitor user activity with
Snowflake’s ACCOUNT_USAGE view. In addition, many ways to protect data were
presented: Time Travel, fail-safe, replication, failover/failback, data masking, row
access policies, external tokenization, and secure views and UDFs.

Better understanding what data you have in Snowflake and more effectively and effi‐
ciently protecting it not only reduces risk but decreases the time it takes to locate the
data, when needed. Reducing risk, saving time, and improving service levels ulti‐
mately results in lower overall costs and better performance. Chapter 8 will uncover
more techniques to help manage costs.

More specifically, in that chapter you’ll learn about tools and techniques to help man‐
age your Snowflake account costs. Some new tools discussed in the chapter are
resource monitors, to help control virtual warehouse costs and avoid unexpected
credit usage, and business intelligence dashboards to monitor Snowflake usage and
costs. In addition, you’ll discover that ACCOUNT_USAGE views and object tagging,
used in this chapter for security and protection reasons, are also tools that can be
used to help manage costs.

Knowledge Check
The following questions are based on the information contained in this chapter:

1. When should multifactor authentication be used and how do users enroll?
2. Is there a limit to the number of network policies that can exist?
3. What are some of the unique features of a root encryption key?

258 | Chapter 7: Implementing Data Governance, Account Security, and Data Protection and Recovery

4. Describe the different types of data masking and the main difference between
data masking policies and row access policies. What is the most important
restriction when using these two policies?

5. Can a Time Travel retention period be increased or reduced? If so, what happens
as a result?

6. Do object tags need to be enclosed in quotes, double quotes, or no quotes?
Explain. What are the two automatic data tagging features now offered by
Snowflake?

7. For what reason do we need to flatten query output? Describe how we used the
FLATTEN command in this chapter.

8. How are cloned objects handled in database replication?
9. What are the different ways we can use Time Travel to access historical data?

10. What are the associated costs to consider for Time Travel? What about for repli‐
cation and failover?

Answers to these questions are available in Appendix A.

Knowledge Check | 259

CHAPTER 8

Managing Snowflake Account Costs

Organizations create business plans and budgets using the most current and accurate
information possible. Knowing the amount to budget for an on-premises virtual
warehouse is relatively easy because, for the most part, the costs are fixed. A usage-
based cost approach, such as Snowflake’s current pricing model, may initially seem
intimidating. Indeed, understanding any usage-based cost model requires a clear
understanding in advance of how costs are computed and what guardrails can be
added to control for greater elasticity so that you don’t experience runaway costs.
Snowflake includes tools, such as resource monitors, which allow you to cap actual
costs based on your initial plan. Going beyond a basic understanding of usage-based
pricing and positioning your organization to take advantage of it can yield many pos‐
itive results.

One of the greatest benefits of usage-based pricing is that it provides you an opportu‐
nity to transparently see and understand how your organization is charged for storing
and using data. This often leads to changes that will immediately begin to lower costs.
Snowflake’s usage-based billing and Snowflake object tagging make it easy to assign
appropriate costs to the appropriate accounts or departments. This means there is
more cost accountability for each team and workload. With more accountability at a
granular level, there will likely be more consideration about how resources are con‐
sumed and, thus, more action will be taken to become more efficient.

Snowflake’s pricing model is straightforward, transparent, and easy to understand. In
addition to the many benefits that are possible with any cloud technology usage-
based cost approach, Snowflake has unique functionality which can result in
decreased costs. One example is zero-copy cloning, which offers the ability to dupli‐
cate an object without actually creating a physical copy. This means no storage costs
are assessed for the clone. Furthermore, Snowflake’s native functionality allows you to
set limits on your credit consumption costs. These Snowflake resource monitors can

261

be set to take actions such as notifying or suspending consumption. Additionally,
Snowflake offers a lot of usage data for companies to understand their costs, and this
makes customers on Snowflake more cost-effective.

When taking advantage of Snowflake’s usage-based cost approach features, considera‐
tion of software delivery operations should be made from the outset. Fortunately,
Snowflake has several ways to alleviate the unique challenges of database change
management and reduce software development costs.

Prep Work
Create a new worksheet titled Chapter8 Managing Costs. Refer to “Navigating Snow‐
sight Worksheets” on page 8 if you need help creating a new worksheet. To set
the worksheet context, make sure you are using the SYSADMIN role and the
COMPUTE_WH virtual warehouse.

Later in this chapter we’re going to create some Snowflake resource monitors.
Resource monitors help to monitor the usage of Snowflake virtual warehouses. To
prepare for the resource monitors section, we’ll need to create some Snowflake virtual
warehouses. A best practice is to use the SYSADMIN role to create the new virtual
warehouses:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE WAREHOUSE VW2_WH WITH WAREHOUSE_SIZE = MEDIUM
 AUTO_SUSPEND = 300 AUTO_RESUME = true, INITIALLY_SUSPENDED=true;
CREATE OR REPLACE WAREHOUSE VW3_WH WITH WAREHOUSE_SIZE = SMALL
 AUTO_SUSPEND = 300 AUTO_RESUME = true, INITIALLY_SUSPENDED=true;
CREATE OR REPLACE WAREHOUSE VW4_WH WITH WAREHOUSE_SIZE = MEDIUM
 AUTO_SUSPEND = 300 AUTO_RESUME = true, INITIALLY_SUSPENDED=true;
CREATE OR REPLACE WAREHOUSE VW5_WH WITH WAREHOUSE_SIZE = SMALL
 AUTO_SUSPEND = 300 AUTO_RESUME = true, INITIALLY_SUSPENDED=true;
CREATE OR REPLACE WAREHOUSE VW6_WH WITH WAREHOUSE_SIZE = MEDIUM
 AUTO_SUSPEND = 300 AUTO_RESUME = true, INITIALLY_SUSPENDED=true;

Snowflake Monthly Bill
Organizations can create and manage multiple Snowflake accounts. Each Snowflake
account incurs fees that are summarized in the organization’s monthly bill. Your total
Snowflake monthly bill includes three distinct charges per account: storage fees, data
transfer costs, and credits consumed. We’ll review each type of charge; you can also
follow along by looking in your Snowflake org to see your current charges.

Use the Home icon to navigate to the Main menu. Make sure your role is set to
ACCOUNTADMIN. Click Admin → Usage, as shown in Figure 8-1.

262 | Chapter 8: Managing Snowflake Account Costs

Figure 8-1. The Snowflake Account → Usage menu

In the Usage section, you’ll have the option to select All Usage Types, Compute,
Storage, or Data Transfer (as shown in Figure 8-2).

Figure 8-2. Account usage information

Snowflake Monthly Bill | 263

In this section, we’ll be focusing on billing at the account level. For account-level bill‐
ing, we’re going to start getting an understanding of storage fees and then review
transfer costs. Finally, we’ll take an in-depth look at Snowflake credits. The most cur‐
rent Snowflake service consumption table pricing is available on the Snowflake
website.

Storage Fees
Snowflake monthly storage fees are calculated based on the average terabytes used per
month, based on periodic snapshots of all data stored in an account. You’ll notice that
capacity pricing offers steep discounts for upfront payments.

Note that while storage pricing is a consideration of which region to select for your
Snowflake account, you’ll also want to consider which region could minimize latency
and give you access to any features you may require. It’s important to note that if you
decide later to move your data to a different region, data transfer costs will be
incurred.

Try to make more use of transient tables as they are not maintained
in the history tables, which in turn reduces the data storage costs
for history tables. More information about transient tables can be
found in Chapter 3.

Data Transfer Costs
Data transfer costs are assessed when data stored in Snowflake is transferred from
one region to another, within the same cloud platform, or when data is transferred
out of the cloud.

Snowflake does not charge data ingress fees. The data egress fees
you pay are a reimbursement to Snowflake coming from the three
cloud data providers applying data egress charges when data is
transferred.

Data egress charges apply only when unloading data from Snowflake, when external
functions are used, or when replicating data to a Snowflake account in a region or
cloud platform that is different from where your primary Snowflake account is
hosted.

264 | Chapter 8: Managing Snowflake Account Costs

https://oreil.ly/8l8N7
https://oreil.ly/8l8N7

Compute Credits Consumed
The consumption of resources on Snowflake is paid for with Snowflake credits, which
are a unit of measure. That measure is the equivalent of one hour of usage by a single
compute node.

While one credit is equivalent to one hour, the actual billing for
virtual warehouses is on a per-second basis with a one-minute
minimum.

You can purchase credits as you go, on demand. The price of on-demand credits is
dependent on which cloud provider, region, and service edition is selected. Alterna‐
tively, you can prepurchase credits at a negotiated discounted rate.

A Snowflake credit is consumed only when you use resources. Snowflake resources
are used, or consumed, in one of three ways: running virtual warehouses, when the
cloud services layer is performing work, or using serverless features such as auto‐
matic clustering or maintaining materialized views.

The credits consumed for Snowflake running virtual warehouses are based on the
size of the warehouse. For example, the credit consumption for an X-Small virtual
warehouse is billed at one Snowflake credit per hour of usage.

Optimally managing the operational status of your compute clus‐
ters with features such as auto-suspension and auto-resume can
help manage the Snowflake consumption credits that are billed.
More information about creating and managing virtual warehouses
can be found in Chapter 2.

The credits consumed for the cloud services layer are free for up to 10% of the con‐
sumed daily virtual warehouse compute. Anything above the 10% daily threshold for
cloud services layer consumption is billed and appears in your Snowflake account as a
charge to the CLOUD_SERVICES_ONLY virtual warehouse.

The credits consumed for using serverless features are billed at a distinctly different
rate, depending on the serverless feature.

Snowflake’s many native features, such as micro-partitions and automatic compute
clustering, lessen the need for credit consumption, which in turn decreases overall
costs. Snowflake’s highly elastic compute and per-second billing model also helps
keep credit consumption charges low. These features come to you from Snowflake
out of the box; however, there are also things you can do to take a more proactive role
in understanding and managing your Snowflake consumption credit usage.

Snowflake Monthly Bill | 265

Creating Resource Monitors to Manage Virtual Warehouse
Usage and Reduce Costs
Snowflake’s usage-based pricing is easy to understand. It’s straightforward, and you
only pay for what you use. One goal, then, would be to monitor the amount you use.

A Snowflake virtual warehouse consumes credits when it’s in use. The number of
Snowflake credits consumed by a virtual warehouse depends on two factors: the size
of the virtual warehouse and how long it runs.

We learned in Chapter 2 that virtual warehouse sizes increase by a factor of two up to
the 4X-Large size. As such, an X-Small virtual warehouse consumes one Snowflake
credit per hour whereas a 4X-Large virtual warehouse consumes 128 credits for each
hour the virtual warehouse runs.

Virtual warehouse consumption is billed on a per-second basis,
with a 60-second minimum.

Monitoring credit consumption will help prevent unexpected credit usage, and as
such, provides a means with which to control compute costs. Snowflake provides the
necessary tools, known as resource monitors, to help automate the task of monitoring
credit consumption and to trigger actions based on preset thresholds.

A resource monitor is a first-class Snowflake object that can be applied to both user-
managed virtual warehouses and virtual warehouses used by cloud services.

A Snowflake resource monitor has the following properties:

• Credit Quota (Number of Snowflake credits)
• Credit Usage (Total Snowflake credits consumed during each billing period)

— Monitor Level: account or specific virtual warehouse(s)
— Schedule

— Frequency: daily, weekly, monthly, yearly, never
— Start and End, although it is uncommon to have an end value

266 | Chapter 8: Managing Snowflake Account Costs

• Triggers (Actions)
— Notify
— Notify and Suspend
— Notify and Suspend Immediately

Conceptually, resource monitor planning looks like what is shown in Figure 8-3.

Figure 8-3. Resource monitor planning

The recommended steps for resource monitor planning are as follows:

1. Determine the overall account level credit budget that will be used to establish an
account-level resource monitor. In Figure 8-3, this is the Total X value.

2. Define priority virtual warehouses and assign a portion of the credit budget,
referred to as the Reserved Portion of X in Figure 8-3, for all priority virtual
warehouses. Priority virtual warehouses are those virtual warehouses that you
would not want to be suspended.

3. Assign the remaining portion of the budget to all other nonpriority virtual ware‐
houses by way of creating virtual warehouse–level resource monitor(s). Doing so
will limit their individual credit usage to ensure there is enough budget reserved
for the priority virtual warehouses. Note that there isn’t a limit to the number of
resource monitors you can create. If you want, you can assign a resource monitor
to each individual virtual warehouse.

Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs | 267

4. Determine the schedule, if you are not going to use default settings.
5. Decide on the actions for each resource monitor. Most likely, you’ll want to

establish the account-level resource monitor with a “Notify-only” action so that
the priority virtual warehouses do not get suspended.

Resource Monitor Credit Quota
An account-level resource monitor credit quota, stated in terms of Snowflake credits,
is based on the entire amount of cloud service usage. However, the warehouse-level
credit quota does not consider the daily 10% adjustment for cloud services. Only an
account-level resource monitor can monitor credit usage for virtual warehouses that
provide cloud services. Resource monitors, at the virtual warehouse level, can only be
created for user-created and user-managed virtual warehouses.

When a credit quota threshold is reached for a virtual warehouse
whose resource monitor action is set to Suspend Immediately,
additional Snowflake credits might still be consumed. Thus, you
might want to consider utilizing buffers in quota thresholds for
trigger actions if you want to strictly enforce your quotes. For
example, set your threshold for 95% instead of 100% to ensure that
your credit usage won’t exceed your actual quota.

Resource Monitor Credit Usage
As stated, resource monitors can be created at the account level or the virtual ware‐
house level.

Account-level resource monitors only control the credit usage of
virtual warehouses created in your account; not Snowflake-
provided virtual warehouses for serverless features such as those
used for Snowpipe, automatic clustering, or materialized views.

Snowflake resource monitors can be created to impose limits on the number of
Snowflake credits that are consumed, either for a specified interval or for a date
range.

For a default schedule, a resource monitor starts tracking the assigned virtual ware‐
house as soon as it is created, and the credit usage tracking resets to 0 at the begin‐
ning of each calendar month.

Customizing the schedule so that the resource monitor resets at a specific interval,
such as daily or weekly, requires that you select both a frequency and a start time.
Selecting an end time is optional.

268 | Chapter 8: Managing Snowflake Account Costs

Resource Monitor Notifications and Other Actions
Resource monitors can be created to trigger specific actions, such as sending alert
notifications and/or suspending a virtual warehouse.

There is a limit of five Notify actions, one Suspend action, and one
Suspend Immediately action for each resource monitor.

By default, resource monitor notifications are not enabled. ACCOUNTADMIN role
users can receive notifications only if they provide a verified valid email address and
enable notifications.

To enable notifications via the web interface, make sure your role is set to
ACCOUNTADMIN. You can select Preferences and then Notifications. You’ll need to
choose your notification preference as Web, Email, or All. If you select Email or All,
you’ll be prompted to enter a valid email address.

The difference between the Suspend action and the Suspend Immediately action has
to do with whether statements being executed by the virtual warehouse(s) will be
allowed to complete or not.

When a trigger causes a virtual warehouse to suspend, the suspended virtual ware‐
house cannot be resumed until one of the following conditions occurs:

• The resource monitor is no longer assigned to the virtual warehouse or is
dropped.

• Either the credit quota for the monitor or the credit threshold for the trigger is
increased.

• A new monthly billing cycle starts.

Resource Monitor Rules for Assignments
Resource monitor rules for assignments can be summarized as follows:

• An account-level resource monitor can be set at the account level to control
credit usage for all virtual warehouses in an account; however, there can be only
one account-level resource monitor.

• There is a one-to-many relationship between virtual warehouses and virtual
warehouse–level resource monitors. Each virtual warehouse can be assigned to
only one virtual warehouse–level resource monitor; one resource monitor can be
assigned to one or more virtual warehouses.

Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs | 269

• The credit quota and credit usage properties are both required to create a
resource monitor. If a schedule is not explicitly stated, the default schedule
applies. By default, the credit quota resets at the beginning of each calendar
month. Setting triggers is optional.

• Before it can perform monitoring actions, a resource monitor must be assigned
to a virtual warehouse or account after it is created.

Let’s use what we’ve learned thus far about resource monitors to create a resource
monitor plan (as shown in Figure 8-4) for a large enterprise with about 10,000
employees. We’ll implement the resource monitor plan in the next section.

Figure 8-4. Example of an implementation plan for resource monitoring

Assume we want to limit our credit consumption to 5,000 credits. We’ll need to create
an account-level resource monitor in which the credit quota equals 5,000, and we’ll
want to be notified when that credit quota has been reached. We’ll elect to use the
default schedule.

Out of the six virtual warehouses in our account, we’ve identified two priority virtual
warehouses for which we want to allocate half our credit budget. This means 2,500
credits are being reserved from the 5,000 total credits. The other four virtual ware‐
houses will need to split the remaining 2,500 credits, and we’ll create virtual ware‐
house–level resource monitors to notify and suspend whenever the credit quota has

270 | Chapter 8: Managing Snowflake Account Costs

been reached. Additionally, we’ve decided to be notified when the second of our pri‐
ority virtual warehouses reaches a credit quota of 1,500.

If applicable, a virtual warehouse will be suspended if either the account-level
resource monitor or the virtual warehouse–level resource monitor reaches its thresh‐
old and there are suspend actions associated with the resource monitors. In our
example, though, we have established a “Notify-only” action for the account-level
resource monitor. We’ve also created a resource monitor associated with virtual ware‐
house #2, one of the priority virtual warehouses, that has a “Notify-only” action.
Therefore, the first two virtual warehouses will never suspend as a result of either of
the resource monitors reaching its threshold. The remaining virtual warehouses will
suspend if/when their associated resource monitor reaches its threshold.

Virtual warehouses that share the same resource monitor also share
the same thresholds. An example would be virtual warehouses #3
and #4 in Figure 8-4. This could result in the credit usage for one
virtual warehouse impacting the other assigned virtual ware‐
house(s).

DDL Commands for Creating and Managing Resource Monitors
By default, Snowflake resource monitors can only be created, viewed, and maintained
by the ACCOUNTADMIN role. Although the creation of Snowflake resource moni‐
tors is exclusive to the ACCOUNTADMIN role, a Snowflake account administrator
can enable other roles to view and modify resource monitors.

If you’re using a role other than the ACCOUNTADMIN role, that role will need to
have two privileges in order for you to view and edit resource monitors:

• MODIFY
• MONITOR

Snowflake resource monitors can be created in the web interface or by using SQL in a
worksheet. For our examples in this chapter, we’ll be using the SQL option to create
and manage resource monitors.

Snowflake Data Definition Language (DDL) commands for creating and managing
resource monitors include the following:

CREATE RESOURCE MONITOR

Assigns virtual warehouse(s) to a resource monitor

ALTER RESOURCE MONITOR

Modifies an existing resource monitor

Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs | 271

SHOW RESOURCE MONITOR

Views an existing resource monitor

DROP RESOURCE MONITOR

Deletes an existing resource monitor

To create a resource monitor, you need to assign at least one virtual warehouse to the
resource monitor, unless you are setting the monitor at the account level. You are
required to assign the virtual warehouse at the time of creation if you create the
resource monitor in the web interface. If you use SQL to create the resource monitor,
you’ll have to create the resource monitor first and then use the ALTER WAREHOUSE
command to assign one or more virtual warehouses to the resource monitor.

Let’s first create an account-level resource monitor. Navigate back to the Chapter8
Managing Costs worksheet and execute these statements:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR1_RM WITH CREDIT_QUOTA = 5000
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 110 percent do notify
 on 125 percent do notify;

You’ll notice that we created five different notify actions and no suspend actions, fol‐
lowing the plan we created earlier. After we create the resource monitor, we’ll need to
assign it to our Snowflake account:

USE ROLE ACCOUNTADMIN;
ALTER ACCOUNT SET RESOURCE_MONITOR = MONITOR1_RM;

Next, we’ll create a virtual warehouse–level monitor. We want to create the resource
monitor for one of our priority virtual warehouses, and we’ll use the same notify
actions for the priority virtual warehouse as we did for the account-level resource
monitor. After we create the resource monitor, we’ll assign it to our priority virtual
warehouse:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR5_RM WITH CREDIT_QUOTA = 1500
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 110 percent do notify
 on 125 percent do notify;
ALTER WAREHOUSE VW2_WH SET RESOURCE_MONITOR = MONITOR5_RM;

Now let’s use the SHOW RESOURCE MONITORS command to see the resource monitors
we’ve created thus far:

USE ROLE ACCOUNTADMIN;
SHOW RESOURCE MONITORS;

272 | Chapter 8: Managing Snowflake Account Costs

In Figure 8-5, you’ll notice that we have one account-level and one virtual ware‐
house–level resource monitor. Both of them have a monthly frequency stated, as
expected, since we didn’t explicitly state a different schedule.

Figure 8-5. Results after creating two resource monitors

We’re ready to create another virtual warehouse–level resource monitor:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR2_RM WITH CREDIT_QUOTA = 500
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 100 percent do suspend
 on 110 percent do notify
 on 110 percent do suspend_immediate;
ALTER WAREHOUSE VW3_WH SET RESOURCE_MONITOR = MONITOR2_RM;

Everything is good thus far. Now let’s purposely make a mistake to see what happens.
We’ll create a resource monitor and assign it to a virtual warehouse, and then we’ll
create another resource monitor and assign it to the same virtual warehouse. We
know that a virtual warehouse can only be assigned to one resource monitor, so we
expect that our second attempt at assigning a resource monitor to the same virtual
warehouse will result in either a failed command or the second resource monitor
assignment overriding the first assignment. Let’s see what happens:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR6_RM WITH CREDIT_QUOTA = 500
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 100 percent do suspend
 on 110 percent do notify
 on 110 percent do suspend_immediate;
ALTER WAREHOUSE VW6_WH SET RESOURCE_MONITOR = MONITOR6_RM;

You’ll notice from our planning diagram that we don’t have a sixth resource monitor
planned, so it was a mistake to create the sixth resource monitor. No worries, though.
We’ll delete the unneeded resource monitor in a little while. For now, let’s create the
correct resource monitor that should be assigned to the virtual warehouse:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR4_RM WITH CREDIT_QUOTA = 500
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 100 percent do suspend

Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs | 273

 on 110 percent do notify
 on 110 percent do suspend_immediate;
ALTER WAREHOUSE VW6_WH SET RESOURCE_MONITOR = MONITOR4_RM;

The statement was executed successfully. So, let’s run a SHOW RESOURCE MONITORS
command and see the results, as shown in Figure 8-6:

USE ROLE ACCOUNTADMIN;
SHOW RESOURCE MONITORS;

Figure 8-6. Results of the SHOW RESOURCE MONITORS command

We can see that the sixth resource monitor appears to have nullified when we
assigned the fourth resource monitor to the virtual warehouse. We can confirm that
by using the SHOW WAREHOUSES command:

USE ROLE ACCOUNTADMIN;
SHOW WAREHOUSES;

Figure 8-7 shows the results of our statement. Just as we suspected, assigning the
resource monitor to the virtual warehouse overrode the previous assignment.

Figure 8-7. Results of the SHOW WAREHOUSES command

We can now get rid of the resource monitor we created in error:

DROP RESOURCE MONITOR MONITOR6_RM;

Let’s create the last resource monitor from our planning diagram. We’ll assign the
resource monitor to two virtual warehouses:

274 | Chapter 8: Managing Snowflake Account Costs

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE RESOURCE MONITOR MONITOR3_RM WITH CREDIT_QUOTA = 1500
 TRIGGERS on 50 percent do notify
 on 75 percent do notify
 on 100 percent do notify
 on 100 percent do suspend
 on 110 percent do notify
 on 110 percent do suspend_immediate;
ALTER WAREHOUSE VW4_WH SET RESOURCE_MONITOR = MONITOR3_RM;
ALTER WAREHOUSE VW5_WH SET RESOURCE_MONITOR = MONITOR3_RM;

You can once again take a look at all the resource monitors in your Snowflake
account:

USE ROLE ACCOUNTADMIN;
SHOW RESOURCE MONITORS;

You’ll notice that the dropped resource monitor does not appear in the list of
resource monitors. At this point, we can run another SHOW WAREHOUSES statement.
We can also take it a step further to get a list of any of our virtual warehouses that
have not been assigned to a virtual warehouse–level resource monitor. Note, however,
that in order for the following statement to work, you’ll need to have just run the
SHOW WAREHOUSES statement most recently:

SELECT "name", "size"
FROM TABLE (RESULT_SCAN(LAST_QUERY_ID()))
WHERE "resource_monitor" = 'null';

We can see that COMPUTE_WH, the virtual warehouse that came with our Snow‐
flake account and what we are referring to as virtual warehouse #1, has not been
assigned to a resource monitor (as shown in Figure 8-8). If we review our planning
diagram, we see that is as we would expect.

Figure 8-8. Result showing that the virtual warehouse was not assigned to a resource
monitor

We’ve created and managed our resource monitors using SQL in a worksheet. Alter‐
natively, we could have created and managed our resources in the web UI. We’d need
to make sure we are using the ACCOUNTADMIN role. Then we would be able to
view the resource monitors we just finished creating, and we’d be able to create any
new resources from the web UI, as shown in Figure 8-9.

Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs | 275

Figure 8-9. The Snowflake web UI showing resource monitors for the
ACCOUNTADMIN role

One final note about resource monitors is that for Snowflake provider accounts that
have created reader accounts, there exists a RESOURCE_MONITORS view which
can be used to query resource monitor usage of the reader account. You can find
more information about Snowflake provider and reader accounts in Chapter 10.

Using Object Tagging for Cost Centers
Object tagging was introduced in Chapter 7 when we created tags for data gover‐
nance purposes. In the examples from that chapter, we learned that Snowflake object
tags can be assigned to tables, views, or columns to help keep track of the type of data
being stored and whether that data included sensitive information.

In addition to using object tags for security reasons, Snowflake tags can be created for
objects to help track resource usage. For example, cost center tags could have values
such as accounting, finance, marketing, and engineering. In that case, cost center
object tagging would allow for more granular insight, at a department level. Addition‐
ally, tags can be used for tracking and analyzing resource usage by specific short-term
or long-term projects.

Querying the ACCOUNT_USAGE View
To get more granular detail about virtual warehouse costs, we can leverage queries on
the Snowflake ACCOUNT_USAGE view.

276 | Chapter 8: Managing Snowflake Account Costs

Access to the ACCOUNT_USAGE view is given only to the
ACCOUNTADMIN role by default. Thus, we will use that role in
our examples for querying the view.

This query provides the individual details of cost, based on virtual warehouse start
times and assuming $3.00 as the credit price:

USE ROLE ACCOUNTADMIN;
SET CREDIT_PRICE = 3.00;
USE DATABASE SNOWFLAKE;
USE SCHEMA ACCOUNT_USAGE;
SELECT WAREHOUSE_NAME, START_TIME, END_TIME, CREDITS_USED,
 ($CREDIT_PRICE*CREDITS_USED) AS DOLLARS_USED
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
ORDER BY START_TIME DESC;

This query summarizes the costs of each virtual warehouse for the past 30 days,
assuming $3.00 as the credit price as set in the previous query:

SELECT WAREHOUSE_NAME,SUM(CREDITS_USED_COMPUTE)
 AS CREDITS_USED_COMPUTE_30DAYS,
 ($CREDIT_PRICE*CREDITS_USED_COMPUTE_30DAYS) AS DOLLARS_USED_30DAYS
FROM ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE START_TIME >= DATEADD(DAY, -30, CURRENT_TIMESTAMP())
GROUP BY 1
ORDER BY 2 DESC;

The previous code samples provided an example of how you can query the
ACCOUNT_USAGE view to monitor virtual warehouse metering for compute ware‐
house credits consumed. Similar queries can be created to monitor compute credits
consumed from Snowpipe, clustering, materialized views, search optimization, and
replication. There are also some good code examples in the “Snowflake Resource
Optimization: Billing Metrics Quickstart” in the Snowflake tutorials.

Using BI Partner Dashboards to Monitor Snowflake Usage
and Costs
If you have access to the Snowflake business intelligence (BI) and analytics partners
tools, you’ll be able to access one or more plug-and-play dashboards to help you
monitor your Snowflake usage. Here is a list of some of the prebuilt dashboards that
are currently available:

Using BI Partner Dashboards to Monitor Snowflake Usage and Costs | 277

https://oreil.ly/YVSty

Tableau Dashboards
Compute cost overview

Sigma
Compute cost, storage cost, and Snowflake cost (reader accounts)

Looker
Snowflake cost and usage analysis

Microsoft Power BI
Snowflake usage report

Qlik
Snowflake usage dashboard

Snowflake Agile Software Delivery
Managing Snowflake costs is not just limited to reviewing the Snowflake monthly bill.
Current Snowflake charges are the result of past decisions, including architecture
choices, what data to store, and how to construct certain queries to access the data.
But organizations and their needs are always changing. Thus, it is expected that an
organization’s Snowflake environment will change as well.

There are costs associated with changing any software, including making changes to
your Snowflake software as a service (SaaS) account environment. It takes employees
time to architect and build new software and/or enhance existing software. Any dis‐
ruptions to the business also have a cost associated with them. Minimizing software
development costs and disruption to the business while working as quickly as possi‐
ble to make improvements requires an established set of practices and an agile soft‐
ware delivery mindset.

DevOps is a term used to describe the set of practices that are established with the
goals of high software quality and helping software developers and IT operations
shorten the systems development lifecycle and provide continuous delivery. Database
change management (DCM) is a subset of DevOps that specifically focuses on the
changes made to databases. DCM has unique challenges, but the good news is that
Snowflake features, such as zero-copy cloning and Time Travel, make it considerably
easier for teams to use an agile approach for DevOps.

Why Do We Need DevOps?
It is crucial that an audit trail of software and application changes be maintained,
because of regulatory and compliance requirements applicable to an organization’s
software systems and data. For many reasons, it is also important that any bug
fixes be resolved quickly. New features and requested enhancements should also
be released frequently to give organizations a competitive advantage in today’s

278 | Chapter 8: Managing Snowflake Account Costs

fast-paced environment, especially given the vast number of powerful software appli‐
cation development tools available. Achieving these things requires careful considera‐
tion. And most importantly, it requires automation.

Automation of software development, testing, and release is the most likely way to
innovate more quickly, deliver improved applications in greater numbers, adhere to
regulatory requirements, and obtain greater return on investment. It is the objective
of DevOps to minimize the manual aspects of software development, testing, and
deployment.

Continuous Data Integration, Continuous Delivery, and
Continuous Deployment
Achieving continuous integration and continuous delivery (CI/CD) through the
ongoing automation of development, testing, and deployment occurs in a connected
way through a CI/CD pipeline (as illustrated in Figure 8-10).

Figure 8-10. The CI/CD pipeline

In general terms, continuous integration is a DevOps software development practice
whereby developers merge their code regularly into a central repository. Continuous
delivery occurs when application changes are automatically tested and uploaded to a
source control repository, such as GitHub, where the operations team can then
deploy them to production. Continuous deployment automates the next stage in the
pipeline by automatically releasing changes from the repository to production.

What the terms continuous integration, continuous delivery, and continuous deploy‐
ment mean for each specific organization is dependent upon how much automation
has been built into the organization’s CI/CD pipeline.

Snowflake Agile Software Delivery | 279

What Is Database Change Management?
Database DevOps is often referred to as database change management (DCM). Data‐
base DevOps, especially for virtual warehouses, have some unique challenges as com‐
pared to the difficulties of DevOps for software applications. Snowflake’s unique
architecture solves for many of these problems. Specific DCM tools are also available
which work easily with Snowflake.

Overcoming the unique challenges of database changes
Making changes to databases presents its own unique set of challenges, especially for
traditional on-premises databases, which have to deal with the problems of downtime
for hardware upgrades and with explicitly having to back up databases beforehand so
that they will be available for restoration, if needed. In the event a rollback is needed,
an operations freeze with no work happening during the restoration process is
required. In addition, there is the problem of drift whereby developers could be
working on a different version of the database than the version in production, and
there is also the problem of load balancing.

With Snowflake, these top challenges no longer exist for users. Hardware fixes and
upgrades are handled by the Snowflake team, with no impact on users. For rollback
and version control, Snowflake has Time Travel and fail-safe, which eliminate the
need to make traditional data backups. Time Travel and fail-safe are part of Snow‐
flake’s continuous data protection lifecycle. To alleviate the problem of drift,
Snowflake users can utilize zero-copy cloning, described in the previous section, to
simplify the loading and seeding of databases in different environments.

Given all this, and because most everything in Snowflake can be automated via SQL,
the DCM process could be handled quite simply in Snowflake by creating a light‐
weight DevOps framework for small deployments. For a more heavyweight Snow‐
flake DevOps framework, however, there are DCM tools available.

DCM tools for a heavyweight Snowflake DevOps framework
DCM refers to a set of processes and tools used to manage objects within a database.
The most important tool to consider for Snowflake DCM is a source control
repository and pipeline tool. Examples of hosted options for DCM include AWS
CodeCommit and CodePipeline, Azure DevOps, GitHub Actions, and Bitbucket.

In addition to a source control repository and pipeline tool, you’ll need database
migration tools to deploy the changes to the database. Several DCM tools can be used
with Snowflake. Some are primarily SaaS tools or data transformation tools, and
many of them are community developed. Examples of tools that can be used as a
database migration tool include Sqitch, Flyway, snowchange, schemachange,
SqlDBM, Jenkins, and dbt.

280 | Chapter 8: Managing Snowflake Account Costs

Lastly, a testing framework such as JUnit, pytest, or DbFit is needed.

Using DCM tools that automate the data integration and delivery pipeline can pro‐
vide all the DevOps benefits previously mentioned and enable you to achieve contin‐
uous delivery and deployment.

How Zero-Copy Cloning Can Be Used to Support Dev/Test
Environments
Zero-copy cloning was introduced in Chapter 2. Because zero-copy cloning is a
metadata-only operation, there is no additional storage charge for Snowflake cloned
objects unless and until changes are made.

Zero-copy clones are frequently used to support working in-development and test
environments as part of the development lifecycle. I am going to demonstrate con‐
cepts in this section that show how zero-copy cloning can be used in Snowflake agile
development. Changes to a Snowflake production environment can take the form of
new development. Creating a new table is one example. Changes could also be in the
form of enhancements to an existing object in production. We’ll look in depth at how
zero-copy cloning can be used for new development.

In our example, we’ll use some role-based access control (RBAC) best practices that
we learned about in Chapter 5. However, in a real-world setting, you’d likely need to
have different roles and privileges to set up to properly manage the CI/CD process.
The purpose in this chapter, as it relates to role-based access, is to give you a little
more hands-on practice.

In our example, let’s assume that Table A already exists in our production environ‐
ment, and we want to add an additional table in production. What we’ll do first is
create a clone of the production database in which we can develop. That is where we’ll
create the new table. We’ll also want to create a clone of the development database in
which we can perform our testing, or quality assurance activities. Figure 8-11 illus‐
trates our first steps.

Figure 8-11. Agile development using zero-copy cloning

Snowflake Agile Software Delivery | 281

Let’s first create some specific roles for our production, development, and QA envi‐
ronments. As a best practice, we’ll assign the new custom roles back to the
SYSADMIN role:

USE ROLE SECURITYADMIN;
CREATE OR REPLACE ROLE PROD_ADMIN;
CREATE OR REPLACE ROLE DEV_ADMIN;
CREATE OR REPLACE ROLE QA_ADMIN;
GRANT ROLE PROD_ADMIN TO ROLE SYSADMIN;
GRANT ROLE DEV_ADMIN TO ROLE SYSADMIN;
GRANT ROLE QA_ADMIN TO ROLE SYSADMIN;

Next, we’ll want to give some privileges to the new roles so that they can create data‐
bases on the account:

USE ROLE SYSADMIN;
GRANT CREATE DATABASE ON ACCOUNT TO ROLE PROD_ADMIN;
GRANT CREATE DATABASE ON ACCOUNT TO ROLE DEV_ADMIN;
GRANT CREATE DATABASE ON ACCOUNT TO ROLE QA_ADMIN;

Let’s assume that we want to assign a separate virtual warehouse to each administra‐
tor. We can rename three of the virtual warehouses that we created earlier:

USE ROLE SYSADMIN;
ALTER WAREHOUSE IF EXISTS VW2_WH RENAME TO WH_PROD;
ALTER WAREHOUSE IF EXISTS VW3_WH RENAME TO WH_DEV;
ALTER WAREHOUSE IF EXISTS VW4_WH RENAME TO WH_QA;
SHOW WAREHOUSES;

You can see from the SHOW command that the virtual warehouses have now been
renamed. Let’s grant usage for these virtual warehouses to each associated role:

USE ROLE ACCOUNTADMIN;
USE WAREHOUSE COMPUTE_WH;
GRANT USAGE ON WAREHOUSE WH_PROD TO ROLE PROD_ADMIN;
GRANT USAGE ON WAREHOUSE WH_DEV TO ROLE DEV_ADMIN;
GRANT USAGE ON WAREHOUSE WH_QA TO ROLE QA_ADMIN;

We need to create a production environment database, schema, and table. We’ll also
grant usage on the database to the development administrator:

USE ROLE PROD_ADMIN; USE WAREHOUSE WH_PROD;
CREATE OR REPLACE DATABASE PROD_DB;
CREATE OR REPLACE SCHEMA CH8_SCHEMA;
CREATE OR REPLACE TABLE TABLE_A
 (Customer_Account int, Amount int, transaction_ts timestamp);
GRANT USAGE ON DATABASE PROD_DB TO ROLE DEV_ADMIN;

Now the development administrator can create a clone of the production database
and grant usage of the cloned database to the QA administrator role:

USE ROLE DEV_ADMIN;
USE WAREHOUSE WH_DEV;

282 | Chapter 8: Managing Snowflake Account Costs

CREATE OR REPLACE DATABASE DEV_DB CLONE PROD_DB;
GRANT USAGE ON DATABASE DEV_DB TO ROLE QA_ADMIN;

The QA administrator now creates a clone of the development database and grants
usage to the production administrator role:

USE ROLE QA_ADMIN;
USE WAREHOUSE WH_QA;
CREATE OR REPLACE DATABASE QA_DB CLONE DEV_DB;
GRANT USAGE ON DATABASE QA_DB TO ROLE PROD_ADMIN;

Now we’re ready for the development work. Back in the development database, we
use the DEV_ADMIN role to create a new development schema and a new table:

USE ROLE DEV_ADMIN; USE WAREHOUSE WH_DEV; USE DATABASE DEV_DB;
CREATE OR REPLACE SCHEMA DEVELOPMENT;
CREATE OR REPLACE TABLE TABLE_B
 (Vendor_Account int, Amount int, transaction_ts timestamp);
GRANT USAGE ON SCHEMA DEVELOPMENT TO ROLE QA_ADMIN;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA DEVELOPMENT TO ROLE QA_ADMIN;

Once development is done, the QA team can do their testing by creating a new table
in the testing environment from the newly created table in the development
environment:

USE ROLE QA_ADMIN; USE WAREHOUSE WH_QA; USE DATABASE QA_DB;
CREATE OR REPLACE SCHEMA TEST;
CREATE OR REPLACE TABLE QA_DB.TEST.TABLE_B
 AS SELECT * FROM DEV_DB.DEVELOPMENT.TABLE_B;
GRANT USAGE ON SCHEMA TEST TO ROLE PROD_ADMIN;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA TEST TO ROLE PROD_ADMIN;

The new table in the QA environment could be created using either
the CREATE TABLE AS SELECT (also known as CTAS) command, or
the CREATE TABLE LIKE command. The difference between the two
is that the latter creates an empty copy of the existing table whereas
the former creates a populated table:

When the QA team has completed their testing, the production administrator can
then copy the table into production:

USE ROLE PROD_ADMIN;
USE WAREHOUSE WH_PROD;
USE DATABASE PROD_DB;
USE SCHEMA CH8_SCHEMA;
CREATE OR REPLACE TABLE TABLE_B AS SELECT * FROM QA_DB.TEST.TABLE_B;

If you’d like to get a complete idea of what was created, you can use the SYSADMIN
or the ACCOUNTADMIN role. With that role, you can see what was created in the
development, production, and testing environments (as shown in Figure 8-12).

Snowflake Agile Software Delivery | 283

Figure 8-12. Results of creating the databases, schemas, and tables in this section

For development that involves enhancing an existing object, you’ll most likely want to
use a combination of zero-copy cloning and Time Travel. You can clone the produc‐
tion database as it was a certain number of days prior, make the enhancements to the
tables using scripts, and then rerun the data loads for the prior number of days.
When you compare the results, the only difference between the two should be the
enhancements.

If you’d like to see how much compute you used for the exercises in this example, you
can rerun the code we saw earlier in the chapter which summarized the cost of each
virtual warehouse for the past 30 days.

Code Cleanup
We can clean up our Snowflake environment in just a few quick steps. We can drop
our databases and the new custom roles we created:

USE ROLE ACCOUNTADMIN;
DROP DATABASE DEV_DB; DROP DATABASE PROD_DB; DROP DATABASE QA_DB;
DROP ROLE PROD_ADMIN; DROP ROLE DEV_ADMIN; DROP ROLE QA_ADMIN;

Let’s drop our resource monitors next:

DROP RESOURCE MONITOR MONITOR1_RM; DROP RESOURCE MONITOR MONITOR2_RM;
DROP RESOURCE MONITOR MONITOR3_RM; DROP RESOURCE MONITOR MONITOR4_RM;
DROP RESOURCE MONITOR MONITOR5_RM;

And finally, let’s drop our virtual warehouses. Note that we will drop the virtual ware‐
houses we created but will not attempt to drop the COMPUTE_WH warehouse:

DROP WAREHOUSE WH_PROD; DROP WAREHOUSE WH_DEV; DROP WAREHOUSE WH_QA;
DROP WAREHOUSE VW5_WH; DROP WAREHOUSE VW6_WH;

Summary
Throughout this chapter, we focused on Snowflake costs and how to manage them.
Managing costs can be achieved by understanding Snowflake’s usage-based pricing,
by using Snowflake resource monitors and object tagging for cost centers, by query‐
ing the ACCOUNT_USAGE view, and by using BI partner dashboards. Usage-based

284 | Chapter 8: Managing Snowflake Account Costs

pricing is shifting how teams budget and plan. With on prem, they couldn’t scale past
their original plan without another planning cycle. On Snowflake, there is a lot more
elasticity and, thus, it is simple to scale without the friction of adding more hardware.

We’ve also considered the cost of making changes in a Snowflake environment. Man‐
aging costs is important. Just as important as managing costs is having a solution that
works well. Effective and efficient Snowflake performance is critical for success. In
the next chapter, we’ll learn about Snowflake’s unique micro-partitions, how to take
advantage of clustering, and how to improve query performance.

Knowledge Check
The following questions are based on the information contained in this chapter:

1. What are the three major categories of a Snowflake monthly bill?
2. The region selected is an important factor in determining storage costs. Other

than storage cost considerations, what other things are important to think about
when selecting a region?

3. The price of on-demand Snowflake credits is dependent on what three things?
4. What are the three properties of a Snowflake resource monitor? Which property

is required to be included in the SQL statement in order to create a resource
monitor?

5. Is there a limit to the number of Snowflake resource monitors that can be
created?

6. Is there a limit to the number of Snowflake resource monitor actions?
7. What are some of the unique challenges associated with database changes?
8. What are some unique characteristics of Snowflake’s zero-copy cloning?
9. What is the difference between the CREATE TABLE AS SELECT (also known as

CTAS) command and the CREATE TABLE LIKE command?
10. What happens if you assign a virtual warehouse resource monitor to a virtual

warehouse that is already assigned to a resource monitor?

Answers to these questions are available in Appendix A.

Knowledge Check | 285

CHAPTER 9

Analyzing and Improving
Snowflake Query Performance

Snowflake was built for the cloud from the ground. Further, it was built to abstract
away much of the complexity users typically face when managing their data in the
cloud. Features such as micro-partitions, a search optimization service, and material‐
ized views are examples of unique ways Snowflake works in the background to
improve performance. In this chapter, we’ll learn about these unique features.

Snowflake also makes it possible to easily analyze query performance through a vari‐
ety of different methods. We’ll learn about some of the more common approaches to
analyzing Snowflake query performance, such as query history profiling, the hash
function, and the Query Profile tool.

Prep Work
Create a new worksheet titled Chapter9 Improving Queries. Refer to “Navigating
Snowsight Worksheets” on page 8 if you need help creating a new folder and work‐
sheet. To set the worksheet context, make sure you are using the SYSADMIN role and
the COMPUTE_WH virtual warehouse. We’ll be using the SNOWFLAKE sample
database; therefore, no additional preparation work or cleanup is needed in this
chapter.

Analyzing Query Performance
Query performance analysis helps identify poorly performing queries that may be
consuming excess credits. There are many different ways to analyze Snowflake query
performance. In this section, we’ll look at three of them: QUERY_HISTORY profiling, the
HASH() function, and using the web UI’s history.

287

QUERY_HISTORY Profiling
We first learned about the INFORMATION_SCHEMA in Chapter 3. As a reminder,
the SNOWFLAKE INFORMATION_SCHEMA, often referred to as the data dictio‐
nary for table data, is automatically created for each Snowflake database. The
QUERY_HISTORY table function used on the INFORMATION_SCHEMA provides very
useful information about the queries executed against a particular database.

You can execute the following query to obtain details about all queries run by the cur‐
rent user in the past day, with the records returned in descending order of the total
elapsed time:

USE ROLE ACCOUNTADMIN;
USE DATABASE <database name>;
SELECT *
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY(
 dateadd('days', -1, current_timestamp()),
 current_timestamp()))
ORDER BY TOTAL_ELAPSED_TIME DESC;

The results of this query give you what you need in order to discover long-running
queries that are run frequently. In this way, you can analyze those queries first for
possible performance improvement to make the most difference for your users.

It is possible to narrow the focus of the query history by selecting a particular user,
session, or virtual warehouse you wish to know more about. Those functions are as
follows:

• QUERY_HISTORY_BY_USER

• QUERY_HISTORY_BY_SESSION

• QUERY_HISTORY_BY_WAREHOUSE

HASH() Function
Snowflake’s hash function is a utility function that returns information, such as
descriptions of queries. It is not a cryptographic hash function.

The following query was written to return the queries executed for a particular data‐
base, in order of frequency and average compilation time. In addition to average
compilation time, the average execution time is also included to compare the two
times:

USE ROLE ACCOUNTADMIN;
USE DATABASE <database name>;
SELECT HASH(query_text), QUERY_TEXT, COUNT(*),
 AVG(compilation_time), AVG(execution_time)
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY(dateadd('days', -1,
 current_timestamp()),current_timestamp()))

288 | Chapter 9: Analyzing and Improving Snowflake Query Performance

GROUP BY HASH(query_text), QUERY_TEXT
ORDER BY COUNT(*) DESC, AVG(compilation_time) DESC ;

Web UI History
We can easily review individual queries using the Snowflake web interface. The
graphical representation Snowflake provides allows us to view the main components
of the query’s processing plan and the statistics for each component. We can also see
the overall statistics of the query.

To review queries using the Snowflake web interface, click Activity in the Main menu,
followed by Query History, as shown in Figure 9-1.

Figure 9-1. The Snowflake menu

You should see a list of all the queries that were executed, with the most recent query
listed at the top (as shown in Figure 9-2).

Figure 9-2. A history of all the queries, in descending order

Analyzing Query Performance | 289

Using Snowflake’s Query Profile tool
Snowflake’s Query Profile tool provides the execution details of a query to assist you
in spotting common mistakes in SQL query expressions. You can use Query Profile
to learn more about the performance or behavior of the query, which will help you
locate potential performance bottlenecks and identify opportunities for
improvement.

From the list of queries shown in Figure 9-2, we can click a specific query from the
SQL text or from the Query ID column to view a graphical representation of the
query details. The default tab is Query Details, so be sure to click the Query Profile
tab (as shown in Figure 9-3).

Figure 9-3. Query Profile details

One of the things you’ll notice is that statements such as USE and DESCRIBE do not
have a query profile (as shown in Figure 9-4).

290 | Chapter 9: Analyzing and Improving Snowflake Query Performance

Figure 9-4. USE and DESCRIBE statements have no Query Profile

Query Profile provides a wealth of information about an individual query. For com‐
plete details on how to analyze queries using Query Profile, visit the Snowflake online
documentation.

Understanding Snowflake Micro-Partitions and
Data Clustering
Data stored in Snowflake tables is divided into micro-partitions dynamically. There is
no need to manually define or maintain partitions, as is the case in traditional parti‐
tioning. Snowflake automatically takes care of that for you. At the time that the data is
loaded into a Snowflake table, the metadata about each micro-partition is stored so
that it can be leveraged to avoid unnecessary scanning of micro-partitions when
querying the data.

To better understand and appreciate how innovative Snowflake micro-partitions are,
we’ll first take a deep dive into the topic of partitions so that we can better understand
how traditional partitioning works. Once we compare that to Snowflake partitions,
the benefits of Snowflake micro-partitions will become much more apparent.

Partitions Explained
Partitioning a relational database will result in large tables divided into many smaller
parts, or partitions. Databases are most often partitioned to improve scalability, assist
in backup and recovery, improve security, and improve query performance. For a
partitioned database, the query only has to scan relevant partitions, not all the data.
This reduces the response time needed to read and load data for SQL operations.

Understanding Snowflake Micro-Partitions and Data Clustering | 291

https://oreil.ly/SVKKR
https://oreil.ly/SVKKR

There are two traditional methods by which relational databases can be partitioned:
horizontal and vertical. We’ll demonstrate both methods with some examples. Let’s
start with a horizontal partitioning example. We’ll begin with an original table con‐
sisting of eight columns and eight rows representing customers’ purchases from our
United States website, retail store, and direct channel (as shown in Figure 9-5).

Figure 9-5. The original customer transaction table

Horizontal partitioning, also known as sharding, stores table rows in different data‐
base clusters. Each partition has the same schema and columns but contains different
rows of data (as shown in Figure 9-6). The most important benefit of sharding is that
it allows an otherwise too-large database the ability to scale out horizontally.

Figure 9-6. Horizontal partitions in the customer transaction table

292 | Chapter 9: Analyzing and Improving Snowflake Query Performance

It is important to note that Snowflake users don’t need to worry about how to solve
the problem of scaling out. Snowflake is column based and horizontally partitioned,
and the Snowflake multicluster virtual warehouse feature means that sharding isn’t
needed to scale out a database. Chapter 2 describes the Snowflake multicluster virtual
warehouse feature in more detail. In the next section, I’ll explain what column based
and horizontally partitioned mean in regard to Snowflake.

The second type of partitioning is vertical partitioning, also known as column-based
partitioning. Vertical partitioning is undertaken by creating tables with fewer col‐
umns and storing the remaining columns in additional tables; a practice commonly
known as row splitting.

Vertical partitioning is a physical optimization technique, but it can be combined
with a conceptual optimization technique known as normalization. Normalization
removes redundant columns from a table and puts them into another table while
linking them with a foreign key relationship. In our examples, the foreign keys will be
the customer ID (CID) and product ID (PID) fields.

Continuing with the same example, we’ll create two vertical partitions: one for cus‐
tomer data and one for transaction data (as shown in Figure 9-7).

Figure 9-7. Vertical partitions in the customer transaction table

There are many benefits of data normalization, including being able to update data
more easily and eliminate duplicates. Data normalization is also an important part of
building machine learning models as it can be done to change the distribution shape
of the data when needed. While normalizing data does incur costs, one of the benefits
of using Snowflake is that you can store large amounts of data and then only normal‐
ize the data as you need it.

Probably the most common vertical partitioning method is to split static data from
dynamic data. The intent is to reduce performance costs based on how frequently the

Understanding Snowflake Micro-Partitions and Data Clustering | 293

data is accessed and how often the table changes. A related example using a product
inventory table (as shown in Figure 9-8) will be used for demonstration purposes.

Figure 9-8. The original product inventory table

One way the data can be modeled is to store the static or slowly changing information
in one table and the dynamic or frequently changing information in a different table
(as shown in Figure 9-9). Modeling data in this way is especially beneficial when
using Snowflake because you’ll be able to take advantage of Snowflake features, such
as caching, to help improve performance and lower costs.

Figure 9-9. Vertical partitions in the product inventory table

To summarize, horizontal partitioning decomposes tables row-wise. Horizontal parti‐
tions include all fields and hold a specific subset of the data. In contrast, vertical par‐
titioning decomposes tables column-wise. Vertical partitions hold all the relevant data
relating to a subset of fields. Vertical partitions that include a foreign key, linking
them to another partition, are taking advantage of normalization.

Snowflake Micro-Partitions Explained
All Snowflake data is stored in database tables. Logically, tables are structured as col‐
lections of rows and columns. This logical structure of rows and columns is mapped
to the Snowflake physical table structures known as micro-partitions. Snowflake’s

294 | Chapter 9: Analyzing and Improving Snowflake Query Performance

unique micro-partitioning approach is transparent to users, unlike traditional data
warehouse partitioning approaches in which the user has to independently manipu‐
late partitions by using Data Definition Language (DDL) commands.

Snowflake users cannot partition their own tables. Instead, all
Snowflake tables are automatically divided into micro-partitions
using the ordering of the data as it is inserted or loaded.

A Snowflake micro-partition is a small physical cloud storage block that stores
between 50 MB and 500 MB of uncompressed data. However, the actual storage block
size is even smaller because Snowflake data is always stored compressed, and Snow‐
flake automatically determines the most efficient compression algorithm for columns
in each micro-partition. As a result, a Snowflake micro-partition holds about 16 MB
of compressed data.

There are many benefits of having a small micro-partition size in which each block
represents a set of rows from the table. Snowflake’s micro-partitions allow for effi‐
cient scanning of columns, effective finer-grain query pruning of large tables, and
prevention of skews. In addition, Snowflake stores the metadata about all the rows
stored in micro-partitions. Among other things, this metadata includes the range of
values and the number of distinct values for each column.

Snowflake is well designed for bulk inserts and updates. As previously stated, all data
in Snowflake is stored in tables and is transparently partitioned as data is inserted or
loaded. Data Manipulation Language (DML) operation changes intended for these
micro-partition blocks cannot result in updates within each micro-partition file.
Instead, DML operations will add a new partition block and/or remove an existing
partition block. These micro-partition additions and deletions are tracked in the
Snowflake metadata.

Now let’s turn to an example. The customer and transaction tables from the previous
section will be used to demonstrate how micro-partitions work. In our example, we’ll
assume the micro-partitions each hold six records. Note that this is an arbitrary num‐
ber I selected to make our example easy to demonstrate. In practice, Snowflake auto‐
matically determines the number of records per micro-partition.

Assuming six records per micro-partition, Figure 9-10 demonstrates how the data
from our transaction table would be physically stored. You can see that the eight
records initially loaded ended up in two micro-partitions, with the second micro-
partition having only two records. You’ll also notice that the data is physically grou‐
ped together by column in the micro-partitions.

Understanding Snowflake Micro-Partitions and Data Clustering | 295

Figure 9-10. Logical versus Snowflake physical structures in the transaction table from
Figure 9-7

If three new records are added the following day, they will not be added to the second
micro-partition; instead, a third micro-partition will be created (as shown in
Figure 9-11).

Figure 9-11. New records create an additional Snowflake micro-partition

296 | Chapter 9: Analyzing and Improving Snowflake Query Performance

Now let’s take a look at the customer table and how the initial data load would be
stored. You’ll notice that while we have eight transactions, we have seven customers,
so seven customer records will be loaded. The seven customers will be stored in two
micro-partitions (as shown in Figure 9-12).

Figure 9-12. Logical versus Snowflake physical structures of the customer table from
Figure 9-7

For our customer table, we’d expect there to be new additions but probably no dele‐
tions. We’d also expect there could be updates to the table because we’re storing the
customer’s zip code, which would need to be updated if the customer moved.

What happens to the stored data when there is an update to the record?

As depicted in Figure 9-13, Snowflake deletes the existing partition file and replaces it
with a new file when an update or delete operation is performed.

Understanding Snowflake Micro-Partitions and Data Clustering | 297

Figure 9-13. Changes to the Snowflake micro-partition when updating a record

Indeed, micro-partitions are inherently small in size and are stored as columnarized
sets of rows. Storing the data in this way, where columns are stored independently
within the micro-partitions, allows for efficient column scanning and filtering. This is
especially beneficial for very large tables that could have many millions of micro-
partitions. Using micro-partitions allows for granular pruning on large tables. Effec‐
tive and efficient pruning is important because scanning entire tables is not optimal
for most queries.

298 | Chapter 9: Analyzing and Improving Snowflake Query Performance

Snowflake’s unique micro-partitions and the use of metadata about the rows in each
micro-partition, including the range and distinct values for each column, lays the
foundation for optimized queries and highly efficient query processing. Additionally,
the data in Snowflake tables is stored in its natural ingestion order, which works well
for data such as transaction data, which is rarely updated or deleted and is often quer‐
ied by date. For other situations, natural ingestion may not be the optimal physical
order, especially if there are frequent updates to the table’s data. For those use cases,
we can use clustering.

Snowflake Data Clustering Explained
In the previous section, we learned how Snowflake micro-partitions are created.
When data is loaded into Snowflake, Snowflake creates micro-partitions automati‐
cally based on the order in which the data is loaded. This works well, for the most
part, as Snowflake generally produces well-clustered data in tables using the micro-
partitioning approach. However, sometimes Snowflake tables are not optimally clus‐
tered, especially if DML actions occur frequently on very large tables containing
multiple terabytes of data. When this happens, we should consider defining our own
clustering key(s).

A clustering key is a subset of columns in a table or expressions on a table. The pur‐
pose of creating a clustering key is to co-locate data in the same micro-partitions in
the table.

Clustering keys are not meant to be created for all tables. Before
deciding whether to cluster a table, it is recommended that you test
a representative set of queries on the table to establish a query per‐
formance baseline. The query performance of the table, along with
the size of the table, should determine whether to define a cluster‐
ing key. In general, it may be time to create a clustering key when
queries run slower than expected and/or have noticeably degraded
over time. A large clustering depth is another indication that the
table needs to be clustered, but the clustering depth is not a precise
measure. The best indicator of a well-clustered table is its query
performance.

Clustering Width and Depth
Snowflake can determine how well clustered a table is by considering how many par‐
titions overlap. Micro-partitions can overlap with one another in a partition; the
number of overlaps is known as the clustering width. Micro-partitions can overlap at
a specific point in the partition; the number of overlaps at that specific point deter‐
mines the clustering depth. Let’s take a look at a few examples.

Snowflake Data Clustering Explained | 299

In the first example, we have six partitions in the micro-partition, all of which are
overlapping on the one specific value and with one another (as shown in
Figure 9-14). This is an example of a least well-clustered micro-partitioned column.

Figure 9-14. A least well-clustered micro-partitioned column

The next example is of a perfectly clustered micro-partition. One partition overlaps
the specific value, and no partitions overlap one another (as shown in Figure 9-15).

Figure 9-15. A perfectly clustered micro-partitioned column

In the third example, three partitions overlap the specific value and four partitions
overlap one another (as shown in Figure 9-16).

The smaller the depth, the better the table is clustered. A table with
no micro-partitions has a clustering depth of zero, which indicates
that the table has not yet been populated with data.

300 | Chapter 9: Analyzing and Improving Snowflake Query Performance

Figure 9-16. A micro-partitioned column with a width of 4 and a depth of 3

Changing the specific value for which we are querying could change the clustering
depth, whereas the clustering width would not change (as shown in Figure 9-17).

Figure 9-17. The depth of a micro-partitioned column changes when a specific value has
changed

If we were to look at all three micro-partitions, assuming they were the only three
micro-partitions in the table, we’d be able to see the full range of values within the
table (as shown in Figure 9-18).

Snowflake Data Clustering Explained | 301

Figure 9-18. The micro-partitions’ total width equates to the range of values in the table

We can see from the examples that the width of the table gives us the range of values.
If the range of table values spanned 40 values, for example, we could get the average
clustering depth by calculating the average of all 40 depths.

On tables within Snowflake, you are able to see the clustering depth, among other
details, by using the SYSTEM$CLUSTERING_INFORMATION function. If a table has been
clustered, you don’t need to specify the column. If a table has not been clustered,
you’ll need to include the column(s) in your statement. Here is an example of a col‐
umn whose details you can view. Navigate back to the worksheet and execute the fol‐
lowing statements:

USE ROLE ACCOUNTADMIN;
USE DATABASE SNOWFLAKE_SAMPLE_DATA;
USE SCHEMA TPCH_SF100;
SELECT SYSTEM$CLUSTERING_INFORMATION('CUSTOMER' , '(C_NATIONKEY)');

From our examples in this section, we see that loading data into a Snowflake table
creates micro-partitions based on the order in which the records are loaded. When
we use SQL to query the data, the WHERE clause is used to prune the search space of
the partitions that need to be scanned. If the way the data is currently loaded into a

302 | Chapter 9: Analyzing and Improving Snowflake Query Performance

table is not efficient for searching, we can create a clustering key that allows us to
reorder the records so that the data is co-located with the same micro-partition.
Doing so often results in significant performance improvements, especially if the
queries make use of the clustering key as a filter in the WHERE clause.

Choosing a Clustering Key
When deciding whether or not to cluster a table, it is important to remember that the
main goal in clustering a table is to help the query optimizer achieve better pruning
efficiency. As such, it is recommended that, by default, clustering keys be defined on
tables larger than 1 TB.

A clustering key can include one or more columns or expressions from a table. When
deciding which column(s) to use for the clustering key, the data characteristics of the
table should be evaluated first. It’s important to remember that the degree to which
pruning efficiency can be achieved depends, in part, on the particular queries in
users’ workloads.

Table data characteristics and workload considerations
When deciding on a clustering key, a good rule of thumb is to select a key that has
enough distinct values for effective pruning, yet not so many values that Snowflake is
unable to effectively group rows in the same micro-partitions. The number of distinct
values in a table is its cardinality. A table’s cardinality is part of the formula used to
calculate selectivity; the measure of how much variety there is in the values of the
table column. Selectivity is a value between 0 and 1. A value closer to 0 indicates less
variety in a column’s values. A value of 1 indicates that every value in the table col‐
umn is unique.

We’ll use a Snowflake sample data table to demonstrate cardinality and selectivity.
Let’s first run a few queries to get the distinct count of NATIONKEY values as well as the
total count of records:

USE ROLE ACCOUNTADMIN;
USE DATABASE SNOWFLAKE_SAMPLE_DATA;
USE SCHEMA TPCH_SF100;
SELECT COUNT(DISTINCT C_NATIONKEY) FROM CUSTOMER;
SELECT COUNT(C_NATIONKEY) FROM CUSTOMER;

The results indicate that there are 25 distinct values for the C_NATIONKEY column
in the CUSTOMER table, which has 15 million records. The cardinality is 25. To cal‐
culate the selectivity, we can use the following statement, which gives us a value of
0.000002; a very low selectivity value:

USE ROLE ACCOUNTADMIN;
USE DATABASE SNOWFLAKE_SAMPLE_DATA;
USE SCHEMA TPCH_SF100;
SELECT COUNT(DISTINCT C_NATIONKEY) / Count(C_NATIONKEY) FROM CUSTOMER;

Snowflake Data Clustering Explained | 303

If we consider that this column could be a good candidate for a clustering key, we’d
want to take a closer look at the data distribution before deciding:

SELECT C_NATIONKEY, count(*) FROM CUSTOMER group by C_NATIONKEY;

The results of the query, shown in Figure 9-19, indicate that the records are pretty
evenly distributed between the NATIONKEYs.

Figure 9-19. Distribution of the C_NATIONKEY column in the CUSTOMER table
sample data

304 | Chapter 9: Analyzing and Improving Snowflake Query Performance

For comparison, let’s look at the selectivity value of the C_NAME column in the cus‐
tomer table:

USE ROLE ACCOUNTADMIN;
USE DATABASE SNOWFLAKE_SAMPLE_DATA;
USE SCHEMA TPCH_SF100;
SELECT COUNT(DISTINCT C_NAME) / Count(C_NAME) FROM CUSTOMER;

The result is exactly 1, which means that every one of the 15 million records has a
unique name.

A column with very high cardinality, such as one containing customer name or nano‐
second timestamp values, has such a high selectivity value that it would probably
yield poor pruning results. At the other extreme, a field with very low cardinality,
such as gender or a binary column with Yes/No values, would likely not be a good
candidate to use as a clustering key.

A column with very high cardinality can be used as a clustering key
more effectively if it is defined as an expression on the column
rather than on the column directly. In this way, an expression can
preserve the original ordering of the column. An example would be
using a timestamp column as a clustering key by casting the values
to dates instead of timestamps. If the column name were TIME‐
STAMP_NTZ, the statement would be similar to the following:

CREATE OR REPLACE TABLE <table name>
 CLUSTER BY (to_date(TIMESTAMP_NTZ));

The effect would be to reduce the number of distinct values to the
number of days instead of the number of timestamps. This would
likely yield better pruning results.

Creating a Clustering Key
A clustering key can be defined at the time of table creation by adding the command
CLUSTER BY (column name(s)) to the CREATE statement:

ALTER TABLE <table name> CLUSTER BY (column name(s));

A clustering key can be added or changed after table creation and can be dropped at
any time.

When creating the clustering key, it is recommended that you
choose no more than three or four columns or expressions. While
the number of columns is an important consideration, it is most
important to focus on selecting the right columns or expressions
for the clustering key and putting them in the best order.

Snowflake Data Clustering Explained | 305

If more than one column or expression is used to cluster a table, it is recommended
that the columns most actively used in selective filters be prioritized. For tables in
which date-based queries are used, it makes sense to choose the date column for the
cluster key.

If you select a string data type column in which the leading charac‐
ters are the same, you can use the substr expression to truncate the
common leading characters.

It could be a good idea to include columns that are frequently used in join predicates,
if there is room for additional cluster keys after considering other, higher-priority
columns. The balance between query workload and DML workload should be care‐
fully considered when choosing the columns for a clustering key.

That said, as a general rule, Snowflake recommends ordering selected columns from
lowest to highest cardinality assuming evenly distributed data. Doing so will allow
columns with fewer distinct values to come earlier in the clustering key order. Of
course, there could be exceptions to this general rule, so don’t let it override what
would otherwise be a better selection order.

Reclustering
Over time, data in a table might become less clustered as DML operations are per‐
formed on the table. To maintain optimal performance, it might be necessary to
recluster a table periodically. No manual intervention or maintenance is needed for
reclustering; Snowflake automatically reclusters tables as needed.

Reclustering consumes credits and also results in storage costs. The
amount of data and the size of the table determine the number of
credits that will be consumed to perform the recluster. The addi‐
tional storage costs are the result of the deleted data from recluster‐
ing that remains available for the Time Travel retention period and
the subsequent fail-safe period.

Clustering is just one tool we can use to improve query performance. Another option
is to create materialized views.

Performance Benefits of Materialized Views
Materialized views were first introduced in Chapter 3. Materialized views contain an
up-to-date copy of a subset of data in a table. As such, materialized views can be used
to improve query performance.

306 | Chapter 9: Analyzing and Improving Snowflake Query Performance

It’s important to remember that similar to other Snowflake securable objects, materi‐
alized views are owned by a role. When materialized views are created, however, they
do not automatically inherit the privileges of the base table.

Altering the base table does not change a materialized view;
instead, a new materialized view will need to be created. More
specifically, adding a new column to the base table will not cause a
new column to be added to the materialized view. If changes are
made to an existing column in the base table, such as changing the
label or dropping the column, all materialized views on that base
table will be suspended.

As we saw in Chapter 3, materialized views realize security benefits. They also realize
performance benefits in several different use cases:

• Snowflake materialized views can improve the performance of queries that use
the same subquery results repeatedly.

• Querying materialized views is typically slower than using cached results but
faster than querying tables.

• Materialized views are especially useful when a query is meant for external table
data, in which data sets are stored in files in an external stage. The reason is
because query performance is generally faster when querying internal tables as
compared to querying external tables.

A materialized view supports clustering. Importantly, you can cluster a materialized
view on different columns than the columns used to cluster the base table upon
which the materialized view is defined.

As a general rule of thumb, a materialized view is recommended
over a regular view when the query results are used often and the
results change infrequently, especially if the query consumes a lot
of resources.

The performance benefits of creating materialized views need to be weighed against
cost considerations. Unlike regular views that do not cache data, materialized views
do use storage. Thus, there are storage fees associated with materialized views. Mate‐
rialized views also consume credits for maintenance.

Performance Benefits of Materialized Views | 307

While materialized views have many benefits, there are a few constraints. A material‐
ized view doesn’t support DML operations, can query but one table alone, and cannot
query another view or a user-defined function. Additionally, a materialized view does
not support joins and cannot include any of the following clauses: HAVING, ORDER BY,
LIMIT, or GROUP BY.

Exploring Other Query Optimization Techniques
In addition to clustering a table and creating materialized views, Snowflake’s search
optimization service is another way to optimize query performance. There is an
important distinction between Snowflake’s search optimization service and the other
two query optimization techniques. Materialized views and clustered tables can speed
up both range searches and equality searches; the search optimization service can
only speed up equality searches.

Equality searches use equality predicates such as <column name> = <constant
value> whereas range searches query ranges in time.

In addition to equality searches, the search optimization service supports predicate
searches within lists using the IN conditional expression for the following data types:

• Fixed-point numbers such as INTEGER and NUMERIC
• DATE, TIME, and TIMESTAMP
• VARCHAR

• BINARY

Search Optimization Service
The goal of Snowflake’s search optimization service is to improve the performance of
selective point lookup queries, which are queries that return only one or a small num‐
ber of distinct rows. In Snowflake, we’ll most likely run more aggregation queries
than queries that return only a few rows out of a large volume of rows in a table.
Thus, there likely won’t be many use cases in which the search optimization service
will be the optimal choice. However, for the very specific use cases that could benefit
from Snowflake’s search optimization service, the query performance improvement
could be significant.

The Snowflake search optimization service is available in Snow‐
flake Enterprise and higher editions.

308 | Chapter 9: Analyzing and Improving Snowflake Query Performance

To take advantage of the search optimization service, you’ll need to register the table
with the service. When search optimization is added to a Snowflake table, a mainte‐
nance service runs in the background. We know that the search optimization service
is meant for finding one or a small number of records based on using = in the WHERE
clause but, fortunately, we don’t have to decide when it makes sense to use the service.
When a query is executed, the Snowflake optimizer automatically decides when to
use the search optimization service.

Before deciding whether to register a table with the service, you
may want to consider estimating the cost of adding search optimi‐
zation to a table. You can do so by using the function
SYSTEM$ESTIMATE_SEARCH_OPTIMIZATION_COSTS.

Once you’ve determined that it makes sense to add search optimization to a table, you
can use the ALTER TABLE command to do so:

ALTER TABLE [IF EXISTS] <table name> ADD SEARCH OPTIMIZATION;

The search optimization service is a serverless feature that incurs compute costs.
Because the search optimization service maintains search access paths, there are also
storage costs associated with the service. The costs are directly proportional to the
number of tables on which the feature is enabled, the number of distinct values in
those tables, and the amount of data that changes in the tables.

Query Optimization Techniques Compared
Thus far, we’ve taken an in-depth look at three of the most used Snowflake query
optimization techniques. Table 9-1 summarizes some of the differences between the
different optimization techniques.

Table 9-1. Snowflake query optimization techniques compared

 Table clustering Materialized view Search optimization service
Storage costs X X
Compute costs X X X
Serverless feature X X
Use case For use on large tables;

generally good for all
workloads except full table
reads

Most beneficial when using the
same subquery repeatedly, or
for external table queries

When you need to access specific
row(s) based on selective point
lookup queries in a large table

Exploring Other Query Optimization Techniques | 309

In most cases, it would be redundant to use Snowflake’s search
optimization service on a clustered table unless the query is on col‐
umns other than the primary cluster key.

Summary
In this chapter, we learned several different ways to analyze Snowflake query perfor‐
mance. We discovered that QUERY_HISTORY profiling lets us evaluate queries by
user, session, or virtual warehouse. We created a statement using a hash function that
returned a list of database queries executed in order of frequency and average compi‐
lation time. We viewed how to access the Snowflake Query Profile tool from the
Snowflake web UI.

We learned about three Snowflake optimization techniques: clustering, materialized
views, and the search optimization service. We also took a deep dive into partitioning
to better understand why Snowflake’s unique micro-partitions are so innovative and
beneficial.

Until now, we’ve focused on gaining an understanding of all the various parts of the
Snowflake architecture and functionality. We’ve carefully laid the foundational under‐
standing of Snowflake and what makes it so unique. Going forward, we’ll be able to
leverage our deepening knowledge of Snowflake for some really interesting topics
with important implications.

The next chapter is a deep dive into Snowflake’s data sharing capabilities and offer‐
ings. Snowflake created its secure data sharing feature to be incredibly powerful yet
simple to set up and maintain.

Code Cleanup
No code cleanup is needed.

Knowledge Check
The following questions are based on the information contained in this chapter:

1. What is the difference between the QUERY_HISTORY function and the
QUERY_HISTORY_BY_USER function?

2. For what purpose would you use the HASH() function in Snowflake?
3. What are the two traditional methods by which relational databases can be

partitioned?
4. What is a Snowflake micro-partition and why is it so important?

310 | Chapter 9: Analyzing and Improving Snowflake Query Performance

5. What happens to the physical data stored in a Snowflake table when there is an
update to a record?

6. How does Snowflake determine how well clustered a table is?
7. Which Snowflake function can you use to see the clustering depth in a table?
8. What is a good rule of thumb when deciding on a clustering key?
9. What is the maximum number of columns or expressions you should choose for

a clustering key?
10. Which of the following query optimization techniques is/are serverless?

• Table clustering
• Materialized view
• Search optimization service

Answers to these questions are available in Appendix A.

Knowledge Check | 311

CHAPTER 10

Configuring and Managing
Secure Data Sharing

Data sharing supports collaboration among business partners, provides opportunities
to inform customers, and gives you a way to obtain real-time information from ven‐
dors and suppliers. Data sharing also provides opportunities for you to monetize
your data. However, there are impediments to effective and efficient data sharing
when using traditional data sharing options. For one thing, traditional data sharing
options, such as FTP transfers, API calls, sending and receiving CSV files, and ETL
tools and processes, often require building complex infrastructure.

Similarly, traditional data sharing approaches, which involve transferring data copies
and reconstructing and storing duplicate data, are expensive. There is often no single
source of truth with traditional data sharing options, and fewer actionable insights
result from having delayed access to stale and sometimes incomplete data. Overcom‐
ing many of these sharing challenges, however, can be accomplished by using Snow‐
flake’s Secure Data Sharing technology.

Secure Data Sharing makes it possible for data to be accessible via a live connection
so that updated data is automatically available to data consumers in real time. The
business logic, along with the data, can also be shared. In addition to being secure,
efficient, and a great way to monetize data, Snowflake Secure Data Sharing comes
with the peace of mind of knowing you can revoke access at any time.

These powerful capabilities are made possible because of Snowflake’s unique
architecture.

313

Snowflake Architecture Data Sharing Support
In Chapter 2, we learned how traditional data platform architectures have a fixed
ratio of compute and storage. This is in contrast to how Snowflake’s multicluster
shared data architecture has storage capability that can expand and contract automat‐
ically, and has independent compute clusters that can read and write at the same time
as well as instantly resize.

When you separate compute from storage and you share data access control, as
Snowflake does, you can have multiple virtual warehouses working on the same data
at the same time. As such, Snowflake’s architecture supports the ability to have one
single source of truth.

If you share data within the same cloud provider and region, there is no need to copy
the data to share it. If you share data to a different region or different cloud provider,
Snowflake replicates the data. However, it does so via auto-fulfillment, so you don’t
need to do any manual work. Snowgrid is the term to describe data replication for the
purpose of facilitating data sharing.

The Power of Snowgrid
Snowgrid is global, seamlessly connecting Snowflake users who may be separated by
region or cloud. Snowgrid achieves this through replication via auto-fulfillment. Even
when sharing data across clouds and regions, the shares are transactionally consistent,
meaning the source of truth is still maintained. Within Snowgrid are all the native
cross-cloud governance controls that serve as the foundational building blocks for
enabling federated governance. For more details about the specifics of database repli‐
cation, refer to Chapter 7.

With the power of Secure Data Sharing and Snowgrid, Snowflake providers can cre‐
ate and share any number of data shares with data consumers worldwide. Each share
encapsulates the necessary access control, so it is secure. Once a provider’s outbound
share appears as an inbound share in the data consumer’s account, the consumer is
then able to create a database from that share. The metadata points back to the origi‐
nal data source, so the data continues to exist only in the provider account.

Data Sharing Use Cases
Many industries have begun adopting features from Snowflake’s data sharing capabil‐
ities. For example, financial services and insurance companies leverage Snowflake’s
secure storage and data sharing capabilities to efficiently ingest Internet of Things
(IoT) data as well as transactional and clickstream data. Enriching that data with
third-party Snowflake data, such as Equifax data, provides a more complete view of
customers. Having a complete 360-degree view of customers provides organizations

314 | Chapter 10: Configuring and Managing Secure Data Sharing

with the opportunity to identify high-value customers and ensure that they have a
good experience at every touchpoint.

Healthcare and life sciences organizations can take advantage of Snowflake data shar‐
ing capabilities to replace decades-old methods of data sharing such as FTP, DVDs,
and other physical media. In fact, payers storing petabytes of protected health infor‐
mation (PHI) and personally identifiable information (PII) that needs to be shared
with insurance brokers, providers, and other vendors are turning to Snowflake as a
solution because data sharing in the healthcare industry is mandated and regulated.
Healthcare providers that own massive amounts of data often collaborate with health‐
care consortiums or are affiliated with universities; thus, sharing data in real time,
rather than in batches, is absolutely essential.

Trucking companies that can optimize fleet routing by using IoT data and retailers
that are able to improve the supply chain by sharing data with logistics partners are
two more examples of industries that incorporate Snowflake’s live data sharing capa‐
bilities. Also, some enterprise companies use different Snowflake accounts for devel‐
opment, testing, and production purposes. Data sharing provides the ability to
incorporate strong audit controls and move data in a controlled manner, rather than
having to prepare flat files and reload them into a different environment.

Publishers, advertising agencies, and brands need to develop a new data sharing para‐
digm quickly as we are fast approaching a world without the existence of third-party
cookies. As third-party cookies are being deprecated, marketers will need to find new
ways to identify people online so that they can optimize marketing campaigns and
continue to personalize messages.

Snowflake Support for Unified ID 2.0
Cookies, developed in 1994 as a tiny piece of software code installed on your web
browser when you visit a website to facilitate revisiting and tracking, are an outdated
technology. Today, internet usage occurs more frequently in mobile apps and on con‐
nected TV devices where cookies are mostly irrelevant. Cookies often contain a
wealth of personal data that could potentially identify you without your consent; thus,
they are subject to the European Union’s General Data Protection Regulation (GDPR)
and the ePrivacy Directive (EPD). The EPD will eventually be replaced by the
ePrivacy Regulation (EPR). Major platforms such as Apple, Firefox, and Google have
begun limiting the use of third-party cookies. In the near future, changes to internet
platforms’ privacy policies could even render cookies, the internet’s first universal
identifier, obsolete. You can visit https://cms.law/en/deu/insight/e-privacy if you are
interested in learning more about ePrivacy.

Concerns over user privacy and more regulation have necessitated the consideration
of new approaches. Unified ID 2.0, developed by The Trade Desk, is an open source,

Snowflake Support for Unified ID 2.0 | 315

https://cms.law/en/deu/insight/e-privacy

industry-governed identity solution to provide anonymization, greater transparency,
and better control for users. A person’s UID 2.0 is a random string of numbers and
letters generated from an email address that cannot be reverse engineered to an email
address or any other form of identification. Currently, Unified 2.0 is accepted by The
Washington Post, Oracle, Nielsen, and Tubi TV, among others.

Snowflake supports Unified ID 2.0 for use with Secure Data Sharing, most notably
with data clean rooms, which are discussed in more detail later in this chapter. As
such, Snowflake customers can join first-party and third-party data directly in the
Snowflake platform in a more privacy-conscious way. The power of the Snowflake
Data Cloud and Unified ID 2.0 provides for a single view of the customer.

Snowflake Secure Data Sharing Approaches
There are four different ways to approach Snowflake’s Secure Data Sharing. The sim‐
plest way is to engage in account-to-account data sharing, whereby you can share
data directly with another account and have your data appear in their Snowflake
account without having to move or copy it. The other account could belong to a dif‐
ferent internal business unit, for example, or to a different organization altogether.

You can use Snowflake’s Marketplace, a public Secure Data Sharing approach that
connects global providers of data with consumers around the world.

You can even create your own Snowflake Private Data Exchange to collaborate with
others; you’ll get to control who can join the data exchange and which members can
provide data, consume data, or both.

Alternatively, you can use a data clean room, a framework for sharing data between
two or more parties; the data is brought together under specific guidelines so that PII
is anonymized and processed, and can be stored in a way that allows compliance with
privacy regulations. Figure 10-1 summarizes the four main Snowflake Secure Data
Sharing approaches.

Figure 10-1. Four Snowflake Secure Data Sharing approaches

We’ll now take care of some preparation work, and then we’ll explore each Snowflake
Secure Data Sharing approach.

316 | Chapter 10: Configuring and Managing Secure Data Sharing

Prep Work
We’re ready to create a new worksheet, titled Chapter10 Data Sharing. Refer to “Navi‐
gating Snowsight Worksheets” on page 8 if you need help creating a new worksheet.

If you are working in a Snowflake free trial account, you’ll notice that when you first
log in, you’ll see that you’ve been assigned the SYSADMIN role. Working with data
shares requires certain privileges to be assigned to your role, unless you are using the
ACCOUNTADMIN role. For the lessons in this chapter, we’ll be using the
ACCOUNTADMIN role, so make sure you set your role appropriately. As a
reminder, you can change your role using either the drop-down menu or a SQL state‐
ment in the worksheet.

Next, we’ll want to create a new database and table for the hands-on examples in this
chapter. In your new Data Sharing worksheet, execute the following commands:

USE ROLE ACCOUNTADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE DATABASE DEMO10_DB;
USE SCHEMA DEMO10_DB.PUBLIC;
CREATE OR REPLACE TABLE SHARINGDATA (i integer);

Let’s go ahead and take a look to see what data has been shared with us. Navigate back
to the Main menu by clicking the Home icon, and then click the Data → Private Shar‐
ing option in the menu. You can see in Figure 10-2 that I currently have access to data
from two direct data shares.

Figure 10-2. Direct data shares that are shared with me as the account administrator

Prep Work | 317

Throughout the chapters in the book, we have used the SAMPLE_DATA share for
examples. We’ve also discussed the Snowflake ACCOUNT_USAGE share. We’ll
review details about this special ACCOUNT_USAGE share in a later section.

The default for the Shared Data menu option is Shared With Me, which you can see
at the top middle of the screen. To see any of your outbound data shares, you can
click Shared By My Account, as shown in Figure 10-3.

Figure 10-3. Data I’ve shared with others

Snowflake’s Direct Secure Data Sharing Approach
Direct sharing, Snowflake’s simplest form of data sharing, results when a Snowflake
provider creates an outbound data share which then becomes an inbound share in a
consumer’s Snowflake account. A provider can share a Snowflake database table, a
secure view, or a secure user-defined function (UDF) via a share object. It is impor‐
tant to realize that the share is not created from objects, but rather is granted privi‐
leges to the database, schema, table, view, or UDF.

Creating Outbound Shares
When you are creating outbound shares your account is the Snowflake provider
account, whereas the account to which you are sharing your data is the Snowflake
consumer account. It’s important to know that a share can contain only a single
database.

318 | Chapter 10: Configuring and Managing Secure Data Sharing

To include multiple databases in a share, you can create a secure
view which can be shared. This is possible provided the objects ref‐
erenced in the share reside in the same Snowflake account.

To create a share object, click the Share Data button in the upper-right corner of the
screen, and then click the Select Data button. Be sure to select the DEMO10_DB
database, PUBLIC schema, and SHARINGDATA table. It is important to check the
box next to the table in order to select it to be included in the share (as shown in
Figure 10-4). When you’re finished, click Done.

Figure 10-4. Selecting data when creating a share object

You’ll see that the Secure Share Identifier field is now filled (as shown in Figure 10-5),
but you can change the identifier. It’s important to note that the secure share identi‐
fier must be unique for the account in which the share is created, and that the
identifier is case sensitive. Also notice that you could share the object with a specific
consumer by entering the accounts in your region by name.

Snowflake’s Direct Secure Data Sharing Approach | 319

Figure 10-5. Naming the secure share and adding consumers to a share object

Let’s change the identifier that was automatically generated, and let’s skip adding new
consumers at this time. In the Secure Share Identifier field, enter DEMO10_SHARE and
then click the Create Share button. You’ll receive confirmation that the share was cre‐
ated (as shown in Figure 10-6).

320 | Chapter 10: Configuring and Managing Secure Data Sharing

Figure 10-6. The share object has been created successfully

Snowflake’s Direct Secure Data Sharing Approach | 321

Another way to create an outbound share is to use SQL commands within a work‐
sheet. Navigate back to the Data Sharing worksheet and execute the following
statement:

USE ROLE ACCOUNTADMIN;
CREATE OR REPLACE SHARE DEMO10_SHARE2;
GRANT USAGE ON DATABASE DEMO10_DB TO SHARE DEMO10_SHARE2;
GRANT USAGE ON SCHEMA DEMO10_DB.PUBLIC TO SHARE DEMO10_SHARE2;
GRANT SELECT ON TABLE DEMO10_DB.PUBLIC.SHARINGDATA TO SHARE DEMO10_SHARE2;

One of the things you’ll notice is that you are assigning access privileges to the shares
that will be used by the data consumers. This should look familiar. The way in which
you grant access to objects for data shares is part of the same role-based access con‐
trol examples we went through together in Chapter 5.

Now, if you go back to the menu option for Data → Private Sharing → Shared By My
Account, you’ll see both shares we just created (as shown in Figure 10-7). If both
shares don’t show up immediately, try refreshing the page.

Figure 10-7. A list of the two newly created shares within the account

Data providers’ role in creating and managing shares
Snowflake data providers create an outbound share object and assign privileges on
one or more database tables, secure views, or secure UDFs using data stored in their
account. As such, the data provider is responsible for bearing the cost of data storage.
The consumer is not billed for any data storage costs because the data share, and
objects accessed via the share, are not copied or moved to the consumer’s account.

A Snowflake provider can share an outbound share with a virtually
unlimited number of accounts, and there is never a cost for the act
of sharing data across accounts within the same cloud provider
region. The Snowflake data provider can also set terms, through a
contract, to limit the resharing of data.

322 | Chapter 10: Configuring and Managing Secure Data Sharing

If you are ready to give consumers access to the DEMO10_SHARE, you can click the
share listing and then the Add Consumers button on the right (as shown in
Figure 10-8).

Figure 10-8. Adding data consumers to an existing share

We won’t be adding any consumers here in the UI, so go ahead and hit the Cancel
button. In addition to using the UI, a Snowflake provider can use a SQL command in
the worksheet to add one or more consumers who have their own Snowflake
accounts. That command would look like this:

ALTER SHARE <name_of_share> ADD ACCOUNTS = <name_of_consumer_account>;

You can add multiple consumer accounts by separating names with
a comma.

Remember, of course, that you can restrict certain data from being accessible either
by excluding the data altogether or by masking the data that can be seen. Some exam‐
ples are dynamic data masking and row-level security, which we discussed in
Chapter 7.

Snowflake’s Direct Secure Data Sharing Approach | 323

What if you want to share specific records within a data share with different consum‐
ers? One way to achieve that goal is to separate the storage of those records and then
create many different data shares, but that is time-consuming and prone to errors.
Fortunately, there is an easier and better way. A provider can maintain one data share
and, using Snowflake’s Current Account capability, provide access to custom slices of
the data to the current account. It’s also possible to provide specific slices of the data
to each consumer account external to the current account.

Let’s see this in action. For this example, we’ll have different countries with data, and
we’ll associate the countries to a specific region. We want this regional data to be
accessible to different accounts. We need to create the table and insert the values for
that base table in our Snowflake instance. We’ll designate the ID as the region. Navi‐
gate back to the Data Sharing worksheet and execute the following statements:

USE ROLE ACCOUNTADMIN;
USE DATABASE DEMO10_DB;
CREATE OR REPLACE SCHEMA PRIVATE;

CREATE OR REPLACE TABLE DEMO10_DB.PRIVATE.SENSITIVE_DATA
 (nation string,
 price float,
 size int,
 id string);

INSERT INTO DEMO10_DB.PRIVATE.SENSITIVE_DATA
 values('USA', 123.5, 10,'REGION1'),
 ('USA', 89.2, 14, 'REGION1'),
 ('CAN', 99.0, 35, 'REGION2'),
 ('CAN', 58.0, 22, 'REGION2'),
 ('MEX', 112.6,18, 'REGION2'),
 ('MEX', 144.2,15, 'REGION2'),
 ('IRE', 96.8, 22, 'REGION3'),
 ('IRE', 107.4,19, 'REGION3');

Next, we’ll create a table that will hold the mapping to individual accounts:

CREATE OR REPLACE TABLE DEMO10_DB.PRIVATE.SHARING_ACCESS
 (id string,snowflake_account string);

Let’s give our current account access to the data in REGION1, which includes the
USA data, by inserting those details into the SHARING_ACCESS mapping table:

INSERT INTO SHARING_ACCESS values('REGION1', current_account());

324 | Chapter 10: Configuring and Managing Secure Data Sharing

Now we’ll assign REGION2 and REGION3 the values associated with their respective
accounts, and then take a look at the contents of the SHARING_ACCESS table:

INSERT INTO SHARING_ACCESS values('REGION2', 'ACCT2');
INSERT INTO SHARING_ACCESS values('REGION3', 'ACCT3');
SELECT * FROM SHARING_ACCESS;

You’ll notice in Figure 10-9 that we have each region associated with a Snowflake
account. You can see in the results that my Snowflake trial account identifier is
VL35342; your Snowflake account is different and will be unique to your
organization.

Figure 10-9. Results of SELECT * on the SHARING_ACCESS table

In our example, we used ACCT2 and ACCT3, but if you were to create this SHAR‐
ING_ACCESS table in your production Snowflake org, you’d want to substitute
actual Snowflake account identifiers for ACCT2 and ACCT3.

Our next action is to create a secure view where we’ll join all the data in the SENSI‐
TIVE_DATA base table with the SHARING_ACCESS mapping table:

CREATE OR REPLACE SECURE VIEW DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA as
 SELECT nation, price, size
 FROM DEMO10_DB.PRIVATE.SENSITIVE_DATA sd
 JOIN DEMO10_DB.PRIVATE.SHARING_ACCESS sa on sd.id = sa.id
 AND sa.snowflake_account = current_account();

We’ll want to grant the SELECT privilege to the secure view for all roles, which we can
do by granting this privilege to the PUBLIC role:

GRANT SELECT ON DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA to PUBLIC;

Let’s take a look at the SENSITIVE_DATA base table. Remember that this table holds
all eight records:

SELECT * FROM DEMO10_DB.PRIVATE.SENSITIVE_DATA;

Snowflake’s Direct Secure Data Sharing Approach | 325

As expected, Figure 10-10 shows that we’re able to view all eight records.

Figure 10-10. All records in the SENSITIVE_DATA table

Now let’s find out what records we are able to see in the secure view:

SELECT * FROM DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA;

Our current Snowflake account is mapped to REGION1, which includes the nation
USA. As expected, we see both of the USA records (as shown in Figure 10-11).

Figure 10-11. Records in the PAID_SENSITIVE_DATA secure view accessible to our
account

Let’s use a session variable to simulate our Snowflake account being ACCT2, and take
a look at what we’ll be able to see in the secure view:

ALTER SESSION SET simulated_data_sharing_consumer='ACCT2';
SELECT * FROM DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA;

As ACCT2, we can see all REGION2 data, which includes the nations of Canada and
Mexico (as shown in Figure 10-12).

326 | Chapter 10: Configuring and Managing Secure Data Sharing

Figure 10-12. Records in the PAID_SENSITIVE_DATA secure view accessible to
ACCT2

And, finally, let’s see what is shown to us if we set our Snowflake account to ACCT3:

ALTER SESSION SET simulated_data_sharing_consumer='ACCT3';
SELECT * FROM DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA;

As Figure 10-13 shows, we can see the nation of Ireland, which is part of REGION3.

Figure 10-13. Records in the PAID_SENSITIVE_DATA secure view accessible to
ACCT3

We want to return our Snowflake account to our original account:

ALTER SESSION UNSET simulated_data_sharing_consumer;

Now that we have successfully tested how our data will be shared with different
accounts, we are ready to create a new share:

USE ROLE ACCOUNTADMIN;
USE DATABASE DEMO10_DB;
USE SCHEMA DEMO10_DB.PUBLIC;
CREATE OR REPLACE SHARE NATIONS_SHARED;
SHOW SHARES;

You’ll notice that this new share will be included in the list of outbound shares. But
we are not done yet. We need to grant privileges to the new share:

GRANT USAGE ON DATABASE DEMO10_DB TO SHARE NATIONS_SHARED;
GRANT USAGE ON SCHEMA DEMO10_DB.PUBLIC TO SHARE NATIONS_SHARED;
GRANT SELECT ON DEMO10_DB.PUBLIC.PAID_SENSITIVE_DATA TO SHARE NATIONS_SHARED;

You can use the SHOW GRANTS statement to confirm the contents of the share:

SHOW GRANTS TO SHARE NATIONS_SHARED;

Snowflake’s Direct Secure Data Sharing Approach | 327

Again, you’ll notice that the grantee name has your current account information (as
shown in Figure 10-14).

Figure 10-14. Privileges granted to the NATIONS_SHARED share

Now all that is left to do from the provider perspective is to add accounts to the share:

//This is pseudocode; you need to replace with actual Snowflake accounts
ALTER SHARE NATIONS_SHARED ADD ACCOUNTS = ACCT2, ACCT3;

If you’d like to retrieve a list of all the Snowflake consumer accounts that have a data‐
base created from a share, you can use the following command:

SHOW GRANTS OF SHARE NATIONS_SHARED;

It is important to remember that provider accounts pay for the data storage costs of
the shared data and consumer accounts pay for the virtual warehouse cost of com‐
pute for querying the data. This assumes that both the data provider and data con‐
sumer each has their own Snowflake account.

A situation could arise in which a data provider would like to share data with a con‐
sumer who does not currently have a Snowflake account. In that case, the provider
can establish and manage a Snowflake reader account. When a provider establishes a
reader account for the consumer, the reader account will offer read-only capability
for the consumer.

Setting up a reader account
In the previous section, we navigated to the Private Sharing section of the Data main
menu and clicked Shared By My Account. We then clicked the specific share for
which we wanted to add a consumer. If, instead, we wanted to create a reader
account, we would click the Reader Accounts section at the top of the screen, and
then click the + New button. We would then be given a dialog page where we can
create a reader account (as shown in Figure 10-15).

The dialog page asks you to provide the reader account name, and the user name and
password for the person who will be given admin privileges.

The reader account created will be the same edition, region, and
cloud as your own Snowflake account, and the admin login infor‐
mation is what you will use to manage the reader account.

328 | Chapter 10: Configuring and Managing Secure Data Sharing

Figure 10-15. Creating a new reader account

After you create the reader account, click the ellipsis on the right side of the page and
the option to Drop the reader account will appear (as shown in Figure 10-16).

Figure 10-16. Dropping a reader account

Snowflake’s Direct Secure Data Sharing Approach | 329

Once you click the Drop button, you’ll notice that the locator URL for the reader
account will copy the URL to your clipboard. You can then use that URL and the
login information you created to log in to the reader account.

Once you are logged in to the reader account as the data provider admin, you’ll want
to create a database from an inbound share and set up a data consumer user account
to assign to the person you want to have access to the Snowflake reader account.

As the data provider, you are responsible for the compute charges
incurred when the data is queried, so you may want to consider set‐
ting up a resource monitor to limit the total costs or to be notified
when a specified number of credits have been consumed.

How Inbound Shares Are Used by Snowflake Data Consumers
Using the ACCOUNTADMIN role, a data consumer who is the owner of a Snowflake
account can create a database from the provider’s outbound share, which is now the
consumer’s inbound share.

In the Snowflake worksheet, here is the statement that a consumer would use to cre‐
ate the shared database. Notice that for this statement to execute you’ll need to
include the database name and inbound share name:

CREATE DATABASE <name_of_new_database> FROM SHARE <name_of_inbound_share>;

As previously discussed, it is not possible to edit shared data. Shared databases are
read-only; thus, the data cannot be updated and no new objects within the database
can be created by the data consumer. There are some additional limitations for this
newly created database. One unique property of the shared database is that the com‐
ments cannot be edited.

The data consumer is unable to clone a shared database or the objects within it. How‐
ever, it is possible to copy the shared data into a new table. While it is technically pos‐
sible to make a copy of the shared database, it might be a violation of the terms of the
contract if both parties entered into such an agreement. For data consumers who are
the owners of a Snowflake account where the database resides, there is no limit on the
number of times the data can be queried. It is important to keep in mind, though, that
data consumers bear the compute cost of querying the data.

Understanding consumer accounts: reader accounts versus full accounts
Both reader accounts and full accounts are types of consumer accounts used in Snow‐
flake data sharing. Reader accounts pay none of the compute costs for querying the
data. Those costs are paid by the provider account that created the reader account. As
such, providers may choose to limit the queries of the reader accounts by using
resource monitors. Reader accounts can be useful as an intermediate step for partners

330 | Chapter 10: Configuring and Managing Secure Data Sharing

who are not yet ready to transition from their current data processes. Setting up and
maintaining reader accounts for their partners’ use does require additional effort by
providers.

Full consumer accounts also have the ability to join their data with
the shared data directly in Snowflake, while a reader account can
only view the data shared with them in Snowflake.

How the ACCOUNT_USAGE share is different from all other inbound shares
The ACCOUNT_USAGE share, a type of inbound share, was introduced in Chap‐
ter 3 when we compared the ACCOUNT_USAGE share from the SNOWFLAKE
database to the INFORMATION_SCHEMA, a schema that is provided for each data‐
base. The SNOWFLAKE database, viewable only by the ACCOUNTADMIN by
default, is similar to the INFORMATION_SCHEMA in that they both provide infor‐
mation about an account’s object metadata and usage metrics. However, there are
three major differences between the two:

• The ACCOUNT_USAGE share, with multiple views, includes records for drop‐
ped objects.

• The ACCOUNT_USAGE share also a longer retention time than the INFORMA‐
TION_SCHEMA.

• The ACCOUNT_USAGE share has an average latency of about two hours,
whereas there is no latency when querying the INFORMATION_SCHEMA.

Share privileges are imported, and most inbound shares allow you to create and
rename a database as well as drop the database from which you created the inbound
share. However, the ACCOUNT_USAGE share is different. You cannot create,
rename, or drop the database associated with the ACCOUNT_USAGE share. You
also cannot add a comment. The ACCOUNT_USAGE share is managed differently
because it is a way in which Snowflake communicates with you about your account.

Throughout this chapter, when we refer to inbound shares we are referring to all
inbound shares other than the ACCOUNT_USAGE share, which is unique. Unlike
the ACCOUNT_USAGE share, inbound shares can be removed, or a new database
can be created with a different name than the inbound share name.

Comparison between databases on inbound shares and regular databases
As we’ve seen, share privileges are imported and shared data is read-only. As shown
in Table 10-1, inbound shares allow you to create and drop a database for the
inbound share, but not to change the structure of the database.

Snowflake’s Direct Secure Data Sharing Approach | 331

Table 10-1. Differences between an inbound share and a regular database

 CREATE, RENAME, or
DROP database

CREATE, ALTER, or DROP schema,
table, stage, and/or view in the
existing database

GRANT/REVOKE ALL, MONITOR, or
CREATE schema in the existing
database

Inbound share Yesa No No
Regular database Yes Yes Yes
a Except for the ACCOUNT_USAGE share

One important note is that, unlike most traditional databases, Snowflake supports
cross-database joins, including joins with databases built from inbound shares (see
Figure 10-17). Consumers, other than those with reader accounts, can also create
views in their own database which can combine their own data with data from the
shared database. This is highly beneficial, because the consumer can enrich their own
data to make it even more valuable.

Figure 10-17. Shared data can be used in combination with consumer-owned data

When new records are created within the provider’s Snowflake account as part of the
shared database, the records are almost instantly available in a data consumer’s
inbound shared database. However, when the provider creates new objects within the
shared database, those objects are not automatically shared with the data consumer.
The provider has to grant authorization to the data share before the records in those
objects are viewable by the consumer.

332 | Chapter 10: Configuring and Managing Secure Data Sharing

How to List and Shop on the Public Snowflake
Marketplace
Data providers can be publicly connected with data consumers globally via the Snow‐
flake Marketplace. As a potential consumer of third-party data, you can access the
Marketplace directly from the Snowflake user interface.

First, make sure you have your role set to ACCOUNTADMIN, and then click the
Marketplace option, as shown in Figure 10-18. If your role is not currently set to
ACCOUNTADMIN, be sure to click the drop-down arrow next to your name and
change your role.

Figure 10-18. Accessing the Marketplace directly from the user interface

From your Snowflake UI, you can now search the Marketplace (see Figure 10-19).
When you search the Marketplace, you’ll find standard listings, which are available
for you to access immediately, and personalized listings for which you can send a
request to access.

How to List and Shop on the Public Snowflake Marketplace | 333

Figure 10-19. The Snowflake Marketplace

Some third-party data providers offer data access for free or sometimes charge you a
fee to access their data. They may also require a contract to ensure that you won’t
reshare their data. Whether the access to the data is free or the provider charges you a
fee, that arrangement between you and the data provider is separate from your
arrangement with Snowflake. You’ll be billed by Snowflake only for the compute you
use to query the shared data. The data storage charges are the responsibility of the
data provider.

334 | Chapter 10: Configuring and Managing Secure Data Sharing

Snowflake Marketplace for Providers
For data providers, the Snowflake Marketplace provides an opportunity to monetize
data in ways never before possible. You can provide secure, personalized data views
using your own customized business model. Snowflake isn’t a party to the transaction
between a data provider and data consumer, and there is no cost for the act of sharing
data on the Data Cloud. Instead, Snowflake enables data sharing on its platform and
earns revenue when data consumers use virtual warehouses to query the data.

To become an approved Snowflake data provider, you’ll need to submit a request,
sign the Snowflake provider agreement, and agree to operate within the Snowflake
provider policies. Importantly, your data will have to meet certain requirements.

One requirement is that your data must be fresh and nonstatic, meaning that the his‐
torical data you’ll provide must be relatively recent and that you have a plan to con‐
tinue updating the data going forward.

Another requirement is that the data cannot be sample, mocked-up data. To be clear,
sample data can be provided to help consumers determine whether they want to use
the full data set or not. The full data set itself, though, cannot be only sample or
mocked-up data.

Finally, you must possess the right to make the data available and ensure that the data
doesn’t include sensitive private information. For each of your listings, object identifi‐
ers for tables, columns, and share names must be written in all uppercase letters and
must use only alphanumeric characters. You’ll also need to provide at least one usage
example for each listing. The ZoomInfo usage example is shown in Figure 10-20.

How to List and Shop on the Public Snowflake Marketplace | 335

Figure 10-20. ZoomInfo usage example for the Snowflake Marketplace

Provider Studio
Provider Studio offers the ability to perform required actions to get listings approved
and to review data requests from consumers. Additionally, Provider Studio makes it
possible for Snowflake providers to view key analytics relating to Marketplace listings
by selecting the Analytics tab. Access to Provider Studio is available only to Snowflake
data providers.

336 | Chapter 10: Configuring and Managing Secure Data Sharing

Standard Versus Personalized Data Listings
All Snowflake Marketplace listings include details about the shared data as well as
sample queries and usage examples. Listings also include information about the data
provider. The difference between the two types of listings, standard and personalized,
is whether the shared data is instantly accessible or not.

A Snowflake Marketplace standard listing, which provides instant access to a pub‐
lished data set, is best used for generic, aggregated, or non-customer–specific data. A
personalized data listing is one in which a request to access data sets must be made.
Once the request is made, the data provider is notified and then contacts the
consumer.

An example of a standard listing is shown in Figure 10-21.

Figure 10-21. Example of a standing listing in the Snowflake Marketplace

You can tell that the listing in Figure 10-21 is a standard listing in a few ways. First,
the word Personalized wasn’t included on the listing’s main page. Also, when you click
the listing, you’ll see the Get Data button which, when clicked, will show the details
about the listing as well as one final button you’ll need to click, the Get Data button
(as shown in Figure 10-22). Notice that you can add more roles, in addition to the
ACCOUNTADMIN role, to give more roles access to the shared database.

How to List and Shop on the Public Snowflake Marketplace | 337

Figure 10-22. Adding roles before getting the data from the Marketplace standard listing

When you click the Get Data button, you’ll see that the data is now ready to query (as
shown in Figure 10-23).

338 | Chapter 10: Configuring and Managing Secure Data Sharing

Figure 10-23. Confirmation that the data from the Marketplace standard listing is ready
to query

Figure 10-24 shows Knoema’s example of a personalized listing in the Snowflake Mar‐
ketplace. You would click the Request Data button to request access from Knoema.

Figure 10-24. Knoema’s personalized listing in the Snowflake Marketplace

How to List and Shop on the Public Snowflake Marketplace | 339

Today there are hundreds of providers who participate in the Snowflake Marketplace
and hundreds of listings that include many well-known data providers. The latest
counts and details of all Snowflake Marketplace data sets can be found in the UI. The
Snowflake Marketplace is also described on Snowflake’s website.

Harnessing the Power of a Snowflake
Private Data Exchange
A Snowflake Private Data Exchange enables organizations to privately share data sets
with a select group of participants. In this way, organizations can create their own pri‐
vate version of the Snowflake Marketplace but with control over what data can be lis‐
ted and who can access the listings. A Snowflake Private Data Exchange is a great
option for a company with different divisions, each of which has its own Snowflake
account and wants to have control over which data is shared throughout the organi‐
zation. A Snowflake Private Data Exchange could also be used by a retailer that wants
to share data with its suppliers.

Getting a Snowflake Private Data Exchange set up is a fairly easy process and gener‐
ally only takes one or two business days. You will want to navigate to the Snowflake
support page and submit a case. You’ll need to provide a business case justification, a
unique name for the new data exchange, and the data exchange display name and
your account URL. You’ll also need to provide the organization ID if you are using
the organization Snowflake feature.

Once you have set up your Private Data Exchange, you can access it by selecting
Data → Shared Data → Manage Exchanges. You’ll then see the Private Data
Exchange. In this example, I’ve created a Private Data Exchange with the name
SpringML (as shown in Figure 10-25).

Figure 10-25. Managing a Private Data Exchange

Once you click the name of the Private Data Exchange, you’ll see its details and be
able to add a member to it (as shown in Figure 10-26).

340 | Chapter 10: Configuring and Managing Secure Data Sharing

https://oreil.ly/oJms9

Figure 10-26. Details of a Private Data Exchange

If you click the Add Member button, you’ll have the option to add a new account and
allow that account to participate in the Private Data Exchange as a consumer, pro‐
vider, or both (as shown in Figure 10-27).

Figure 10-27. Adding members to a Private Data Exchange

Snowflake data exchanges are a great way to scale your business by inviting partners,
customers, vendors, and others to participate.

Snowflake Data Clean Rooms
A data clean room on Snowflake is a design pattern for sharing data between two or
more parties in a privacy-protected way. A popular use case of data clean rooms is to
link anonymized marketing and advertising data from multiple participants. This
gives participants a way to adhere to privacy laws, such as the GDPR and the Califor‐
nia Consumer Privacy Act (CCPA), because data clean rooms don’t allow data points
that can be tied back to a specific user to leave the environment.

Traditional data clean rooms require all data to be stored in one physical location. In
contrast, a data clean room on Snowflake does not require participants to move their
data from its existing location in order to list their data in the Snowflake Data
Exchange. Instead, participants use Secure Data Sharing in which PII included in the
clean room is secured and encrypted.

Using Snowflake to create distributed data clean room functionality is unique in that
Snowflake provides the ability for each data clean room participant to control their
own data without having to trust a single party with all the data. In addition to

Snowflake Data Clean Rooms | 341

limiting who can access the data, Private Data Exchange participants can use secure
functions and access controls to protect their data while still allowing join data analy‐
sis to occur.

A data clean room on Snowflake starts with setting up a Private Data Exchange and
uses current Snowflake features to allow the parties involved to join data in a single
query that produces aggregate results, without allowing access to the underlying low-
level data. Secure functions, as well as joins, can be used to establish individual links
to people, devices, or cookies without needing to exchange or make visible any PII.

In addition to the Snowflake Secure Data Sharing technology, which automatically
and securely shares tables among multiple Snowflake accounts, there are other tech‐
nology features that are used for data clean rooms. Row access policies match cus‐
tomer data without exposing PII, and stored procedures validate query requests.
Snowflake streams and tasks monitor for data clean room requests and respond auto‐
matically. Guidelines are established to determine what data is allowed in and what
data, if any, can leave from a distributed data clean room on Snowflake.

Important Design, Security, and
Performance Considerations
Snowflake shares are relatively quick and easy for providers to set up and make avail‐
able for consumers. Before creating a new share, however, it is a good idea to think
about the design, security, and performance implications for shares.

Share Design Considerations
As records get added to a provider’s object that is shared with a consumer, they are
immediately available to the consumer. However, if an object such as a new table gets
added to the database, the new table is not automatically shared with the consumer.
The producer must take action to share that new object.

From a technical perspective, different shares can use the same schema, but then it
will appear as if all the objects are part of a share even when they aren’t. This makes it
particularly difficult to add new objects to existing shares that are part of the same
schema.

Separate schemas for each listing are not required. However, from a
design perspective, planning to create a separate schema for each
listing could reduce the possibility of confusion and of accidentally
sharing an object.

342 | Chapter 10: Configuring and Managing Secure Data Sharing

An inbound share can only contain one database, but it is possible for a producer to
share data from multiple databases by using a secure view. A Snowflake provider can
create a secure view which references schemas, tables, and other views from several
databases as long as those databases belong to the same account.

Share Security Considerations
Sharing a secure object works the same way as sharing a table. Rather than sharing
the table, you could easily devise a way to share the object securely. One option is to
create an internally available schema in which the base table resides and then create
an externally available schema for the secure object. That way, you can share the
external schema and secure object without exposing the base table.

The following Snowflake objects can be shared: tables, external
tables, secure views, secure materialized views, and secure UDFs.
However, to ensure that sensitive data in a shared database is not
exposed to users in consumer accounts, it is strongly recom‐
mended that you share secure views or secure UDFs, rather than
directly sharing tables.

By using dynamic data masking or row access policies, it is possible to share a portion
of the data in a base table with different consumer accounts without having to create
separate views for each consumer.

It is also possible to share only specific rows of data by using the
CURRENT_ACCOUNT() function. Note that it is only possible to use
CURRENT_ACCOUNT() for Secure Data Sharing when using secure
views and secure materialized views.

Share Performance Considerations
When sharing data from massively large tables, it is recommended that you, as the
provider, define clustering keys on the tables. This will prevent your consumers from
being negatively impacted with degraded performance when they query the database
share.

Difference Between Database Sharing and Database Cloning
Oftentimes, people ask what the difference is between cloning a database and using
the Snowflake Secure Data Sharing feature. The answer is that database cloning effec‐
tively takes a snapshot of the database, and while the original database continues to
change, the cloned database does not. It is important to note that instead of actually
making a physical copy of the data, the metadata is used to display a view of the

Important Design, Security, and Performance Considerations | 343

original database as it existed at that point in time. The original database and the
cloned database both exist within the same account. In contrast, data sharing occurs
across different accounts, and the shared data is a live view of the data which changes
whenever changes are made in the original database.

Data Shares and Time Travel Considerations
Snowflake Time Travel makes it possible to access historical data at a specified point
in time. For security reasons, Time Travel is not enabled for data shares. Otherwise,
the consumer might travel back to a time when they could access a view they now
shouldn’t be allowed to access.

Sharing of Data Shares
A consumer cannot reshare a shared object to another account. A shared object also
cannot be cloned by a consumer. However, a consumer could copy the data into a
table to create a copy of the data that technically could be shared. This risk isn’t just
limited to data shares, though. Any data shared with others via traditional methods
such as an API or FTP, for example, is at risk of being shared further. Really, anyone
who owns a mobile phone and has access to your data can copy and share it. As such,
any restrictions, such as not allowing shared data to be shared with anyone outside
the organization, is best taken care of using contractual agreements.

Summary
In this chapter, we were reminded how Snowflake’s architecture supports Secure Data
Sharing and we considered specific use cases to highlight the importance of data shar‐
ing. We took a deep dive into the four Snowflake Secure Data Sharing approaches:
direct Secure Data Sharing, the Private Data Exchange, the public Snowflake Data
Exchange, and data clean rooms. Differentiating between the provider and consumer
roles for Secure Data Sharing became more evident as we focused our attention on
learning how to create outbound shares and understanding how inbound shares are
used by Snowflake data consumers.

Having enough data, going both deep and wide, as well as having the right kind of
data often means we need to incorporate external, or third-party, data. Snowflake’s
Secure Data Sharing capabilities allow us to do just that. Keeping our own data secure
and having access to the shared data we need is a necessary first step for being able to
extract valuable data insights. One important way we can obtain better insights is by
visualizing data. In the next chapter, we’ll get some hands-on experience to under‐
stand the visualization capabilities of Snowsight, and we’ll learn about Snowflake
partners who offer powerful data visualization tools native to Snowflake.

344 | Chapter 10: Configuring and Managing Secure Data Sharing

As a reminder, we used the ACCOUNTADMIN role throughout this chapter for sim‐
plicity, but it is a best practice to use the SYSADMIN role to create new Snowflake
objects and to grant privileges as needed to custom roles.

Code Cleanup
All that is necessary for code cleanup for this chapter is to drop the database we cre‐
ated. However, let’s see what happens when we attempt to do that:

USE ROLE ACCOUNTADMIN;
DROP DATABASE DEMO10_DB;

We receive an error because we cannot drop a database when there are active shares
associated with it (as shown in Figure 10-28). So, we need to revoke share access to
the database if we want to drop it.

Figure 10-28. Error message received when attempting to drop a database that has active
shares

Let’s revoke privileges and then see if we are able to drop the database:

REVOKE USAGE ON DATABASE DEMO10_DB FROM SHARE NATIONS_SHARED;
REVOKE USAGE ON DATABASE DEMO10_DB FROM SHARE DEMO10_SHARE;
REVOKE USAGE ON DATABASE DEMO10_DB FROM SHARE DEMO10_SHARE2;
DROP DATABASE DEMO10_DB;

You’ll notice that we only needed to revoke access at the database level, because once
that database access was removed, there was no longer access at the schema or table
level. Also, we only needed to drop the database, which will then result in any sche‐
mas, tables, and views within the database being dropped.

Knowledge Check
The following questions are based on the data sharing information contained in this
chapter:

1. What are the four different Snowflake Secure Data Sharing approaches?
2. Does Snowflake support cross database joins? Explain the relevance as it relates

to Secure Data Sharing.
3. Can a data share include more than one database?
4. What is the difference between the Snowflake Marketplace and the Snowflake

Data Exchange?

Code Cleanup | 345

5. Which role(s) can be used to create and maintain data shares?
6. Which Snowflake account is assessed data storage charges, in relation to data

shares?
7. Who pays the virtual warehouse compute charges incurred when querying a data

share?
8. Explain the term Snowgrid.
9. What Snowflake objects can be used to create data shares? Are there any best

practices related to selecting the objects to create data shares?
10. What are the requirements for receiving approval to list on the Snowflake

Marketplace?

Answers to these questions are available in Appendix A.

346 | Chapter 10: Configuring and Managing Secure Data Sharing

CHAPTER 11

Visualizing Data in Snowsight

Data visualization makes it much easier to identify trends, patterns, and outliers and
to discover insights within complex data. Information displayed in a visual context,
such as a graph or a map, is a more natural way for the human mind to comprehend
large amounts of data. Business intelligence (BI) tools such as Domo, Power BI,
Sisense, Sigma, Tableau, and ThoughtSpot are used in this way for corporate report‐
ing and for building complex dashboards in which many users are consumers of a
particular dashboard.

Sometimes individuals or small groups of users in an organization simply need to
undertake ad hoc data analysis, perform data validation while loading data, or quickly
create minor charts and dashboards that can be shared and explored together as a
team. For those use cases, Snowflake’s Snowsight visualization tools are great choices.
Snowsight visualization tools include automatic statistics with interactive results and
dashboards with chart tiles.

Before we dive into Snowsight’s visualization tools, we need to discuss sampling. This
is a consideration because we often deal with data sets that are too large for Snowsight
statistics and visualizations to manage. Snowsight is especially useful in helping to
identify outliers and quality issues with initial data loads, but its capabilities are
intended for use on only a small number of rows. We can reduce a large data set into
a smaller subset through the LIMIT clause or the SAMPLE clause so that we can use the
Snowsight visualization tools. In this chapter, we’ll compare the LIMIT and SAMPLE
clauses.

Prep Work
To prepare for our first exercise, let’s create a new folder. In the upper-right corner,
click the ellipses and then click New Folder (as shown in Figure 11-1).

347

Figure 11-1. Creating a new folder

Name the new folder Chapter11 and then click the + Worksheet button to create a
new worksheet. Name the worksheet Visualization (as shown in Figure 11-2).

Figure 11-2. Environment setup with the Chapter11 folder and the Visualization
worksheet

We’ll be using Snowflake’s sample database; therefore, no additional prep work is
needed in this chapter.

Data Sampling in Snowsight
Sampling data is an important topic for both productivity and visualization purposes.
After loading large data sets, ETL developers or software engineers who are responsi‐
ble for loading data can scan a sample of the data to ensure that nothing unusual
stands out. Likewise, business analysts can view a sample of unfamiliar data as a first
step in exploring the data, and auditors can obtain a sample of the data on which to
perform analysis.

There are limits to the number of records that can be used for
Snowsight visualizations. For automatic statistics visualizations,
and for charts and dashboards, there must be fewer than one mil‐
lion rows. Thus, it is often impossible to visualize a full data set in
Snowsight. In these situations, it is important to obtain a sample of
the data to visualize.

348 | Chapter 11: Visualizing Data in Snowsight

Sampling allows you to create a dashboard with a limited subset of the data that
closely resembles the full data set. Sampling returns a subset of rows from a specified
table. The number of rows returned from sampling a Snowflake table depends on
which one of two different approaches you choose. You can choose to return rows
based on an exact number you specify, or you can have Snowflake return a certain
percentage of the table rows.

Fixed-Size Sampling Based on a Specific Number of Rows
It is possible to sample a fixed number of rows specified in the query. If you want a
data sample rather than all the data rows returned, be sure to specify the number of
rows for sampling to be less than the total number of rows in the table. The number
of rows can be any integer between 0 and 1,000,000. Note that the Bernoulli sampling
method is used when you sample by number of rows, and the System/Block and Seed
methods are not supported in this case. Bernoulli sampling is a sampling process in
which each row would have an equal chance of being selected.

Fraction-Based Sampling Based on Probability
You can sample a portion of the table, with the exact number of rows returned
depending on the size of the table. One way to accomplish this is to specify a seed and
then state the specified probability for a particular row being included in the sample.

In Snowsight, either the Bernoulli or System sampling method can be used. System
sampling is often faster than Bernoulli sampling, but the sample could be biased,
especially for small tables. If not specified, Bernoulli is the default sampling method.

Bernoulli sampling is an equal-probability, without-replacement
sampling design. Each row has an equal chance of being selected
and, thus, Bernoulli sampling can be referred to as row sampling.
When using System sampling, the probability is that a particular
block of rows will be selected. System sampling is sometimes
referred to as block sampling. For large tables, the difference
between these two sampling methods is negligible.

Previewing Fields and Data
For these examples, we’ll need to set the role to SYSADMIN and use one of the sche‐
mas in the SNOWFLAKE_SAMPLE_DATA database:

USE ROLE SYSADMIN;
USE DATABASE SNOWFLAKE_SAMPLE_DATA;
USE SCHEMA TPCDS_SF100TCL;

On the left-hand side of the screen, expand the tables underneath the
TPCDS_SF100TCL schema (as shown in Figure 11-3).

Data Sampling in Snowsight | 349

Figure 11-3. The list of tables in the TPCDS_SF100TCL schema

Next, hover your cursor over the STORE_SALES table, or look in the dedicated sec‐
tion at the bottom, and you’ll see a preview that shows there are more than 288 bil‐
lion rows in the table. In addition to seeing the approximate number of data table
rows in the STORE_SALES table, you can examine a list of fields. Numeric fields are
prefaced with 123 and text fields are prefaced with Aa (as shown in Figure 11-4).

350 | Chapter 11: Visualizing Data in Snowsight

Figure 11-4. The list of fields in the STORE_SALES table

Just to the right of the number of table rows is a Magnifying Glass icon; click the icon
and Snowflake will return the first 100 rows for you to view (as shown in
Figure 11-5). You can scroll using the horizontal and vertical scroll bars to scan
through the rows to get a sense of the data that exists.

Data Sampling in Snowsight | 351

Figure 11-5. The first 100 rows in the table, which can be seen after you click the
Magnifying Glass icon

An active virtual warehouse is required to preview data.

When we preview the data, we see the first 100 rows, but those rows may not give us
an accurate representation of the data. We’re able to get a more accurate picture of the
data if we obtain a sample of the data, especially when we have large data sets.

Sampling Examples
Once you have entered your SQL statement to obtain 100 records by limiting the
number of rows returned, position your cursor either above or within the query text
in the text editor and execute this statement:

SELECT * FROM STORE_SALES LIMIT 100;

Next, click the Run button, which is a blue arrow within a circle located at the upper
right of the screen. Alternatively, press Cmd + Return on macOS or Ctrl + Enter on
Windows.

When you scroll down through the results, you’ll see that exactly 100 rows were
returned. They are different from the 100 rows that you previewed. This is probably
what you expected. The LIMIT clause is nondeterministic, randomly picking rows to
be returned, so it makes sense that it would be different from the preview which
shows the first 100 rows.

Run the query again and you’ll notice that the same 100 records are returned. Is this
what you expected? Given that the LIMIT clause is nondeterministic, you might have
expected to see a different set of 100 records. The reason the same 100 rows were
returned is because of Snowflake caching, described in Chapter 2. The query results
cache holds the results of every query executed in the past 24 hours. As such, the

352 | Chapter 11: Visualizing Data in Snowsight

same 100 records returned using the LIMIT clause will be returned when you rerun
the same query.

Will the same thing happen when we use sampling? Let’s see. Query the same table to
have 100 rows returned, but this time use SAMPLE instead of LIMIT:

SELECT * FROM STORE_SALES SAMPLE (100 ROWS);

The results are an example of the fixed-size sampling method. If you run the SAMPLE
query again, you will not receive the same results. That may not be what you
expected. What do you think will happen when we look at a fraction-based sampling
example?

For our fraction-based sampling example, we’ll use TABLESAMPLE instead of SAMPLE.
They are interchangeable. We’ll also specify the sampling as System sampling and put
the percentage at 0.015%. We selected a very low percentage because we have in
excess of 288 billion rows:

SELECT * FROM STORE_SALES TABLESAMPLE SYSTEM (0.015);

You’ll notice that the results returned more than 30 million records for the sample.
That is OK for the sample size, if we need and want a sample size that large, but
because the sample size exceeds 999,999 rows, Snowsight isn’t able to generate statis‐
tics. We’ll be looking at statistics a little later in this chapter.

Sample query results are unique in that they are not cached. You
saw this when you ran the fixed-size sampling query a second time.
Now try executing the fraction-based sampling query again and see
what happens. Just like before, you’ll receive a different subset of
records if you run the same sampling query again and again.

Using Automatic Statistics and Interactive Results
One way we can visualize data in Snowsight is by using automatic statistics with inter‐
active results. Snowsight uses metadata proactively to quickly provide interactive
results no matter how many rows are returned. As you load and query the data,
Snowflake puts all the rich metadata that is stored behind the scenes into a GUI so
that you can start to understand some of the trends in your data and/or catch any
errors early on. For example, you can tell right away whether there are a lot of null
values in a field. This is especially advantageous to ETL engineers who will then be
able to detect loading errors or gaps in the data being received.

In addition to Snowsight automatic contextual statistics which tell you how many
rows are filled, you’ll also see histograms for all date, time, and numeric columns, as
well as frequency distributions for categorical columns. Additionally, Snowflake

Using Automatic Statistics and Interactive Results | 353

provides email domain distributions for email columns and key distributions for
JSON objects.

Let’s take a look at some of Snowsight’s automatic statistics and interactive results.
Run a SELECT * statement on the CATALOG_RETURNS table and limit the results
to five million. You’ll see the query details, but no statistics, to the right of the
results (as shown in Figure 11-6):

SELECT * FROM CATALOG_RETURNS LIMIT 5000000;

Figure 11-6. Statistics are not available for data sets containing more than 9,999 rows

Remember that the reason we can’t see the statistics is because the number of rows in
the result set was greater than the number allowed. To view statistics, the number of
rows returned must be less than ten thousand (as shown in Figure 11-7). Let’s try it
again with a smaller number:

SELECT * FROM CATALOG_RETURNS LIMIT 9999;

If you don’t see the statistics for a little while, try refreshing the
screen.

354 | Chapter 11: Visualizing Data in Snowsight

Figure 11-7. The query details and statistics

The statistics results are interactive. If you click the statistics for the CR_CATA‐
LOG_PAGE_SK column, the 13th chart down, you’ll see that 98% of the records have
a PAGE_SK value (as shown in Figure 11-8).

Using Automatic Statistics and Interactive Results | 355

Figure 11-8. The query results statistics for an individual column

We may be interested in knowing something about the records that don’t have a
PAGE_SK value. To see those records, click on the “2% invalid” text. What you’ll notice
is that the column has been sorted so that now all the rows with null values are listed
first (as shown in Figure 11-9).

Figure 11-9. Clicking “2% invalid” shows rows with a null value

356 | Chapter 11: Visualizing Data in Snowsight

If you clear the filter, complete statistics information will appear. You can use the
scroll bar to scroll down and see information about each column. We’ll take a look at
one more interactive chart together. Click the CR_RETURN_QUANTITY chart (as
shown in Figure 11-10).

Figure 11-10. CR_RETURN_QUANTITY details and statistics

Now hover your cursor over the chart and click one of the bars in the bar chart. I
selected the number 21 (as shown in Figure 11-11). Once you select a bar in the chart,
you’ll be able to see the records associated with that value in the column to the left.

Figure 11-11. A single bar selected in the Statistics section

Using Automatic Statistics and Interactive Results | 357

You can even select a range of values in the chart (as shown in Figure 11-12).

Figure 11-12. Multiple bars selected in the Statistics section

Rather than having to write individual queries or change over to a data science or vis‐
ualization tool to find out how complete the data is and what are the distinct values or
date ranges for each column, the user can now use Snowsight’s automatic statistics
and interactive results.

Snowsight Dashboard Visualization
It is incredibly helpful to have the ability to preview 100 rows of data, and especially
to be able to use automatic statistics and interactive results to quickly learn a lot about
the data. However, viewing the metadata often isn’t enough. We’ll want to use the new
Snowsight visualization tools to get a more complete story about the data.

Creating a Dashboard and Tiles
Navigate back to the Visualizations folder and click the Dashboards menu option (as
shown in Figure 11-13).

358 | Chapter 11: Visualizing Data in Snowsight

Figure 11-13. The Dashboards menu option

To the right, click the + Dashboard button to create a new dashboard (as shown in
Figure 11-14).

Figure 11-14. Creating a new dashboard in Snowsight

Give the dashboard the name Chapter11, and click the Create Dashboard button (as
shown in Figure 11-15).

Figure 11-15. Naming the new dashboard

Snowsight Dashboard Visualization | 359

Next, click the + New Tile button to add a new dashboard tile (as shown in
Figure 11-16).

Figure 11-16. Adding a new dashboard tile

Once you click the + New Tile button, a worksheet-style screen opens up. Using the
drop-down menu in the middle of the screen, select the database and schema as
shown in Figure 11-17.

Figure 11-17. Selecting the database and schema for the new Chapter11 dashboard

We previously spent time reviewing the interactive statistics in Snowsight, which are
very helpful for looking at data on the fly. Now let’s explore some chart visualizations
that we can use to build a dashboard.

360 | Chapter 11: Visualizing Data in Snowsight

Working with Chart Visualizations
We’ll start with a basic query that returns 10,000 rows:

SELECT * FROM TPCH_SF1.LINEITEM LIMIT 10000;

Click the Chart button at the bottom to see the chart. You’ll notice that it defaults to a
line chart (as shown in Figure 11-18).

Figure 11-18. Results of the default line chart

On the right, there is a chart drop-down menu (as shown in Figure 11-19). Select Bar
and see what happens.

Figure 11-19. Different chart types that can be selected

Snowsight Dashboard Visualization | 361

After you select the bar chart, change the orientation. Notice that the orientation is
right below the Appearance section label. Make sure Descending is selected as the
order direction (as shown in Figure 11-20).

Figure 11-20. Appearance orientation and order direction selections for the chart

Once you have made the selections, your chart should look like Figure 11-21.

362 | Chapter 11: Visualizing Data in Snowsight

Figure 11-21. Bar chart results

Aggregating and Bucketing Data
Having the chart results at the daily level and in descending order doesn’t provide the
visual picture that we think would be helpful. Let’s see if we can make some
improvements.

Click the SHIPDATE button to the right. You can change the Bucketing from None to
another value you think would be best. Try selecting Month and changing the direc‐
tion to Ascending so that the time goes from left to right. Additionally, select the
Label X-Axis and Label Y-Axis options and return the orientation to its original selec‐
tion (see Figure 11-22).

Snowsight Dashboard Visualization | 363

Figure 11-22. Bucketing the SHIPDATE column

The changes I made give me a more appealing visualization from which I can gain
some insights (as shown in Figure 11-23).

364 | Chapter 11: Visualizing Data in Snowsight

Figure 11-23. Visualization of the data after bucketing the SHIPDATE column

Note that if you hover your cursor over the top of any of the bars, you’ll see the
month and year as well as the number of orders for that particular month.

In the upper-left corner, you’ll see a Return to Chapter11 option, with Chapter11
being the name of your dashboard (as shown in Figure 11-24).

Figure 11-24. The ability to return to the dashboard is provided in the upper-left corner
of the screen

Go ahead and click the Return to Chapter11 option. You’ll see the tile on your dash‐
board. You’ll also have the option to create another tile by clicking the plus sign (+)
just below the Chapter11 dashboard label (as shown in Figure 11-25).

Figure 11-25. Adding another tile in the dashboard

Create a new worksheet by clicking the + symbol in the upper-left corner. Now click
the New Tile from Worksheet button to create a new tile in a new worksheet (as
shown in Figure 11-26).

Snowsight Dashboard Visualization | 365

Figure 11-26. Creating a new tile in a new worksheet

Take some time to build additional tiles for your dashboard if you want.

Editing and Deleting Tiles
Even when placed on the dashboard, individual tiles can be edited. In the upper-right
corner of the chart (as shown in Figure 11-27), click the ellipsis and select from the
options. Of course, you can edit the chart by editing the underlying query, and one
handy feature is that you can duplicate a tile. Duplicating a tile duplicates the under‐
lying worksheet and queries.

366 | Chapter 11: Visualizing Data in Snowsight

Figure 11-27. Tile options accessible after clicking the ellipsis

Deleting a tile from a dashboard also permanently deletes the
underlying worksheet. You won’t be able to retrieve the tile or
worksheet after you perform a delete action.

Deleting a tile is not recommended unless you are certain that you will not need the
worksheet upon which the chart is built.

One alternative to deleting a tile is to simply select Unplace Tile so
that it still exists but is not viewable on the dashboard.

Collaboration
The goal of sharing work product and collaborating is to allow the group to benefit
from the work of individuals without each person or business unit having to re-create
the work. It also provides the opportunity for more innovation and improvements
since everyone can contribute to the knowledge base and move it forward more
quickly.

Collaboration | 367

Sharing Your Query Results
To share the results of any query, first make sure you navigate back to the worksheet.
Then simply click the down arrow to download a CSV file of the query results. The
results can then be shared with others (as shown in Figure 11-28).

Figure 11-28. Use the down arrow to begin the process of sharing query results with
others

Using a Private Link to Collaborate on Dashboards
One of the most important features of Snowsight is the ability for individuals to col‐
laborate on a dashboard. It’s easy to do. Navigate back to the Chapter11 dashboard. In
the upper-right corner there is a Share button (as shown in Figure 11-29).

Figure 11-29. The Share button allows for sharing with others for dashboard
collaboration

Click the Share button and you’ll see an option to invite users or to let everyone with
a link have access to the dashboard. You can authorize a few different privileges for
people with the dashboard link, including the ability to only view the results, or to
run the dashboard, which gives them the ability to refresh the dashboard for the latest
results (as shown in Figure 11-30).

368 | Chapter 11: Visualizing Data in Snowsight

Figure 11-30. Assigning privileges for people with a link to the dashboard

A user can filter the results and chart the data to create a dashboard. Within a few
minutes, they can then share the dashboard with a colleague—without ever having to
leave Snowflake and using only SQL.

Summary
As demonstrated in this chapter, Snowsight supports data analyst activities in a vari‐
ety of ways. Additionally, it’s possible to share queries and dashboards, making it easy
to collaborate with others.

One important thing to remember is that Snowsight visualizations are not a substi‐
tute for power BI tools meant to handle very large data sets. In the next chapter, one
of the topics we’ll cover is the analytics workload.

Code Cleanup
Because we used Snowflake’s sample database, no code cleanup is needed for this
chapter.

Summary | 369

Knowledge Check
The following questions are based on the information covered in this chapter:

1. What are the different ways you can instruct Snowflake to return a subset of rows
via the sampling technique? Why might we need to use sampling when creating
Snowsight visualizations?

2. To use the preview option, do you write a SQL query? How many rows are
returned when you use the preview option?

3. When you rerun a sampling query, are the same rows returned the second time
as were returned the first time?

4. Is an active virtual warehouse required to run a sampling query? Is an active vir‐
tual warehouse required to preview the data?

5. What are the different ways you can bucket the data in Snowsight?
6. What happens when you delete a tile from a dashboard?
7. What are some of the use cases for using Snowsight visualizations?
8. What is an alternative to deleting a tile from the dashboard?
9. How many charts can you create from one worksheet?

10. Does Snowflake allow for visualization from internal data sources, external data
sources, or both?

Answers to these questions are available in Appendix A.

370 | Chapter 11: Visualizing Data in Snowsight

CHAPTER 12

Workloads for the Snowflake Data Cloud

A data workload is a capability, service, or process that can assist with data acquisi‐
tion and data access, and that helps to extract value from the data or serves as a foun‐
dation upon which to develop something others can use. Throughout the previous
chapters, we saw many examples of Snowflake’s built-from-the-ground-up approach
to data workloads while we spent time mastering the Snowflake building blocks and
learning how to harness Snowflake’s power.

In this chapter, we’ll focus on how to apply the many Snowflake workloads to deliver
business value from the Snowflake data platform. We’ll summarize all of the Snow‐
flake workloads, including the data engineering, data warehousing, data lake, data
analytics, and data science workloads (as shown in Figure 12-1).

Further, we’ll cover the data collaboration workload to discuss ways to leverage Snow‐
flake’s Secure Data Sharing capabilities for data monetization. We’ll also be intro‐
duced to several examples of Snowflake’s data application workload, which is used to
develop large-scale data-intensive applications. We’ll also learn about a new Snow‐
flake workload, cybersecurity, and using Snowflake as a security data lake. Finally,
we’ll learn about Snowflake’s newest workload, Unistore, which can be used to unify
analytical and transactional data.

371

Figure 12-1. The Snowflake workloads

Prep Work
Create a new folder titled Chapter12 Workloads. Refer to “Navigating Snowsight
Worksheets” on page 8 if you need help creating a new folder and worksheet. To set
the worksheet context, make sure you are using the SYSADMIN role and the
COMPUTE_WH virtual warehouse.

You’ll notice in the following code that we are altering our session so that we don’t use
cached results. The reason for this is because we’ll want to see how long it takes for
some queries to run and we don’t want the cached results to affect the performance
time if we run the query a second time:

USE ROLE SYSADMIN;
USE WAREHOUSE COMPUTE_WH;
CREATE OR REPLACE DATABASE DEMO12_DB;
CREATE OR REPLACE SCHEMA CYBERSECURITY;
ALTER SESSION SET USE_CACHED_RESULT = FALSE;

Data Engineering
The goals of data engineering are to extract, transform, load, aggregate, store, and
validate data. To achieve these goals, data engineers need to build efficient data pipe‐
lines. Data pipelines are the lifeblood of the modern enterprise, and efficient data
pipelines can be the difference between architecture that delivers real value to the
business and architecture that becomes a burden.

372 | Chapter 12: Workloads for the Snowflake Data Cloud

Data engineering pipelines also need to be built in such a way that the data will
adhere to data governance rules and regulations. Although data engineers are not
responsible for creating these governance rules and regulations, they are tasked with
implementing them. Many examples of data governance controls were presented in
Chapter 7. Some hands-on examples we completed in that chapter were for object
tagging, classification, data masking, and row access policies.

As detailed in Chapter 6, Snowflake supports a wide range of data integration and
processing tools, which provides Snowflake data engineers more architecture choices.
For example, an ELT-style data engineering approach is made possible due to Snow‐
flake’s many different integration tools and its ability to deploy and scale virtual ware‐
houses almost instantly.

Snowflake’s data ingestion process is streamlined. It’s easy to ingest JSON, XML, Avro,
Parquet, and other data without transformations. There is no need to adjust the pipe‐
line when the schema changes. In Snowflake, it’s also easy to use SQL to query struc‐
tured and semi-structured data. And, as we saw in Chapter 4, Snowflake also supports
unstructured data.

In Chapter 6, we learned about Snowflake’s data loading tools as well as how to
unload data. We discovered how to load data using SQL in Snowflake worksheets and
how to use the web UI data load feature. We explored the SnowSQL command-line
interface (CLI), where we became familiar with the SQL COPY INTO and PUT com‐
mands. We also learned about data pipelines for continuous loading and streaming
and were introduced to third-party ELT tools. In Chapter 8, we learned about agile
software delivery, including continuous data integration, continuous delivery, and
continuous deployment.

Throughout the previous chapters, we learned that with Snowflake’s unique Data
Cloud platform, organizations can collect more data than ever before. Additionally,
data engineers can build simple, reliable data pipelines in the language of their choice
using the Snowflake data platform, allowing them to deliver the performance and
scalability that modern enterprises need to support thousands of concurrent users
without resource contention.

In addition to its ability to ingest, transform, and query data in near-real time, Snow‐
flake is an incredibly low-maintenance platform. As we saw in Chapter 9, Snowflake
takes care of defining and maintaining partitions for you. Its automatic clustering
capability seamlessly and continuously manages all reclustering; a table is reclustered
only when needed. Snowflake also takes care of query optimization, metadata and
statistics management, index management, and compute scaling. For that matter,
administration of the Snowflake platform is simple; it’s easy for you to set up users,
create objects, and implement cost monitoring solutions.

Data Engineering | 373

Data Warehousing
Organizations build data warehouses to store and centralize data generated across the
organization with the goal of performing fast data analytics and reporting. Of course,
organizations want to accomplish these goals with a data warehouse that is low main‐
tenance and low cost. Snowflake’s data warehousing workload can easily meet these
requirements.

As we’ve seen, Snowflake automatically handles performance tuning at scale with
automatic caching and query optimization. Snowflake also handles remedial database
administrator activities such as storage allocation, capacity planning, resource scal‐
ing, encryption, and seamless backups and upgrades. Snowflake’s near-unlimited
storage, scale, and speed means analysts can run any query at any time and quickly
receive answers.

Snowflake’s Data Cloud platform architecture makes it possible to fulfill an organiza‐
tion’s data warehousing needs. Yet, more is required to ensure the successful fulfill‐
ment of data management initiatives. It is also important to develop a data model that
will best organize the information in a data warehouse. In addition, it’s important to
consider the data modeling approach that is best suited for an organization’s require‐
ments, because an effective and sustainable data modeling approach provides a solid
foundation for a data warehouse.

Snowflake supports all the standard data models, including the Inmon third normal
form approach, the Kimball dimensional model, the new Data Vault model, and
more. If you remember from previous chapters, with the exception of NOT NULL,
referential integrity constraints are informational in Snowflake, which allows for
more flexibility in approaches.

You’re probably familiar with database schema design approaches, including the third
normal form for relational databases which was defined in 1971. The third normal
form uses normalizing principles to reduce the duplication of data, avoid data
anomalies, ensure referential integrity, and simplify data management. The Inmon
data modeling approach is built on the third normal form and identifies key subject
areas and key business entities. The Kimball model, which allows users to construct
several star schemas to fulfill various reporting needs, was introduced in 1996. The
Inmon and Kimball data warehouse designs are two of the most widely discussed
approaches; however, the Data Vault data model approach has become quite popular.

Data Vault 2.0 Modeling
The Data Vault system of business intelligence (BI) modeling organizes data in a way
that separates structural information, such as a table’s unique identifier or foreign key
relationship, from its attributes. Architected to specifically meet the needs of modern

374 | Chapter 12: Workloads for the Snowflake Data Cloud

data warehouses, the Data Vault method is a hybrid approach that incorporates the
best of the third normal form and the star schema modeling methods.

Data Vault was invented by Dan Linstedt while working for Lockheed Martin. It was
introduced to the public in early 2000. Originally, Data Vault focused on modeling
techniques and data loading processes for data warehouses. Later, the scope of Data
Vault expanded to include a reference architecture, agile project delivery, automation,
and continuous improvement, and Data Vault was labeled Data Vault 2.0.

Snowflake supports Data Vault 2.0, and you can likely obtain better results on Snow‐
flake using the Data Vault modeling approach. This is because Data Vault 2.0 can take
advantage of Snowflake’s massively parallel processing compute clusters and opti‐
mized columnar storage format. Additionally, with Snowflake, you don’t need to pre‐
plan partitioning or distribution keys. You also don’t need to build indexes to get
great performance.

The Data Vault model is composed of the following basic table types (as shown in
Figure 12-2):

Hub tables
Hub tables hold all unique business keys of a subject. A hub also includes meta‐
data describing the origin of the business key, known as the record source,
which is used to track where and when the data originated. For example,
HUB_EMPLOYEE may use an employee number to identify a unique employee.

Link tables
Link tables track all relationships between hubs, essentially describing a many-to-
many relationship. Links can link to other links. Links are frequently used to deal
with changes in data granularity, which reduces the impact of adding a new busi‐
ness key to a linked hub. For example, LINK_EMPLOYEE_STORE would track
the relationship between an employee and the location of the store where they
work.

Satellite tables
Satellite tables hold any attributes related to a link or hub and update them as
they change. This is similar to a Kimball Type II slowly changing dimension.
Whereas hubs and links form the structure of the data model, satellites contain
temporal and descriptive attributes. These metadata attributes contain the date
the record became valid and the date it expired. As such, satellites provide
powerful historical capabilities. For example, SAT_EMPLOYEE may include
attributes such as an employee’s first and last names, title, or hire date.

Data Warehousing | 375

Figure 12-2. An example of a Data Vault relationship for hubs, links, and satellites

The Data Vault model is particularly useful in certain scenarios. Data Vault makes
adding attributes simple; thus, it provides the most benefit when many data source
systems exist or when there are constantly changing relationships. The Data Vault
approach also enables faster data loading because tables can be loaded in parallel at
the same time, which means you can load data quickly from multiple systems. Data
Vault can accomplish this because there are fewer dependencies between tables dur‐
ing the load process. Also, the ingestion process is simplified due to having only
inserts, which load quicker than merges or upserts. Data Vault is also a good choice
when you need to easily track and audit your data, because Data Vault inherently ena‐
bles auditing. Record sources are entered for every row, and load times are included
as part of the primary key in satellites.

As described, Data Vault is most useful if you need to load data quickly from multiple
source systems, your data relationships change frequently, or you need to easily track
and audit your data. These scenarios are where the Data Vault method shines. If,
however, your data is more straightforward, the Kimball dimensional model may be a
better choice because implementing Data Vault would require an increased amount
of business logic where it isn’t needed.

Another consideration is that Data Vault requires more storage than other modeling
approaches. Dividing a subject area into three different tables will increase the num‐
ber of tables. Thus, if you only have a single source system, or the data is relatively
static, it probably doesn’t make sense to use Data Vault.

To summarize the differences in terms of complexity and implementation time, the
Data Vault approach and the Kimball approach are relatively simple and require less
time to implement as compared to the Inmon methodology. The Kimball approach is
based on a four-step normalization process whereas Data Vault uses an agile method‐
ology. In general, the cost to implement the Data Vault modeling approach is the low‐
est among the three, but Data Vault does require more storage, and is not the best
choice when the data is straightforward and data auditing is not needed.

376 | Chapter 12: Workloads for the Snowflake Data Cloud

Transforming Data within Snowflake
An often-overlooked topic is how to transform data within Snowflake. Raw data
ingested into Snowflake frequently comes from different sources that are often dispa‐
rate. As such, you’ll likely need to align these data types or assign default values to
empty columns. There may exist a need to convert numbers to strings or strings to
numbers. And you might need to flatten semi-structured data or rename columns.
There are excellent third-party tools, like dbt, that can help you transform your data.
Other data transformation tools, like the data build tool (dbt) from dbt Labs, can be
used when streamlining and cleaning, in addition to transforming data, and might be
needed by data scientists. There are also some native approaches you can employ for
data transformation.

One straightforward way to transform data in Snowflake on an ongoing basis is by
using tasks to automate an INSERT OVERWRITE statement. Tasks, first introduced in
Chapter 3, have the ability to combine data from multiple source tables. There are
also other advantages to using tasks for data transformation: they can be used to per‐
form more complex transformations in a performant way, and the compute costs
associated with using tasks can be tracked using resource monitors.

Materialized views are another native data transformation approach that is frequently
used for real-time simple transformations. The advantage of using materialized views
is that they are simple to create and provide transformed data in real-time.

Data Lake
Organizations build data lakes to harness the massive amounts of data coming from a
variety of data sources for the purpose of eventually consolidating all the data and
providing a single source of truth. Ultimately, the goal is to make all data available to
the intended users and for the appropriate use cases.

Moving to the cloud has simplified data infrastructure and data management in many
ways so that users can take advantage of the data lake workload to achieve many of
their goals. However, until recently, it was not feasible to build data applications off a
data lake environment. The data analytics workload was also a missing piece in the
data lake workload. Snowflake’s architecture, however, eliminates the need to main‐
tain separate data storage and enterprise data warehouse environments. The distinc‐
tion between the data lake and warehouse was removed with Snowflake’s extensible
data architecture.

Using Snowflake, you can mix and match components of data lake patterns to
unleash the full potential of your data. Analysts can query data directly over the data
lake with unlimited elastic scalability and no resource contention or concurrency
issues. Data engineers can work with a streamlined architecture to run reliable and
performant data pipelines. With built-in governance and security, all users can access

Data Lake | 377

all data in the data lake with granular-level access and privacy control. Snowflake can
be used as a full data lake for all data and all users.

In “Data Warehousing” on page 374, we learned about data modeling techniques.
Specifically, we were introduced to the Data Vault 2.0 approach. It is important to
understand that Data Vaults and data lakes are complementary, addressing different
parts of the analytics requirements for organizations. Data lakes provide a persistent
staging area, meant to capture a superset of the data that arrives in too great a vol‐
ume, too quickly, or with too much structural variation for traditional relational sys‐
tems to handle. Data lakes are a great choice for data science activities. For integrating
the most useful data for business users, a subset of the data from the data lake can be
fed to the Data Vault.

We mentioned that a data lake architecture is useful for a data science workload. In
the coming sections, we’ll also learn other ways users can benefit from Snowflake’s
data lake workload. In “Data Applications” on page 383, we’ll see examples of how
large-scale, data-intensive applications can be built on Snowflake. We’ll also learn
how Snowflake, as a security data lake, supports the new Snowflake cybersecurity
workload.

Data Collaboration
Secure Data Sharing enables data collaboration. The importance of the Snowflake
Secure Data Sharing workload cannot be overly stressed. Chapter 10 is devoted to
explaining the four Snowflake Secure Data Sharing approaches (as shown in
Figure 12-3).

Figure 12-3. The four Snowflake Secure Data Sharing approaches

It is important to understand the mechanics of how Snowflake Secure Data Sharing
works, how to harness the power of the Snowflake Data Exchange, and how to list
and shop on the Snowflake Marketplace. With the rise of the Snowflake Marketplace
comes the data network effect whereby the data that resides in the Marketplace
becomes more valuable as it is more frequently requested and additional data provid‐
ers offer their data as well. The Snowflake Marketplace makes it possible for organiza‐
tions to leverage the copy-less sharing and security features of Snowflake Secure Data
Sharing to offer their proprietary data and insights. Monetizing data has never been
easier.

378 | Chapter 12: Workloads for the Snowflake Data Cloud

Data Monetization
If your organization is open to the possibility of monetizing its data, you’ll want to
start by creating an inventory of shareable data. Any information, such as trade
secrets, that would jeopardize your competitiveness or information that would violate
privacy laws should not be considered. Operational data, such as transaction records
and sensor logs, are one option. You might also want to consider monetizing aggrega‐
ted or de-identified marketing data such as customer information, preferences, or
web traffic. Alternatively, you may possess open source data-like social network posts
or government statistics which are of interest to others.

Once you’ve identified data that you’d consider monetizing, you’ll need to decide
whether the raw data is valuable enough or whether you might want to augment the
data with additional data sets. For example, a retailer’s store-level data would be much
more valuable if it were combined with demographics data sets.

The next thing you’d want to consider is how to price your data. Two common pric‐
ing strategies are cost pricing and value pricing. In a cost pricing approach, you’d first
need to calculate your costs involved in sourcing, packaging, and sharing the data and
then add an amount above that cost which would be your profit margin. For a value
pricing approach, you’d want to consider the value of the data from a customer’s per‐
spective. The value to a customer will be based on factors such as the uniqueness of
the data, the level of difficulty required to obtain the data, and how many competitors
already offer the same data. The value of your data is also determined by how fre‐
quently the data is updated and the amount of historical data you’ll be offering. Addi‐
tionally, your data could be more valuable if it is global, rather than local, in scope. As
part of your pricing strategy, you’ll also want to decide whether to sell the data as a set
or as a subscription. Or you could decide to charge based on usage of the data.

Consider a freemium pricing structure, which features a limited
amount of data for free, a basic charge for standard access, and
then a premium charge for additional service features. A freemium
pricing structure is a great way to gain new customers.

Regulatory and Compliance Requirements for Data Sharing
In addition to monetizing data, which is more of a pull to a data marketplace, it is
expected that there will be more pushes to a centralized data marketplace because of
regulatory and compliance requirements. A recent example is the U.S. National Insti‐
tutes of Health (NIH), the world’s largest funder of biomedical research. In January
2023, the NIH will begin requiring most of its annually funded 2,500 institutions and
300,000 researchers to make their data publicly available.

Data Collaboration | 379

The NIH’s mandate is meant to combat the reproducibility crisis in scientific research,
an ongoing methodological crisis in which scientific results are increasingly difficult
or impossible to reproduce. The reproducibility crisis wastes taxpayers’ money and
undermines public trust in science. Once NIH research data becomes publicly avail‐
able next year, it will be interesting to see how the scientific community and others
respond. Being able to access raw data upon which analyses can be independently
performed will lend credibility to research findings.

The unique Secure Data Sharing capabilities of Snowflake make it possible to fully
leverage Snowflake’s powerful data analytics and data science workloads. As you’ll see
in the next section, Secure Data Sharing often plays a major role in data analytics
workloads.

Data Analytics
Data analytics helps users make sense of data. Choosing the right data analytics tools
is important, especially when trying to create a clear path to data analytics democra‐
tization. Data analytics democratization enables everyone in an organization to easily
access and work with the organization’s data. That way, people are empowered to
make data-informed decisions and to leverage data to provide outstanding customer
experiences.

A vast number of different kinds of native business intelligence (BI) tools are avail‐
able from Snowflake partners to help with data democratization. Snowflake-native BI
tools include familiar names such as Domo, Power BI, Sisense, Sigma, Tableau, and
ThoughtSpot. A complete list of Snowflake BI partners can be found in the Snowflake
online documentation.

Let’s focus our attention on learning more about how these analytics tools are used in
various industries. As you explore the following examples, observe how frequently
you see data sharing capabilities as part of the overall analytics solutions.

A few years ago, it would have been unthinkable for most organizations to be in a
position to leverage advanced analytics such as sentiment analysis, cluster analysis,
predictive modeling, machine learning, and artificial intelligence. The adoption of
advanced analytics has been growing, though, especially with the proliferation of
cloud platforms. A portfolio of advanced analytics solutions specific to industries has
been evolving and is especially evident across certain industries such as finance,
healthcare, manufacturing, retail, and communication. Let’s explore some specialized
advanced analytics solutions for those industries.

Advanced Analytics for the Finance Industry
Financial institutions include commercial and investment banks, credit unions,
credit card companies, stock brokerages, foreign exchange services, and insurance

380 | Chapter 12: Workloads for the Snowflake Data Cloud

https://oreil.ly/Zo9Su
https://oreil.ly/Zo9Su

companies. Financial services firms operate in an environment where they are under
intense competitive pressures from emerging firms, and where they are required to
fulfill ever-changing regulatory requirements.

To succeed in this challenging environment, financial institutions must also find ways
to reduce risks associated with fraudulent transactions and credit defaults. It is in the
area of risk reduction that financial institutions have made the most progress by
using data science techniques. Financial services firms are able to detect fraudulent
activity in real time by using advanced, machine learning–based early-warning sys‐
tems capable of mining data as transactions occur. It is also possible to vet potential
borrowers more quickly and thoroughly, by deploying analytics-powered digital
credit assessments and credit collection analyses.

Many of the world’s leading financial services firms have realized the value of sharing
information seamlessly to help manage and lower risk. As such, there is a growing
amount of financially relevant data that is natively available on the Snowflake data
platform. That data can now be shared much more easily with regulatory bodies, for
example, by using the Snowflake Secure Data Sharing functionality. It can also be uti‐
lized as third-party data to enhance organizations’ advanced analytics models. Equi‐
fax, First American Data & Analytics, and S&P Global Market Intelligence make their
data available in the Snowflake Marketplace so that their clients can access the data
simply and quickly, in real time, without having to store a copy of the data.

Advanced Analytics for the Healthcare Industry
Healthcare analytics includes 360-degree patient views, clinical trials data manage‐
ment, and connected medical devices and applications. Operational efficiency
improvements with facility utilization and staffing are also a priority in the healthcare
industry where significant cost savings are possible.

Additionally, the need to share patient information has dramatically increased
because of the financial incentives of outcome-based treatment, a relatively new con‐
cept in the United States. This value-based care model, rather than the traditional fee-
for-service model, has resulted in a fundamental shift toward data sharing in the
healthcare industry, especially in the United States.

Centralized electronic health record (EHR) systems are quickly replacing the tradi‐
tional handwritten notes filed in patient charts. Securely sharing patient information,
without the need to transfer this sensitive information, is made easier through Snow‐
flake’s Secure Data Sharing capabilities. And data from the Internet of Medical Things
(IoMT), including consumer health wearables, sensor-enabled hospital beds, and
medication-tracking systems, can easily be ingested, integrated, and analyzed using
today’s sophisticated data science tools.

Data Analytics | 381

Access to more complete data from EHR and IoMT data provides limitless opportu‐
nities. With advanced analytics and more complete data, healthcare providers could
diagnose patients more quickly and more accurately, uncover trends that could lead
to groundbreaking cures, and innovate with new business use cases that could result
in new revenue streams.

Advanced Analytics for the Manufacturing Industry and
Logistics Services
Manufacturers use advanced analytics techniques to improve product quality and
increase manufacturing operations productivity. Real-time feeds from manufacturing
operations’ sensors can be used to identify quality control issues before they become
excessive. Fluctuations in labor needs can be better anticipated and managed by pre‐
dicting the ups and downs in production demands.

By implementing Secure Data Sharing with partners, manufacturers can break down
data silos that often occur across traditional supply change management systems,
enterprise resource planning platforms, order fulfillment systems, and Internet of
Things (IoT) devices. Combining Secure Data Sharing and advanced analytics can
help to make supply chains more efficient by tracking shipments and inventory in
real time to reduce bottlenecks and interruptions.

Marketing Analytics for Retail Verticals and the Communications and
Media Industry
Creating and maintaining a positive reputation for your brand, your products, and
your business is important. A potential customer’s initial reaction to your products or
services is often shaped by the reviews or responses they encounter on social media.
That is why it’s important to tap into the emotions about your brand online to calcu‐
late a score which indicates whether a social media post or a product review is nega‐
tive, neutral, or positive. It’s also relevant to apply the scoring to emails and phone
conversations through the use of text-to-speech. In doing so, you can determine the
specific products and services, or social media marketing efforts, that elicit the posi‐
tive reactions you want. It also allows you to identify any breakdowns in customer
service. Sentiment analysis is the method you can use to automate the process of
assigning scores to words and determining whether your reputation is positive over‐
all, or not.

Not only are the words your customers use to describe you or your products impor‐
tant, so are the words you use to market to them. Content strategy can employ serial
testing, with an unsupervised learning algorithm, to discover which word choice or
color is the most effective in your digital advertising campaigns. Content strategy can
also be influenced by third-party data such as weather or COVID-19 data; data that is
available on the Snowflake Marketplace. Content strategy can be combined with

382 | Chapter 12: Workloads for the Snowflake Data Cloud

channel optimization, which uses tools such as affinity analysis and market basket
analysis. As one example, channel optimization helps to highlight missed opportuni‐
ties on specific social media platforms such as Instagram, Pinterest, and YouTube.
Additionally, some channels make it possible to use recommendation engines to sug‐
gest similar products or upsell items.

Data science and machine learning models can also help identify things that might
improve customer loyalty because it is easier and cheaper to market to an existing
customer than to a new lead. To assist, third-party loyalty data can be obtained from
technology company Ibotta on the Snowflake Marketplace. When marketing to a new
lead, the likelihood of success can be significantly improved with lead scoring. Leads
are most accurately scored when using augmented third-party data along with your
own marketing data. In addition to being used for lead scoring, predictive analytics
can be used to help identify customers with a higher potential lifetime value. In sum‐
mary, marketing analytics and data science is intended to provide valuable insight
into customers’ preferences and behaviors, for the purpose of marketing budget opti‐
mization and profit maximization.

One of the things you might have noticed in these marketing analytics examples is
that marketing analytics often takes a more tactical approach to analytics at the indi‐
vidual level. The same can be said of many of the healthcare industry’s advanced ana‐
lytics solutions, which can be used at the most granular levels.

Whatever industry or vertical space you are operating in and whatever BI tool you
choose, you need access to the data necessary for analysis. One of the most important
data sources for many organizations is customer data captured by the customer’s own
internal data application. As we’ll see next, the Snowflake data application workload is
one of the most desirable choices for custom-built data-intensive applications.

Data Applications
A data application developer’s goal is to build applications that deliver value to the
company while meeting the practical and qualitative needs of end users. Achieving
this goal, while at the same time consistently providing high-quality user experiences,
is a difficult task, especially when developing large-scale data-intensive applications.

Data-intensive applications process terabytes of fast-changing data in billions of rows
and leverage that data to deliver value to users. Applications include sales and retail
tracking systems, IoT, health, and Customer 360 apps, with the latter used for targe‐
ted email campaigns and for generating personalized offers. Embedded analytics and
machine learning apps are further examples of data-intensive use cases.

To build applications that deliver high value quickly, many developers build their
applications on platform foundations with the required infrastructure elements, such
as data storage, processing, management, and security, built in. Using this strategy,

Data Applications | 383

these developers look for cloud platforms that are easy to use; are secure; support
scalability, concurrency, and the use of semi-structured data; and include intelligent
query execution. Snowflake is a cloud-based platform containing all these founda‐
tional elements, and with its near-zero management capability, developers can focus
on application development rather than on data platform management and data plat‐
form security.

Examples of popular public-facing data-intensive applications in which the Snowflake
cloud platform is used include the bike sharing app Lime, the grocery delivery app
Instacart, the online travel app Hotel Tonight, and the digital learning app Black‐
board. Another highly performant application built on Snowflake is Twilio SendGrid,
a marketing campaign app that sends billions of emails per month on behalf of thou‐
sands of customers.

A key feature of the Snowflake data platform is that it is developer friendly. It allows
app developers to choose among several programming languages, including
Node.js, .NET, Go, Java, Python, and SQL. For example, the Snowflake SQL REST
API can be used to build applications and integrate custom plug-ins. Using Snow‐
flake’s SQL API playground, you can gain hands-on experience developing data appli‐
cations and integrations using the SQL REST API. In the playground, you can explore
predefined queries and responses, or use it to experiment with and execute real quer‐
ies in your Snowflake environment. You can also download the API’s Postman
Collection or explore the OpenAPI specification file. The Snowflake SQL API play‐
ground can be accessed at https://api.developers.snowflake.com.

In 2021, Snowflake introduced the connected application deployment model known
as Powered by Snowflake, a program to help companies build, operate, and grow
applications in the Data Cloud. A number of Powered by Snowflake partners, such as
AuditBoard, Hunters, MessageGears, Securonix, and Supergrain, have adopted the
connected app model for their apps.

To accelerate your Snowflake application journey, it is possible to take advantage of
the Powered By Snowflake program to join workshops and request access to experts
to help you design the right data architecture for your customer-facing applications.
To see examples of Powered By Snowflake applications, visit the Snowflake website.

Moreover, it is possible to use the Snowflake Snowpark developer framework to build
data-intensive applications for consumption by internal business users. Snowpark is
frequently used to build complex pipelines for creating machine learning applica‐
tions. The Snowpark framework can be used by application developers to collaborate
on data projects in coding languages and constructs familiar to them. Most impor‐
tantly, developers can build apps that process data within Snowflake without having
to move data to a different system where the application code exists.

384 | Chapter 12: Workloads for the Snowflake Data Cloud

https://api.developers.snowflake.com
https://oreil.ly/oOuFg

Whether you need a data application workload to build an application for your cus‐
tomers, employees, or internal business users, the Snowflake platform allows you to
build large-scale data applications with no operational burden.

The new Snowflake Native Application Framework takes connected applications to
the next level by allowing providers to easily build, sell, and deploy applications
within the Data Cloud via Snowflake Marketplace. The framework includes telemetry
tools to make it easy for providers to monitor and support their applications. The
native application deployment model complements both connected and managed
application deployment models.

Data Science
The many benefits of Snowflake data engineering, data warehousing, and data lake
workloads have been detailed throughout the previous chapters and also summarized
in earlier sections of this chapter. These particular Snowflake workloads provide the
foundation for a robust data science workload on the Snowflake platform, and the
many unique capabilities of the Snowflake Secure Data Sharing workload enhance the
data science workload. As such, Snowflake’s Data Cloud can be used to accelerate the
collection and processing of internal and third-party data for data science workloads.

Powerful tools are available from several Snowflake data science partners, including
Alteryx, Amazon (SageMaker), Anaconda, Dataiku, DataRobot, H20.ai, and Micro‐
soft (Azure ML). Snowflake’s website includes a complete listing of all Snowflake
technology partners, including data science partners. In addition to the wide range of
data science tools and platforms available through the Snowflake partner network,
there are also Snowpark and Streamlit, two new Snowflake features.

In addition to the wide range of data science tools and platforms available through
the Snowflake partner network, there is also a new Snowflake feature called
Snowpark.

Snowpark
Snowpark is a developer framework that brings new data programmability to the
Data Cloud by extending Snowflake’s capabilities. The Snowflake API makes it possi‐
ble for developers, data scientists, and data engineers to use their language of choice
to deploy code in a serverless manner. Snowpark currently supports Java, Scala, and
Python. Future enhancements to Snowpark include Python Worksheets, which will
allow you to write and run Python code within the Snowflake UI—much like a note‐
book environment. Snowflake Worksheets for Python are currently in private
preview.

Snowpark, first released to customers about a year ago, represents a major foray into
new programmability options within Snowflake. As the Snowflake platform has

Data Science | 385

https://oreil.ly/CJcEQ

grown into the Data Cloud, there was a natural progression to expand ways develop‐
ers could interact with the platform, because not every developer wants to write their
code in SQL and not every data problem is well suited to a SQL solution.

Snowpark makes it easy for data engineers and data scientists to create complex data
pipelines which negate the need to move data to the system where the application
code exists. Instead, processing of the application code is brought directly to where
the data resides. Snowpark provides a single layer to access the data and opens up the
use of a DataFrame API, which provides for more efficient coding capabilities, espe‐
cially with large data sets.

Snowpark taps into Snowflake’s readily available virtual warehouses, so there is no
time lag for accessing resources, which means statistics and computations from
machine learning models or web session analysis can be provided in near real time.
In fact, no cluster outside of Snowflake is required, because all computations are done
within Snowflake. Because Snowpark is native to Snowflake, there is no need to man‐
age partitions, which is a common and difficult problem that frequently occurs with
file-based data lakes.

One of the best features of Snowpark is that you can create user-defined functions
(UDFs) in your code, which Snowpark can then push to the server where the code
will directly operate on the data. Snowflake allows you to build complex logic into
your UDFs and to take advantage of powerful external functions. Currently, there is
Snowflake support for Java, JavaScript, and Python UDFs as well as external
functions.

The Snowpark library is distributed as a JAR file through Maven and can be used to
develop applications in many different environments including Jupyter notebooks, as
well as in application development tools such as IntelliJ IDEA and Visual Studio.
Once you’ve set up your development environment for Snowpark, you’ll need to cre‐
ate a session with the Snowflake database to use the Snowpark library. Be sure to close
the session when you are done.

Specifically, how does Snowpark work once you’ve created a session? In your devel‐
opment environment, you’ll orchestrate transformations and trigger actions to occur
within the Snowflake compute environment. Common Snowpark transformation
operations include SELECT, JOIN, FILTER, and PIVOT, and common actions include
WRITE, FIRST, and COUNT.

Calling certain actions, such as COLLECT and TAKE, will download
data into the memory of your running client or driver application
and could result in an Out of Memory error.

386 | Chapter 12: Workloads for the Snowflake Data Cloud

Using the Snowpark library, you read each Snowflake table as a DataFrame which
creates a memory reference to the table. It is possible to perform transformations on
the memory reference, but all the transformations will only be processed once you
perform an action. In other words, Snowpark DataFrames are lazily evaluated. At the
time an action is performed, the Snowpark library summarizes all the submitted
transformations as it generates an equivalent SQL query statement. This SQL state‐
ment is then passed to the Snowflake compute resources where it is executed (as
shown in Figure 12-4).

Figure 12-4. A SQL statement is executed in Snowflake once an action is triggered from
Snowpark to aggregate transformations into a SQL query

It is possible to test or debug the SQL query manually in the Snow‐
flake UI. You can find the SQL statement in your client or driver
application log.

It was mentioned previously that you take advantage of Snowflake’s UDFs if your
transformation code is too complex to be represented as a DataFrame operation. A
UDF will process one record at a time and return a new column value that can be
appended to the DataFrame.

Data Science | 387

With Snowpark, you can create UDFs with no parameters. Up to
10 parameters can be passed as DataFrame columns.

One limitation of the UDF parameters available for Snowpark is that there are some
data types, most notably arrays, that are not natively supported via the Snowpark
API. There are some workarounds available by using the Snowflake variant data type,
but they are not optimal solutions. However, if you find that there is a need for com‐
plex coding that cannot be handled easily with Snowflake’s UDFs, there is another
option. Just as you can take advantage of Snowflake’s UDFs, it is also possible to
incorporate external functions into your Snowpark solution. External functions are
UDFs stored outside of Snowflake.

If you’d like to get some hands-on experience with Snowpark or some of the data sci‐
ence partners’ tools, you can take part in the Snowflake Data Cloud Academy’s com‐
plimentary Data Scientist School.

Streamlit
Snowflake acquired Streamlit in March 2022. Streamlit has many machine learning
and data science use cases that can be used to build complex and dynamic applica‐
tions. For example, within the Streamlit framework, users can create rich interactive
visualizations with Python code. Some other great benefits of Streamlit are that it is
structured and simple.

Another exciting feature of Streamlit, when used in conjunction with Python Work‐
sheets, is that Streamlit applications can be rendered directly in the Snowflake user
interface. Once those Streamlit apps are deployed on Snowflake as Native Applica‐
tions, users will be able to make those apps available to other Snowflake users
through role-based authentication in much the same way as is done today with data.

Cybersecurity Using Snowflake as a Security Data Lake
The high costs of security breaches make cybersecurity a top priority for company
executives. Some of these costs include loss of revenue, customer trust, and intellec‐
tual property. Maintaining a strong security posture is critical and challenging. For
one thing, with the exponential growth of data, it takes great effort and time to iden‐
tify and contain a breach. Traditional approaches to solving this problem relied heav‐
ily on legacy security information and event management (SIEM) tools not designed
for today’s needs.

There are many challenges associated with a SIEM-only architecture. First, SIEMs
charge by volume, which makes it cost prohibitive to ingest and process all logs. Not

388 | Chapter 12: Workloads for the Snowflake Data Cloud

https://oreil.ly/4RGuB

only are they expensive, but SIEMs are time-consuming solutions to run; thus, events
identified as noncritical are often excluded from SIEM processing.

Second, data silos leave investigators with invisibility gaps, an incomplete picture of
events, and failed audits (as shown in Figure 12-5). It is not unusual for teams to use
10 or more different security products at a time. A lot of the tools used to collect
security logs and security data are separated and siloed. Without a unified way to
manage these tools, security analysts often find themselves hopping from tool to tool,
in a swivel chair approach. This also requires manual work, such as downloading data
and creating a combined report, as well as spending time unnecessarily investigating
too many false positives. This approach results in a loss of visibility, speed, and
efficiency.

Figure 12-5. Legacy cybersecurity architecture

Finally, SIEMs only support proprietary languages; thus, users cannot join data across
different sources or use commonly known languages to investigate logs. As a result,
there’s a high demand for cybersecurity analysts but there doesn’t exist a large pool of
talent who possess the specific skills security teams need.

Overcoming the Challenges of a SIEM-Only Architecture
To overcome these challenges, security teams augmented the traditional SIEM-only
approach with security orchestration, automation, and response (SOAR) and exten‐
ded detection and response (XDR) products. SOAR tools, sometimes built into SIEM
tools, simplify manual remediation efforts. Still, these SOAR tools are often add-ons
and plug-ins that require configuring and tuning, and the combination of SIEM and
SOAR tools doesn’t address the problem of siloed data.

Cybersecurity Using Snowflake as a Security Data Lake | 389

The latest generation of SIEM tools may offer XDR capabilities that attempt to
improve threat detection and response times by centralizing and normalizing data
from across multiple security layers. The goal of XDR solutions is to better validate
alerts, thereby reducing false positives and increasing reliability. SIEMs are more pro‐
active whereas XDR is a reactive system. While SIEM solutions collect shallow data
from many sources, XDR collects deeper data from targeted sources. XDR can also
provide better context for events and eliminate the need for manual tuning or inte‐
gration of data.

XDR has resulted in improvements in cybersecurity, but the need for a solution that
can frequently accept, store, and process large amounts of unstructured as well as
structured data still exists. One solution to those challenges is a data lake approach
which can be employed to manage, share, and use different types of data from differ‐
ent sources. An XDR–data lake process collects data from all layers, feeds the data
into a data lake, sterilizes it, and then correlates the data to any penetrated attack sur‐
face (as shown in Figure 12-6). In doing so, the XDR–data lake process is able to mine
for patterns or insights that arise when attackers exploit gaps in security silos, which
allow them to slip between siloed products and then move laterally over time as they
learn more about a network’s defenses and prepare for future attacks.

Figure 12-6. Modern cybersecurity architecture

Today, many organizations are adopting a security data lake as a foundation of their
cybersecurity strategy. A security data lake allows companies to capture and effi‐
ciently store data from all log sources, access all log sources to respond to incidents,
and hunt for threats. With a security data lake, it is possible to cost-effectively store
years of data in a single place, run analytics across security logs with other enterprise

390 | Chapter 12: Workloads for the Snowflake Data Cloud

data sources, and provide partners with seamless, governed access to your data.
Snowflake is a natural choice as a security data lake.

Snowflake’s unique architecture provides many value propositions. With separation
of compute from storage, security analysts can more quickly perform query searches
and historical analysis than they can with SIEMs, which frequently take 30 minutes or
more to return results. Using Snowflake as a security data lake to store unlimited data
allows you to break down those data silos, and it is a much more scalable approach
than using SIEMs. Additionally, there is no limit to how long you can store data inex‐
pensively in Snowflake. It is possible to store an infinite number of logs, with unlimi‐
ted retention, in a single hot tier at $23 per terabyte.

With regard to the languages available to users, Snowflake supports many languages
including universal languages such as SQL and Python. This support allows organiza‐
tions that use Snowflake as a security data lake to leverage the people they already
have who possess those skills to help with security tasks.

Another value proposition is that by using Snowflake as a security data lake, it is pos‐
sible to combine different types of data sets for analytics that traditional SIEMs or
legacy systems cannot combine. Traditional SIEMs are only able to ingest certain
types of security logs whereas Snowflake can support structured, semi-structured,
and unstructured data types. Additionally, Snowflake’s ecosystem includes enterprise
BI tool options, which makes it easy to build dynamic dashboards. In contrast, tradi‐
tional SIEMs are very limited in the way results can be presented in only a few differ‐
ent templates.

To be clear, using Snowflake as a security data lake has value beyond just inexpensive
cloud storage and instant compute scalability. With Snowflake, there is a rich ecosys‐
tem of partners who provide Snowflake-connected applications to deliver next-level
security capabilities. For example, detection services or workflows out of the box,
event timelines, and more can be delivered via Snowflake partners such as Hunters,
Lacework, and Panthers Lab. In essence, these partners provide intuitive front-end
user interfaces which leverage Snowflake as the backbone of their cybersecurity
strategy.

Using Snowflake as a security data lake, companies can get full visibility into all their
log data sources in a single system, they can reduce risk, and they can improve their
overall security posture. Snowflake removes data silos and enables automated analyt‐
ics to help teams make better-informed decisions using relevant metrics and dynamic
dashboards. In addition, Snowflake continues to innovate and find ways to support
the cybersecurity workload with such features as its search optimization service.

Cybersecurity Using Snowflake as a Security Data Lake | 391

Search Optimization Service Versus Clustering
Snowflake’s search optimization service improves the performance of point lookup
queries. A point lookup query returns one or a few distinct rows. Point lookup quer‐
ies are frequently used by business users who need fast response times for critical
dashboards with highly selective filters and by data scientists who need a specific sub‐
set of a large data set.

Snowflake’s search optimization service runs in the background to collect metadata
information about columns that are used to populate search access paths. Search
optimization may appear similar to clustering, but there are some key differences. For
one thing, search optimization is enabled for all columns whereas clustering is done
on one key or a set of keys. Another difference is that search optimization speeds up
equality searches only whereas clustering speeds up both range and equality searches.
An equality search uses a filter to identify records that contain a specific value for a
given attribute whereas a range query retrieves all records in which some value is
between an upper and lower boundary. One other important difference is that clus‐
tering adds only compute costs to run a background process for reclustering whereas
the search optimization service incurs both compute and storage costs. Storage costs
are incurred to store the search access path.

Here is an example to help demonstrate the differences between clustering and search
optimization. We’ll use Snowflake sample data to create a table. Because we can’t
clone the Snowflake sample data, we’ll need to create a base table using the Snowflake
sample data so that we can clone the table a few times. The table has 600 million
rows, so it will take a few minutes to create a clone:

CREATE OR REPLACE TABLE BASETABLE AS
 SELECT * FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF100.LINEITEM;

First, clone the table to use for the clustering example and enable clustering:

CREATE OR REPLACE TABLE CLUSTEREXAMPLE CLONE BASETABLE;
ALTER TABLE CLUSTEREXAMPLE CLUSTER BY (L_SHIPDATE);

Verify that the clustering is complete by first looking at the clustered table:

SELECT SYSTEM$CLUSTERING_INFORMATION('CLUSTEREXAMPLE','(L_SHIPDATE)');

392 | Chapter 12: Workloads for the Snowflake Data Cloud

Figure 12-7 shows the clustering information for the CLUSTEREXAMPLE table.

Figure 12-7. Clustering information for the CLUSTEREXAMPLE table

Now let’s compare those results to the unclustered base table:

SELECT SYSTEM$CLUSTERING_INFORMATION('BASETABLE','(L_SHIPDATE)');

Cybersecurity Using Snowflake as a Security Data Lake | 393

Figure 12-8 shows the results.

Figure 12-8. Clustering information for the BASETABLE table

You’ll notice that the number of partitions is just slightly higher for the clustered
table, but other than that, there is not much difference at this point between the clus‐
tered and unclustered tables. The reason is because clustering, which runs in the
background, takes some time to complete, especially on a large table such as the one
we’re using. We’ll come back and review the clustered table again later. For now, let’s
go ahead and clone the table to use for a search optimization example:

CREATE OR REPLACE TABLE OPTIMIZEEXAMPLE CLONE BASETABLE;
ALTER TABLE OPTIMIZEEXAMPLE ADD SEARCH OPTIMIZATION;

Verify that the search optimization is complete by using the SHOW TABLES command:

SHOW TABLES LIKE '%EXAMPLE%';

394 | Chapter 12: Workloads for the Snowflake Data Cloud

You should see that the value for the SEARCH_OPTIMIZATION_PROGRESS col‐
umn for the OPTIMIZEEXAMPLE table is now at 100, which indicates that the
search optimization is complete. You’ll also notice that the AUTOMATIC_CLUS‐
TERING column value is ON for the CLUSTEREXAMPLE table.

Next, we’ll want to run a point lookup query on the original table, which has neither
clustering nor optimization enabled. Let’s use the following command to get an
example of a record we can use later for the point lookup query:

SELECT * FROM BASETABLE
LIMIT 1;

Make note of the L_ORDERKEY value for the record that is returned and use it in the
next query:

SELECT * FROM BASETABLE WHERE L_ORDERKEY ='363617027';

Figure 12-9 shows the results.

Figure 12-9. Results of the point lookup query on the BASETABLE table

You’ll notice that, as shown in Figure 12-10, the query profiler took 4.0 seconds to
complete.

Figure 12-10. The Query Details view for the point lookup query on the BASETABLE
table

Click the Home icon to navigate back to the Main menu, and then click Activity →
Query History. Click the query you just ran. You can see that the query had to scan all
906 micro-partitions to obtain the results (as shown in Figure 12-11).

Cybersecurity Using Snowflake as a Security Data Lake | 395

Figure 12-11. The Query Profile view for the point lookup query on the BASETABLE
table

Attempting the same query on the clustered table, we notice that it took even longer
to return the results (as shown in Figure 12-12):

SELECT * FROM CLUSTEREXAMPLE WHERE L_ORDERKEY ='363617027';

Figure 12-12. The Query Details view for the point lookup query on the
CLUSTEREXAMPLE table

396 | Chapter 12: Workloads for the Snowflake Data Cloud

And there were even more partitions scanned this time, too (as shown in
Figure 12-13).

Figure 12-13. The Query Profile view for the point lookup query on the
CLUSTEREXAMPLE table

We should be able to rewrite the query in such a way that we can demonstrate how it
is possible to take advantage of clustering. Let’s see if we can reduce the runtime by
scanning on the specific micro-partitions where the clustering key exists (as shown in
Figure 12-14). If you look at the results you received earlier, you’ll notice that there is
an L_SHIPDATE column. Be sure to use the range of dates from the records returned
in your search:

SELECT * FROM CLUSTEREXAMPLE
 WHERE L_SHIPDATE >= '1992-12-05'and L_SHIPDATE <='1993-02-20'
 AND L_ORDERKEY = '363617027';

Cybersecurity Using Snowflake as a Security Data Lake | 397

Figure 12-14. The Query Details view for the point lookup query on the
CLUSTEREXAMPLE table using a specific range on the clustering key

When we look at the query profile, we notice that it was only necessary to scan 34
partitions to return the results (as shown in Figure 12-15).

Figure 12-15. The Query Profile view for the point lookup query on the
CLUSTEREXAMPLE table using a specific range on the clustering key

398 | Chapter 12: Workloads for the Snowflake Data Cloud

What have we learned thus far? We saw that clustering didn’t improve performance
on point lookup queries. The exception was when we knew, in advance, the range of
values for the clustering key that would allow us to narrow down the number of par‐
titions scanned. Realistically, we’re rarely likely to see the exception in practice.
Therefore, we can say that clustering doesn’t improve performance on point lookup
queries as a general rule. What about optimization?

When we attempt our SELECT * query on the table where we enabled search optimi‐
zation, we’ll see that with search optimization enabled, the results will be returned
much more quickly as the profiler is able to use search optimization (as shown in
Figure 12-16):

SELECT * FROM OPTIMIZEEXAMPLE WHERE L_ORDERKEY ='363617027';

Figure 12-16. The Query Details view for the point lookup query on the
OPTIMIZEEXAMPLE table

Interestingly, it was only necessary to scan six micro-partitions to return the results
(as shown in Figure 12-17).

Cybersecurity Using Snowflake as a Security Data Lake | 399

Figure 12-17. The Query Profile view for the point lookup query on the
CLUSTEREXAMPLE table

When used for point lookup queries in a security data lake, Snowflake’s search opti‐
mization service can have a big impact by speeding up workloads. In addition, using
the search optimization service can reduce overall costs by enabling you to use
smaller virtual warehouses on existing workloads.

Remember earlier when we looked at the CLUSTERINGEXAMPLE table? Refer back
to Figure 12-7 for the results. Now that some time has passed, let’s look at the table
again (as shown in Figure 12-18):

SELECT SYSTEM$CLUSTERING_INFORMATION('CLUSTEREXAMPLE','(L_SHIPDATE)');

400 | Chapter 12: Workloads for the Snowflake Data Cloud

Figure 12-18. Clustering information for the CLUSTEREXAMPLE table (compare to
Figure 12-7)

You should see a big difference now in how the table is clustered.

Unistore
Unistore, Snowflake’s newest workload, expands Snowflake’s capabilities to enable a
modern approach to working with transactional and analytical data together in a sin‐
gle platform. Transactional and analytical data have traditionally been siloed, but with
Unistore, Snowflake users can now include transactional use cases such as application
state and data serving. The Unistore workload is made possible by Snowflake hybrid
tables. To better understand the new Unistore workload, let’s first describe the
problem.

Transactional Workload Versus Analytical Workload
There are several differences between transactional and analytical workloads, as sum‐
marized in Table 12-1.

Unistore | 401

Table 12-1. Differences between transactional and analytical workloads

 Transactional Analytical
Purpose Operational Analytical
Number of concurrent users High Low to medium
Response time Subsecond Seconds to hours
Scales Linearly Nonlinearly (complex queries)
Data model Normalized Columnar store
Freshness Real time Historical
Query form INSERT, DELETE, UPDATE SELECT

There is an increasing need to close the gap between transactional and analytical
workloads. For example, a retailer could use analytical results to identify cross-sell
and up-sell opportunities, but only if the results could be obtained quickly enough to
take action. One frequently implemented solution to the problem is an operational
data store (ODS), which is a type of database often used as an interim local storage
area for a data warehouse. While an ODS does partially address the latency issue, it
also adds more complexity and increases costs.

We learned in previous chapters how Snowflake was built from the ground up to
deliver a scalable solution to analytical workloads, but now, with the new Unistore
workload, the solution is extended to transactional workloads. The Unistore work‐
load enforces primary key constraints, and referential integrity is enforced with for‐
eign key constraints. Row level locking, low latency lookups, and unique and
nonunique indexes are also features built on the existing Snowflake framework to
support the Unistore workload. Snowflake achieves this new functionality with the
use of its new hybrid tables.

Hybrid Tables
Hybrid tables enable customers to perform quick analytics on transactional data for
immediate context. Snowflake hybrid tables are very similar to other types of Snow‐
flake tables. It is possible to join hybrid tables with existing Snowflake tables for a
holistic view across all data, and many common Snowflake features, such as streams,
cloning, and UDFs, are available for use with hybrid tables. Because hybrid tables are
just another table type in Snowflake, you also experience the same robust syntax and
consistent governance and security as other Snowflake table types.

What makes hybrid tables different is that they’re designed to support fast, single-row
operations and provide you with great analytical query performance. When creating
a Snowflake hybrid table, you’ll need to make sure you identify the primary key, as
the primary key is required. As a result of having a required primary key, Snowflake
is able to prevent duplicate records. Duplicate record prevention was a feature not
previously supported.

402 | Chapter 12: Workloads for the Snowflake Data Cloud

For transactional workloads, it is common to use the Order ID
field as the primary key and to also create an index on the order
date column so that it is faster to access the most recent orders.

Leveraging Snowflake’s hybrid tables, you can get transactional and analytical data
together in a single, unified platform without the need to use multiple different prod‐
ucts. This simplifies and streamlines enterprise application development and elimi‐
nates the need to move your data between systems.

Summary
This chapter described Snowflake’s workloads, including data engineering, data ware‐
housing, data lake, data collaboration, data analytics, data applications, data science,
cybersecurity using Snowflake as a security data lake, and Unistore. As we went
through each of them, we were reminded how easy it is to manage the workloads and
how the Snowflake platform is a good choice for many of today’s data-intensive
applications.

We learned how Snowflake’s unique approach to Secure Data Sharing brought us
both private and public data exchanges. We discussed how, with the Snowflake Mar‐
ketplace, you can easily monetize your data and meet ever-increasing compliance and
regulatory requirements for maintaining public access to data.

For the data analytics workload, we were introduced to Snowflake’s BI technology
partners, and we considered some industry-specific solutions using advanced analyt‐
ics. For the data science workload, we took a deep dive into the new Snowpark devel‐
oper framework.

And we learned about Snowflake’s new cybersecurity workload, which also included
some hands-on examples to learn more about Snowflake’s search optimization service
and how it differs from clustering.

Throughout the book, we took this Snowflake journey together. Along the way, we
performed many hands-on exercises, and I provided many instructional tips and
warnings to help guide you further in your understanding of Snowflake. My hope is
that you’ll go beyond the lessons learned in this book to build amazing things as your
Snowflake journey continues.

Code Cleanup
All that is necessary for code cleanup for this chapter is the following command:

DROP DATABASE DEMO12_DB;
ALTER SESSION SET USE_CACHED_RESULT = TRUE;

Summary | 403

We only need to drop the database, which will result in any schemas and tables within
the database to be dropped.

Be sure to set USE_CACHED_RESULT back to TRUE or you won’t be
taking advantage of the cache during your session.

Knowledge Check
The following questions are based on the information covered in this chapter:

1. How frequently does Snowflake issue new releases?
2. What client-side open API languages does Snowpark support?
3. A key feature of the Snowflake data platform is that it is developer friendly.

Explain.
4. What is the reason for setting USE_CACHED_RESULT to FALSE?
5. When is it appropriate to use clustering versus search optimization?
6. How does the search optimization service support the Snowflake cybersecurity

workload?
7. Why is Data Vault a popular modeling technique to use on the Snowflake

platform?
8. How does Data Vault compare to other data modeling methods?
9. Are data engineers responsible for data governance? Explain.

10. What are the two common pricing strategies for data monetization?

Answers to these questions are available in Appendix A.

404 | Chapter 12: Workloads for the Snowflake Data Cloud

APPENDIX A

Answers to the Knowledge Check Questions

Chapter 1
1. The feature to create a support case from within Snowflake is not available for

trial or reader accounts. However, there are still plenty of ways to get help (see the
following answer).

2. If you are unable to create a support case within Snowflake, you have several
options:
• Consult the Snowflake documentation.
• Consult the Snowflake Knowledge Base.
• Solicit support from the Snowflake Community.
• Review the Stack Overflow Q&A.
• Obtain direct support (for activation, password, billing, and cancellation

requests only) from within the Snowflake Community:
1. Log in to the Snowflake Data Heroes Community.
2. Click the “Submit a Case” Quicklink.
3. Select the account type “I am a 30-day trial user”.

3. Setting the context for a Snowflake worksheet means that you’ll need to let Snow‐
flake know which role, virtual warehouse, and database you want to use in the
worksheet. You can set the context through drop-down menus or with the USE
statements in the worksheet (i.e., USE ROLE, USE WAREHOUSE, USE DATABASE).

4. The “Format query” option, available in the drop-down menu, gives you the abil‐
ity to neatly format your SQL code. It does not correct spelling errors.

405

https://oreil.ly/NFW9e
https://oreil.ly/H3dlg
https://oreil.ly/9VdWq
https://oreil.ly/etOvg
https://oreil.ly/hhrXf

5. A Snowflake certification is valid for two years, after which time a recertification
exam must be passed. Note that passing any advanced Snowflake certification
resets the clock on the SnowPro core certification, so you will have two more
years before you’ll need to recertify.

6. You can execute a SQL query in a Snowflake worksheet in two ways:
• Put your cursor at the beginning of the query and click the blue arrow (the

Run button).
• Highlight all statements and press the Ctrl + Enter keys rather than clicking the

Run button.
7. The House icon in the upper-left corner of the screen will return you to the Main

menu.
8. We’ll be using all uppercase letters for naming our Snowflake objects because

Snowflake will convert these names to uppercase anyway, even if they are initially
given in lowercase or mixed case. The exception is if you enclose your object
name in quotes, in which case the object name will not automatically be con‐
verted to uppercase. Instead, it will be saved exactly as you entered it in between
the quotes. Note that if you elect to enclose an object name in quotes when you
create the object, you’ll also need to refer to the object name using quotes in
future SQL statements.

9. In the book, we use the CREATE OR REPLACE syntax so that you can always go
back to any point in the chapter and start at that point without having to drop the
objects first. Note, however, that this is a practice you won’t want to use in a pro‐
duction environment, because using that statement will cause you to end up
overwriting the object. If you mistakenly use the OR REPLACE syntax in produc‐
tion, there are Time Travel capabilities you can use to restore the object.

10. When you first create a worksheet, the name defaults to the current date and
time.

Chapter 2
1. The three Snowflake architecture layers are the cloud services layer, the query

processing (virtual warehouse) compute layer, and the centralized (hybrid-
columnar) database storage layer.

2. The cloud services layer and the centralized (hybrid columnar) database storage
layer are multitenant. The query processing (virtual warehouse) compute layer is
not multitenant. Note that Snowflake is a multitenant service and the cloud
object store is a multitenant service. As such, data is not truly isolated at the pub‐
lic cloud level. It is encryption that creates the isolation. Snowflake’s hybrid

406 | Appendix A: Answers to the Knowledge Check Questions

tenancy policy, at the public cloud level, uses a multitenant table to consolidate
storage but allocates dedicated compute resources to each tenant.

3. The virtual warehouse cache is located in the compute layer. The result cache is
located in the cloud services layer. The metadata storage cache layer is located in
the cloud services layer.

4. You might want to investigate the following if you are experiencing higher than
expected costs for Snowflake cloud services:
• Simple queries accessing session information or using session variables
• Large, complex queries with many joins
• Single-row inserts, as compared to bulk or batch loading
• Frequent use of INFORMATION_SCHEMA commands
• Frequent use of metadata-only commands such as the SHOW command

5. Scaling up is a manual resizing of a virtual warehouse to a larger or smaller size
and is most often undertaken to improve query performance and handle large
workloads. Scaling out is an automatic process of increasing and decreasing the
number of compute clusters and is more often used to maximize concurrency.
Scaling out is achieved using multicluster virtual warehouses, which can auto‐
matically scale if the number of users and/or queries tends to fluctuate.

6. Compute can be scaled up, down, in, or out. In all cases, there is no effect on
storage used.

7. The scalability problem is the main challenge that has been difficult for architec‐
tures to solve. Platform architectures need to be scalable to support sharing of the
same data at the same time with data-driven teams, large and small, near or far
from the data.

8. When Auto-scale mode is selected, the choice of scaling policy is either Standard
or Economy:
• With the Standard scaling policy, the first virtual warehouse immediately starts

when a query is queued, or the Snowflake system detects that there is more
than one query than the currently running clusters can execute.

• With the Economy scaling policy, a virtual warehouse starts only if the Snow‐
flake system estimates the query load can keep the virtual warehouse busy for
at least six minutes. The goal of the Economy scaling policy is to conserve
credits by keeping virtual warehouses fully loaded.

9. You need to configure the following components for multicluster virtual
warehouses:

Answers to the Knowledge Check Questions | 407

• Mode
— Auto-scale; can be set to Standard or Economy
— Maximized; maximized when the Min Clusters value is greater than 1 and

both the Min Clusters and Max Clusters values are equal
• Min Clusters
• Max Clusters

10. You can change the virtual warehouse via the drop-down menu. You can use the
USE WAREHOUSE SQL command in the worksheet.

Chapter 3
1. We can create two main types of databases: permanent (persistent) databases

(default) and transient databases. We can create two main types of schemas: per‐
manent (persistent) schemas (default if within a permanent database) and transi‐
ent schemas (default if within a transient database). And we can create four main
types of tables: permanent (persistent) tables (default if within a permanent
schema), transient tables (default if within a transient schema), temporary tables,
and external tables.

2. A scalar UDF returns a single value whereas a tabular UDF returns multiple
values.

3. Unlike user-defined functions (UDFs), a stored procedure can be used to per‐
form database operations such as SELECT, DELETE, and CREATE.

4. If we use the CREATE DATABASE command and the database we want to create
already exists, we’ll receive an error message. If a database already exists and we
use the optional keywords OR REPLACE, an error will not be returned. Instead, the
existing database will be completely overwritten. If you don’t want to have an
error but also don’t want to overwrite an existing database, you can use the IF
NOT EXISTS optional statement.

5. The default data retention time for a database is one day. We can change the
retention time up to 90 days for a permanent database, assuming we have an
Enterprise or higher Snowflake edition. However, we cannot change the default
retention time; the default retention time will always be one day.

6. The TRUNCATE TABLE command removes data from a table whereas the DROP
TABLE command removes the actual table itself. Note that both the TRUNCATE and
DELETE commands remove data from a table but do not remove the table object
itself. The TRUNCATE command clears the table load history metadata whereas the
DELETE command retains the metadata. Therefore, using the TRUNCATE command
allows an eternal file or a file in a stage to be loaded into the table again.

408 | Appendix A: Answers to the Knowledge Check Questions

7. Regular views incur compute costs but not storage costs. Materialized views
incur both compute costs and storage costs. A materialized view is a precompu‐
ted data set derived from a query specification and stored for later use, thus
incurring storage costs. Materialized views are a serverless feature, utilizing
Snowflake-managed compute services.

8. A fully qualified object name includes all objects needed to fully identify
the object, all separated by a period. An example in which we would want
to use the fully qualified name for a table would be <database_
name>.<schema_name>.<table_name>. A partially qualified object name,
without all the qualifiers identified, is allowed but you should understand how
partially qualified objects will be resolved. When the database name is omitted,
the object is augmented with the current database. When single identifiers are
used, how the unqualified objects are resolved depends on whether the object
appears in a Data Definition Language (DDL) or Data Manipulation Language
(DML) statement, or in a query. More details can be found in the Snowflake
documentation.

9. The default file format for stages is CSV. However, you can create file formats for
other formats, such as JSON, Avro, ORC, Parquet, and XML.

10. The SNOWFLAKE database is owned by Snowflake Inc. and is a system-defined,
read-only shared database which provides object metadata and usage metrics
about your account. Unlike the SNOWFLAKE_SAMPLE_DATA database impor‐
ted into your account at the time of setup, the SNOWFLAKE database cannot be
deleted from your account.

11. There are two ways to trigger a Snowflake task: tasks can run on a schedule
defined at the time the task is created, or task dependencies can be established
whereby a task can be triggered by a predecessor task. Note that there is no event
source that can trigger a task. A task that is not triggered by a predecessor task
must be run on a schedule.

12. METADATA$ACTION specifies the INSERT or DELETE action. METADATA
$ISUPDATE specifies whether the INSERT or DELETE action is part of an UPDATE
applied to the rows in the source table or view. METADATA$ROW_ID specifies
the unique and immutable ID for the row, which can be used to track changes to
specific rows over time.

13. Snowflake streams are a powerful way to handle changing data sets. In Snow‐
flake, one of the most important reasons for using table streams is to keep the
staging table and production table in sync. Using a staging table, along with
streams, helps to protect undesired changes from being made to the production
table. Snowflake table streams are also often used in conjunction with other fea‐
tures, such as Snowflake pipelines and Snowflake tasks.

Answers to the Knowledge Check Questions | 409

https://oreil.ly/JGS6q
https://oreil.ly/JGS6q

Chapter 4
1. The following can be used to make a line of text be a comment instead of being

treated as code:
• The COMMENT command
• /* <commended out code> */
• // <commented out code>

Note that you can comment or uncomment multiple lines by highlighting the
lines and then pressing Cmd + / (macOS) or Ctrl + / (Windows). The highligh‐
ted lines are commented out.

2. Snowflake’s string data types are supported by string constants which are always
enclosed between delimiters, either single quotes or dollar signs. Using dollar
signs as delimiters is especially useful when the string contains many quote
characters.

3. External functions make it possible to use existing machine learning services to
extract text from images, or to process PDF files to extract key-value pairs. In an
external function, you can use any of the AWS, Azure, or GCP functionalities,
such as AWS Rekognition, or Azure Cognitive Services. External functions exe‐
cuted on unstructured data, whether stored within internal or external stages,
can be used to eliminate the need to export and reimport data.

4. The default duration for long-running queries is two days. You can use the
STATEMENT_TIMEOUT_IN_SECONDS duration value at an account, session, object, or
virtual warehouse level.

5. Because of the inexact nature of floating-point data types, floating-point opera‐
tions could have small rounding errors and those errors can accumulate, espe‐
cially when using aggregate functions to process a large number of rows.

6. Snowflake window functions are a special type of aggregate function that can
operate on a subset of rows. This subset of related rows is called a window. Unlike
aggregate functions, which return a single value for a group of rows, a window
function will return an output row for each input row. The output depends not
only on the individual row passed to the function but also on the values of the
other rows in the window passed to the function. Window functions are com‐
monly used for finding a year-over-year percentage change, a moving average, a
running or cumulative total, and rank rows by groupings or custom criteria.

7. Yes, Snowflake supports unstructured data types.

410 | Appendix A: Answers to the Knowledge Check Questions

8. Snowflake supports the following semi-structured data types:
• VARIANT

• OBJECT

• ARRAY

9. Snowflake’s TIMESTAMP data type supports local time zones. TIMESTAMP_LTZ is
an internal UTC time with a specified precision; it is a TIMESTAMP with local time
zone. Daylight saving time is not supported. TIMESTAMP_TZ values are com‐
pared based on their times in UTC, which does not account for daylight saving
time. This is important because, at the moment of creation, TIMESTAMP_TZ
stores the offset of a given time zone, not the actual time zone.

10. Derived columns, sometimes called computed column values or virtual column
values, are not physically stored in a table but are instead recalculated each time
they are referenced in a query. Derived columns can be used to calculate another
derived column, can be consumed by the outer SELECT query, or can be used as
part of the WITH clause.

11. Following are the three ways you can gain access to unstructured data files in
Snowflake:
• Stage file URLs
• Scoped URLs
• Presigned URLs

12. Examples of unstructured data types include video, audio or image files, logfiles,
sensor data, and social media posts. Unstructured data, which can be human gen‐
erated or machine generated, has an internal structure but not one storable in a
structured database format.

13. A Snowflake directory table is a built-in read-only table.

Chapter 5
1. Inherent privileges are those privileges granted to every user who has been

assigned a role. More specifically, certain system-defined roles come with inher‐
ent privileges. For example, the privileges for resource monitors are inherent to
the ACCOUNTADMIN role. Note that privileges can also be assigned and inher‐
ited, in addition to being inherent to a role.

2. Following are the Snowflake system-defined account roles:
• ORGADMIN
• ACCOUNTADMIN
• SYSADMIN

Answers to the Knowledge Check Questions | 411

• SECURITYADMIN
• USERADMIN
• PUBLIC
Most custom roles should be assigned to the SYSADMIN role.

3. Adding defaults for the user makes it easier for the user but adding a default
doesn’t verify that the privilege has actually been granted to the user.

4. Only an ACCOUNTADMIN can create a new resource monitor.
5. For the ability to view data in a table, a role needs privileges to use the database

and schema in which the table resides as well as the ability to use the SELECT
command on the table.

6. By default, only the ACCOUNTADMIN role has access to the SNOWFLAKE
database.

7. The maximum number of accounts in a Snowflake organization cannot exceed
25 by default; however, you can contact Snowflake support to have the limit
raised.

8. Privileges with grant options can be granted to other system-defined or custom
roles.

9. The SHOW command returns results based on the role of the user executing the
command, so users with different roles could get different results if they have
access to different virtual warehouses or different databases, for example.

10. Snowflake has no concept of a super user or a super role. All access to securable
objects, even by the account administrator, requires access privileges to be gran‐
ted explicitly or implicitly by being in a higher hierarchy role.

Chapter 6
1. Following are the three Snowflake data types used for semi-structured data:

• VARIANT

• OBJECT

• ARRAY

VARIANT is the universal data type.
2. The types of Snowflake stages are as follows:

• Internal stages: user stages, table stages, and internal named stages
• External stages

412 | Appendix A: Answers to the Knowledge Check Questions

Internal named stages and external stages are database objects. A user stage and
table stages cannot be altered or dropped and, thus, are not separate database
objects.

3. The INSERT ALL command can be used for either unconditional or conditional
multitable inserts.

4. Whenever the key-value pair includes a null value, the key-value pair is not
inserted.

5. Following are the error handling options when using the Load Data wizard:
• Do not load any data in the file.
• Stop loading, roll back, and return the error (default).
• Do not load any data in the file if the error count exceeds <threshold>.
• Continue loading valid data from the file.

6. While using the COPY INTO command, it is possible to perform basic transforma‐
tions such as reordering columns or performing casts using a SELECT command.

7. Snowflake supports the following semi-structured data types:
• Loading data types: JSON, Parquet, XML, Avro, ORC (semi-structured) and

CSV/TSV (structured)
• Unloading data types: JSON and Parquet (semi-structured) and CSV/TSV

(structured)
8. Following are details regarding Snowpipe REST:

• Available for use with both internal and external stages
• Manually calls the Snowpipe REST API endpoint, with the name of a pipe and

a list of filenames
• Passes a list of files in the stage location
• Best option for use cases in which data arrives randomly and/or if preprocess‐

ing needs require using an ETL or ELT tool, or in situations when an external
stage is unavailable

Following are details regarding Snowpipe AUTO_INGEST (the more scalable
approach):
• Available for use with external stages only
• A notification is received from a cloud provider when a new file arrives
• Processes new files when awakened
• Best option for uses cases in which files arrive continuously

9. To prevent resource contention, be sure to isolate data load jobs from queries by
dedicating separate virtual warehouses for each. Rather than assuming a large

Answers to the Knowledge Check Questions | 413

virtual warehouse will necessarily load massive data files any faster than a small
virtual warehouse (it likely won’t), make sure to instead try splitting large files
into small files of about 100 to 250 MB in size. Remember that the number of
files being loaded and the size of each file influence performance more than the
size of the virtual warehouse.

10. The PUT command loads data into a stage (then the COPY INTO command loads
data from a stage to a table). The GET command unloads data from a stage (after
the COPY INTO command unloads data from a table to a stage).

Chapter 7
1. Multifactor authentication (MFA) is intended to be used in addition to strong

passwords. Snowflake offers self-service MFA to all account levels so that users
can enroll themselves.

2. There is no limit to the number of account network policies that can exist, but
there can only be one account-level network policy activated at a time. There is
also no limit to the number of user network policies that can exist, but there can
only be one user-level network policy, per user, activated at a time.

3. Snowflake’s root key is in a hardware security module and is the only key stored
in clear text.

4. Data masking policies include dynamic masking, conditional masking, and static
masking. Data masking is column based whereas row access policies provide
dynamic row-level security. Note that a column cannot have both a masking pol‐
icy and a row access policy at the same time.

5. The Time Travel retention period is automatically enabled for all Snowflake
accounts, and the default is 24 hours but can be set to zero at the account and
object levels. For Snowflake Enterprise Edition and higher orgs, the retention
period can be set up to 90 days for permanent databases, schemas, and tables.
By setting the retention time as 90 days for a database, all the database objects
will also have a 90-day retention time period.
Changing the data retention time at the schema level will result in all tables in the
schema inheriting the schema’s retention period unless the table is explicitly
given a different retention period. Another thing you should keep in mind is that
the order in which you drop objects does affect the retention period if there are
differences. When you drop a schema, all the existing tables will be available for
the same time period as the schema. If you want to make sure the data retention
period for child objects is honored, you’ll need to drop them prior to dropping
the parent object.

414 | Appendix A: Answers to the Knowledge Check Questions

6. A tag does not need to be enclosed in quotes. If you do enclose a tag identifier in
double quotes, it is case sensitive and can include blank spaces. If an identifier is
unquoted, it cannot be case sensitive, cannot contain blank spaces, and must
begin with a letter or underscore.
Snowflake’s automatic data tagging can be of two different types:
• Semantic
• Privacy

7. We need to flatten query output whenever there is a nested data layer object. This
will allow us to convert a nested data layer object into a new object with only one
layer of key-value pairs.
In this chapter, we used the FLATTEN function to flatten the
DIRECT_OBJECTS_ACCESSED and BASE_OBJECTS_ACCESSED columns in
the Snowflake ACCESS_HISTORY view.

8. Cloned Snowflake objects are replicated physically, rather than logically, to sec‐
ondary databases. This means that there will be additional data storage costs for
any cloned objects that are replicated.

9. The specific ways we can use Time Travel to access historical data are SELECT AT/
BEFORE, CLONE AT/BEFORE, and UNDROP.

10. Time Travel and fail-safe, along with active storage, are part of the total calcula‐
ted storage that incurs storage costs. Replication and failover/failback charges
include data transfer costs and the cost of compute resources. For replications of
cloned objects, there will also be additional data storage costs.

Chapter 8
1. The three major categories of a Snowflake monthly bill are storage fees, data

transfer costs, and credits consumed.
2. While storage pricing is a consideration of which region to select for your Snow‐

flake account, you’ll also want to consider which region could minimize latency
and could give you access to any required features you may need. It’s important
to note that if you decide later to move your data to a different region, data trans‐
fer costs will be incurred.

3. The price of on-demand Snowflake credits is dependent on the cloud provider,
region, and service edition. Alternatively, you can prepurchase credits at a nego‐
tiated discounted rate.

Answers to the Knowledge Check Questions | 415

4. The three properties of a Snowflake resource monitor are the credit quota, credit
usage, and triggers. The credit quota and credit usage properties are both
required to create a resource monitor. If a schedule is not explicitly stated, the
default schedule applies. By default, the credit quota resets at the beginning of
each calendar moth. Setting triggers is optional.

5. There is no limit to the number of virtual warehouse–level resource monitors
that can be created, but there can be only one account-level resource monitor.

6. There is a limit of five Notify actions, one Suspend action, and one Suspend
Immediately action for each resource monitor.

7. Making changes to databases presents a unique set of challenges, especially for
traditional on-premises databases which have to deal with the problem of down
time for hardware and explicitly having to back up databases beforehand so that
they will be available for restoration, if needed. In the event a rollback is needed,
an operations freeze with no work happening during the restoration process is
required. In addition, there is the problem of drift whereby developers could be
working on a different version of the database than the version in production,
and there is also the problem of load balancing. With Snowflake, these top chal‐
lenges no longer exist for users. Database change management processes can be
handled quite simply in Snowflake by creating a lightweight DevOps framework
for small deployments. For a more heavyweight Snowflake DevOps framework,
there are database change management tools that can be used.

8. Zero-copy cloning is a metadata-only operation; thus, zero-copy cloning offers
the ability to duplicate an object without actually creating a physical copy. As
such, there is no additional storage charge for Snowflake cloned objects unless
and until changes are made.
Zero-copy clones are frequently used to support working in development and
test environments as part of the development lifecycle.

9. An empty table is created using the CREATE TABLE LIKE command whereas the
CREATE TABLE AS SELECT command creates a populated table.

10. Assigning a virtual warehouse resource monitor to a virtual warehouse that is
already assigned to a resource monitor will override the previous assignment.

Chapter 9
1. The QUERY_HISTORY_BY_USER function narrows the focus of the query history.

QUERY_HISTORY_BY_SESSION and QUERY_HISTORY_BY_WAREHOUSE are also avail‐
able for use.

2. The Snowflake HASH() function is not a cryptographic hash function. Instead, it
is a utility function that returns information such as the descriptions of queries.

416 | Appendix A: Answers to the Knowledge Check Questions

3. The two traditional methods by which relational databases can be partitioned are
horizontal and vertical.

4. All Snowflake data is stored in database tables. Logically, tables are structured as
collections of rows and columns. This logical structure of rows and columns is
mapped to the Snowflake physical table structures known as micro-partitions.
Snowflake’s unique micro-partitioning approach is transparent to users, unlike
traditional data warehouse partitioning approaches whereby the user has to inde‐
pendently manipulate partitions by using DDL commands.
A Snowflake micro-partition is inherently small in size and is stored as a colum‐
narized set of rows that holds about 16 MB of compressed data. Storing the data
in this way, where columns are stored independently within the micro-partitions,
allows for efficient column scanning and filtering. This is especially beneficial for
very large tables. Using micro-partitions allows for granular pruning on large
tables. Effective and efficient pruning is important because scanning entire tables
is not optimal for most queries.

5. DML operations, like an update, will add a new partition block and remove an
existing partition block. Micro-partition additions and deletions are tracked in
the Snowflake metadata.

6. Snowflake can determine how well clustered a table is by considering how many
partitions overlap. Micro-partitions can overlap with each other in a partition;
the number of overlaps is known as the clustering width. Micro-partitions can
overlap at a specific point in the partition; the number of overlaps at that specific
point determines the clustering depth.
Ultimately, the best indicator of a well-clustered table is its query performance.

7. To see the clustering depth in a table, use the SYSTEM$CLUSTERING_INFORMATION
function. If a table has been clustered, you don’t need to specify the column. If it
has not been clustered, you’ll need to be sure to include the column(s) in your
statement.

8. When deciding on a clustering key, a good rule of thumb is to select a key that
has enough distinct values for effective pruning, yet not too many values that
Snowflake is still able to effectively group rows in the same micro-partitions.

9. When creating the clustering key, it is recommended that you choose no more
than three or four columns or expressions. While the number of columns is an
important consideration, it is most important to focus on selecting the right col‐
umns or expressions for the clustering key and putting them in the best order.

10. Materialized view and the search optimization service are serverless. Table clus‐
tering incurs compute costs and is not a serverless feature.

Answers to the Knowledge Check Questions | 417

Chapter 10
1. Direct Share, Data Exchange, Global Marketplace, and Data Clean Room
2. Unlike most traditional databases, Snowflake supports cross-database joins,

including joins with databases built from inbound shares. This means that con‐
sumers, other than those with reader accounts, can also create views in their own
database which can combine their own data with data from the shared database.
This provides great benefit because the consumer can enrich their own data to
make it even more valuable.

3. An inbound share can only contain one database, but it is possible for a producer
to share data from multiple databases by using a secure view. A Snowflake pro‐
vider can create a secure view that references schemas, tables, and other views
from several databases as long as those databases belong to the same account.

4. The Snowflake Marketplace and Data Exchange both utilize Snowflake secure
data sharing to connect providers of data with consumers. The Marketplace is a
public global marketplace that facilitates sharing among third parties. The Data
Exchange is your own private hub for securely collaborating around data, with a
selected group of members that you invite.

5. By default, the ACCOUNTADMIN has the inherent privileges to create and
maintain data shares.

6. Only the data provider is assessed data storage charges in relation to a data share.
7. The data consumer pays for charges incurred to query a data share. Whenever a

reader account is used to query a data share, the charges are paid for by the data
provider.

8. Snowgrid is the term to describe data replication for the purpose of facilitating
data sharing. With the power of secure data sharing and Snowgrid, Snowflake
providers can create and share any number of data shares with data consumers
worldwide. Snowgrid spans globally, seamlessly connecting Snowflake users who
may be separated by region or cloud. Snowgrid achieves this through replication
via auto-fulfillment. Even when data is shared across the cloud and regions, the
shares are transactionally consistent, meaning the source of truth is still
maintained.

9. Snowflake allows you to share the following objects:
• Databases
• Tables
• External tables

418 | Appendix A: Answers to the Knowledge Check Questions

• Secure views
• Secure materialized views
• Secure UDFs
Best practices include the following:
• Creating a separate schema for each listing is recommended, but not required.

The reason for creating separate schemas is because this could reduce the pos‐
sibility of confusion and accidentally sharing an object.

• To ensure that sensitive data in a shared database is not exposed to users in
consumer accounts, it is strongly recommended that you share secure views or
secure UDFs rather than directly sharing tables.

• When sharing data from massively large tables, it is recommended that you, as
the provider, define clustering keys on the tables.

10. The following requirements must be met in order to receive approval to list on
the Snowflake Marketplace:
• Data must be fresh and nonstatic.
• Data cannot consist of only sample, mocked-up data.
• Data cannot contain private data.
• You must possess the right to make the data available.

Chapter 11
1. You can instruct Snowflake to return a subset of rows via sampling technique in

the following ways:
• Fixed-size sampling based on a specific number of rows (Bernoulli sampling)
• Fraction-based sampling based on a percentage of table rows:

— Bernoulli sampling (default)
— System sampling

There are limits to the number of records that can be used for Snowsight visuali‐
zations. The number of rows for automatic statistics visualizations, as well as for
charts and dashboards, must be less than one million. Thus, it is often impossible
to visualize a full data set in Snowsight. In these situations, it is important to
obtain a sample of the data to visualize.

2. A SQL query is not needed to preview the data. You just need to click the Magni‐
fying Glass icon to preview the data. When we preview the data, we see the first
100 rows. We do not need an active virtual warehouse to preview the data.

Answers to the Knowledge Check Questions | 419

3. When you rerun a query that uses the LIMIT clause, you will get the same rows
returned the second time. However, when you rerun a sampling query, you will
not get the same rows returned the second time as were returned the first time.
Sample query results are unique in that the results are not cached.

4. An active virtual warehouse is required to run a sampling query but is not
required to preview the data using the Magnifying Glass.

5. You can bucket the data in Snowsight in the following ways:
• None
• Date
• Second
• Minute
• Hour
• Week
• Month
• Quarter
• Year
• Via filter

6. Deleting a tile from a dashboard permanently deletes the underlying worksheet.
You will not be able to retrieve the tile or worksheet after you perform a delete
action.

7. Some of the use cases for using Snowsight visualizations include the following:
• When individuals or small groups of users need to undertake ad hoc data

analysis
• Performing data validation while loading data
• Quickly creating minor charts and dashboards that can be shared as a team

8. One alternative to deleting a tile is to simply unplace the tile so that it still exists
but is not viewable on the dashboard.

9. You can create an unlimited number of charts from one worksheet.
10. Snowflake allows for visualization from internal data sources and external data

sources.

420 | Appendix A: Answers to the Knowledge Check Questions

Chapter 12
1. Every week, Snowflake deploys two planned/scheduled releases which may

include the following:
• Full release (deployed any day of the week except Friday)

— New features
— Feature enhancements or updates
— Fixes

• Patch release
Every month, Snowflake deploys one behavior change release.

2. Snowpark supports the following client-side open API languages:
• Node.js
• .NET
• Go
• Java
• Python
• SQL

3. The Snowflake data platform is said to be developer friendly because it allows app
developers to choose among several programming languages.

4. We set USE_CACHED_RESULT to FALSE because we don’t want to take advantage of
the cache results for our examples since we are testing the query performance for
clustering and the search optimization service. If we didn’t change the value to
false, we would get accurate performance testing results if we reran the query two
or more times.

5. It is more appropriate to use search optimization, rather than clustering, for
point lookup queries. Regarding clustering, Snowflake produces well-clustered
data in tables, in general. However, over time, particularly as DML occurs on
very large tables, the data in some table rows might no longer cluster optimally
on desired dimensions. Also, for very large tables in which the ordering is not
ideal, there could be a better way to co-locate the data in the same in the same
micro-partitions. In both cases, that is where Snowflake’s clustering can help.

6. The cybersecurity workload often involves teams who need fast response times
for critical dashboards with highly selective filters which often necessitate point
lookup queries. As such, the search optimization service, which is useful for
point lookup queries, can be used to support the Snowflake cybersecurity
workload.

Answers to the Knowledge Check Questions | 421

7. The Data Vault modeling approach can take advantage of Snowflake’s massively
parallel processing compute clusters and optimized columnar storage format.

8. The Data Vault approach and the Kimball approach are relatively simple and
require less time to implement as compared to the Inmon methodology. The
Kimball approach is based on a four-step normalization process whereas Data
Vault uses an agile methodology. In general, the cost to implement the Data Vault
modeling approach is the lowest, but Data Vault does require more storage, and
is not the best choice when the data is straightforward and auditing of the data is
not needed.

9. Data engineers are not responsible for creating governance rules and regulations,
but they are tasked with implementing them.

10. The two common pricing strategies for data monetization are cost pricing and
value pricing.

422 | Appendix A: Answers to the Knowledge Check Questions

1 For simplicity, sometimes we won’t use the recommended Snowflake system-defined role to create objects. In
those examples, I’ll mention that we’re using a different role than the recommended role.

APPENDIX B

Snowflake Object Naming Best Practices

General (Character Related)
• Create names that are brief and meaningful. Use abbreviations when possible,

especially if the length exceeds eight characters. Although a name can contain up
to 128 characters, it’s best not to exceed 24 characters. Rather than use more
characters in the name, consider using comments or tags as descriptors.

• Avoid mixed-case letters. If you elect to use something other than all uppercase
or all lowercase letters, you’ll need to include quotes around the name because,
without quotes, Snowflake will convert the name to all uppercase.

• Avoid whitespace. Use an underscore (_) instead. Otherwise, this could cause
problems with some third-party applications.

• Use singular terms for both tables and fields. For example, a Customer table
could have a CustomerID field.

• Avoid special characters such as #, - , @, and !. Even though some are allowable
in Snowflake, they can cause problems with some third-party applications, so it’s
best to avoid them.

General (Not Character Related)
• Use the recommended Snowflake system-defined role to create objects. For

example, use the SYSDAMIN role to create databases and virtual warehouses. For
more details, refer to Figure 5-12 in Chapter 5.1

423

2 For chapter exercises, we use the syntax CREATE OR REPLACE instead of CREATE IF NOT EXISTS. We use the OR
REPLACE syntax so that you can always go back to the beginning of the chapter exercises to start over without
having to drop objects first. In practice, though, be sure to use the IF NOT EXISTS syntax, especially in a pro‐
duction environment. If you mistakenly use the OR REPLACE syntax in production, you have the option to use
Snowflake Time Travel capabilities to return the object to its original state.

• Use the syntax IF NOT EXISTS when creating new objects.2

• Standardize on language, choosing a region or dialect such as American English.
For example, use COLOR instead of COLOUR.

• Avoid prepositions. For example, use ERROR_CODE rather than
CODE_FOR_ERROR.

• Avoid postpositive adjectives. For example, use APPROVED_ARTICLES instead
of ARTICLES_APPROVED.

• Avoid generic phrases such as OTHER and MISC.
• Avoid prefixes for tables and columns. Use underscores sparingly.
• Avoid the same name as is in use by a different object type. For example, do not

give the same names to both a temporary and permanent table in the same
schema. Temporary tables are session based; thus, they are not bound by unique‐
ness requirements. Even though you can create a temporary table with the same
name as another table, it is not a good practice to do so as it could result in unin‐
tended consequences.

• Avoid reserved words. A list of reserved keywords is available in the Snowflake
documentation.

Standard Label Abbreviations
DEV

Development environment (prefix) used for databases and roles

EXT
External (prefix) used for stages and tables

FB
Feature branch environment (prefix) used for databases and roles

FF
File format (prefix)

POC
Proof of concept environment (prefix) used for databases and roles

424 | Appendix B: Snowflake Object Naming Best Practices

https://oreil.ly/IrCGj
https://oreil.ly/IrCGj

PROD
Production environment (prefix) used for databases and roles

QA
Test/quality assurance environment (prefix) used for databases and roles

SP
Stored procedure (prefix)

TSK
Task (prefix)

DB
Database

INT
Integration

MVW
Materialized view

RM
Resource monitor

STG
Stage

SVC
Service accounts

TBL
Table (optional)

VW
View

WH
Warehouse

Snowflake Object Naming Best Practices | 425

APPENDIX C

Setting Up a Snowflake Trial Account

Most public cloud provider solutions require you to be logged in to the administra‐
tive portal to provision an instance of a data warehouse or database service. Snow‐
flake’s approach is different. With Snowflake, there is a single and consistent entry
point for users, which reduces complexity and administrative overhead.

Once you sign up for a Snowflake account, you’ll be provided with a unique URL
ending in Snowflakecomputing.com, and once the instance has been created, you
really don’t need to know about the underlying cloud platform. The mapping is man‐
aged by Snowflake. Also, Snowflake delivers a single data experience across multiple
clouds and regions.

Visit the Snowflake sign-up page to begin the process of setting up a new Snowflake
trial account (as shown in Figure C-1).

427

https://oreil.ly/vZKq8

Figure C-1. Snowflake offers a 30-day trial

Once you fill out the information on the first screen, you’ll need to make choices
about the type of Snowflake edition, the cloud provider, and the region. There are
factors to consider when making these choices. You’ll probably want to choose the
same public cloud and region where most of your data applications reside since that
will make it easier and less costly to manage data transfers should you need to do so.

Table C-1 summarizes the major differences in the Snowflake editions. If you are
signing up for a Snowflake trial account to complete the exercises in the book, the
Enterprise Edition is probably your best choice. The Snowflake Enterprise Edition
will give you access to all the features you need to complete all the exercises in the
book.

Table C-1. Comparison of the Snowflake editions

 Standard Enterprise Business
Critical

Virtual Private
Snowflake (VPS)

Complete SQL data warehouse X X X X
Secure data sharing across regions/clouds X X X X
Encryption in transit and at rest X X X X
One day of Time Travel (default) X X X X
Customer-dedicated virtual warehouses X X X X
Federated authentication X X X X
Database replication X X X X
External functions X X X X
Snowsight X X X X

428 | Appendix C: Setting Up a Snowflake Trial Account

 Standard Enterprise Business
Critical

Virtual Private
Snowflake (VPS)

Create your own Data Exchange X X X X
Marketplace access X X X X
Multicluster warehouse X X X
Up to 90 days of Time Travel X X X
Annual rekeying of encrypted data X X X
Materialized views X X X
Search optimization service X X X
Dynamic data masking X X X
External data tokenization X X X
HIPAA support X X
PCI compliance X X
Data encryption everywhere X X
Tri-Secret Secure using customer-managed keys X X
AWS and Azure private link support X X
Database failover/failback for business continuity X X
External functionals—AWS API Gateway private endpoint
support

 X X

Customer-dedicated metadata store X
Customer-dedicated virtual servers wherever the encryption
key is in memory

 X

Setting Up a Snowflake Trial Account | 429

Index

Symbols
$ (variable prefix), 144
@% (file storage stage reference), 80
@~ (user stage reference), 80

A
access controls, 147-180

account access, 231-235
assigning user roles, 165
creating objects, 150-153
custom roles, 155-161, 163, 166
direct access, 231
granting privileges to roles, 64, 162-165, 271
indirect access, 231
multi-account strategy, 178
role hierarchy assignments, 154-155,

159-161
roles in, 20, 151, 176
row access policies and row-level security,

253-256
secondary roles, 177
system-defined roles, 154-155
testing and validating security of, 166-169
user management, 169-175, 178

ACCESS_HISTORY account usage view,
235-237, 245, 249

account costs, managing, 261-285
agile software delivery, 278-284
BI partner dashboards, 277
cloud services layer, 28, 265
data sharing, 322, 330, 334
data transfer costs, 264
database storage layer, 46, 63
fail-safe data recovery, 55

Kafka Connector-related, 216
materialized views, 307
object tagging for cost centers, 276
reclustering, 306
remote services, 144
replication, 244
search optimization service, 309
serverless features, 265
and size of virtual warehouse, 31
Snowflake monthly bill, 262-265
storage fees, 264
tasks, 108
usage-based pricing, 261
virtual warehouse layer, 44, 266-276

account-level network policies, 234-235
account-to-account data sharing (see direct

sharing)
ACCOUNTADMIN role, 59, 69, 151, 154, 161,

165
accounts, single versus multiple, 178
ACCOUNT_USAGE schema, 69-70
ACCOUNT_USAGE share, 331
ACCOUNT_USAGE view, querying, 276
Active Directory Federation Services (AD FS),

232
advertising agencies, 315
aggregate functions, 142-143
aggregating and bucketing data, 363-366
aggregation queries, 308
agile software delivery, 278-284

CI/CD pipeline, 279
database change management, 280-281
DevOps, 278
zero-copy cloning, 281-284

431

ALLOW_OVERLAPPING_EXECUTION
parameter, 104

ALTER command, 38
ALTER DATABASE command, 55, 60
ALTER MATERIALIZED VIEW command, 78
ALTER TASK RESUME command, 103
ALTER WAREHOUSE command, 272
analytical versus transactional workloads, 401
Apache Hive Metastores, 71
Apache Iceberg, 71
Apache Kafka, 213-220
APPLICABLE_ROLES account view, 66
applications, workload, 383
architecture, 23-50

caching, 46-50
cloud services layer, 27-29
database storage layer, 45-46, 63
query processing layer, 29-44
traditional data platform architectures,

24-26
virtual warehouses (see virtual warehouses)

arithmetic operators, 124
ARRAY data type, 131, 185
ARRAY_INSERT function, 201
assignment rules, resource monitor, 269-271
ASSOCIATE_SEMANTIC_CATE‐

GORY_TAGS stored procedure, 250
authentication, 169-172, 231-233
Auto Resume, 33, 38
Auto Suspend, 33, 38
auto-ingest (Snowpipe), 213, 218-221
Auto-scale multicluster virtual warehouse, 36,

42, 43
automatic statistics, 353-358
Azure, 219-219

B
Bernoulli sampling, 349
BI (business intelligence) (see business intelli‐

gence (BI))
billing considerations (see account costs, man‐

aging)
binary data types, 129-130
BOOLEAN data type, 126
brokers, Kafka, 215
business intelligence (BI)

dashboards to monitor usage and costs, 277
and data democratization, 380
Data Vault 2.0, 374-376

indirect access to Snowflake through, 231
presigned URL access, 140

C
caching, 28, 46-50, 353
CALL statement, 83
cardinality of database table, 303, 305
CDP (Continuous Data Protection), 55
change data capture (CDC), 95, 238
character sets, delimited files, 186
chart visualizations, 361-362
child task, 102
CI/CD (continuous integration, continuous

delivery/deployment) pipeline, 279
Classic Console, 3
classification of data, categories, 249-251
CLONE command, 60
cloning

versus database sharing, 343
of table, 222
zero-copy cloning, 46, 261, 281-284

cloud computing, 1
cloud messaging for automating Snowpipe,

218-221
cloud services layer, 27-29
clustering key(s), 79, 303-306
clusters

automating Snowpipe, 218-221
Kafka Connector, 214-217
Maximized multicluster virtual warehouses,

42
multicluster virtual warehouses, 35-37, 42
query processing compute layer, 29
scaling out, 30, 35-37, 43, 293

collaboration, data, 367-369
column-based databases, 26, 45-46

data masking, 251-253
derived columns, 118, 121
and vertical partitioning, 293

COLUMNS database view, 67
common table expressions (CTEs), 117,

121-122, 195
communications and media industry, 382
comparison operators, 124
complex query processing, 31-35
compression, data, 45, 189, 295
computed column values, 121
COMPUTE_WH, 9
concurrency, data, 24, 35-37

432 | Index

conditional data masking, 253
constants, numeric data types, 129
consumer account in direct data sharing,

322-330
context setting, Snowsight worksheet, 8-14
Continuous Data Protection (CDP), 55
continuous integration, continuous delivery/

deployment (CI/CD) pipeline, 279
continuous loading, 189
cookies, deprecation of, 315
COPY command, 185, 205, 225
COPY GRANTS clause, 72
COPY INTO command, 71, 80, 212, 222
correlated versus uncorrelated subqueries,

120-122
costs, account (see account costs, managing)
CREATE CLUSTER BY() statement, 305
CREATE command, 222
CREATE DATABASE command, 55
CREATE IF NOT EXISTS statement, 21, 58
CREATE OR REPLACE statement, 21, 58
CREATE statement, 21
CREATE TABLE AS SELECT (CTAS) com‐

mand, 283
CREATE TABLE LIKE command, 283
credit quota, resource monitor, 268
credit usage, resource monitor, 268
credits consumed computation, 265, 266
CSV file format options, 186-187
CTEs (common table expressions), 117,

121-122, 195
CURRENT_ACCOUNT() function, 343
custom roles, 155-161

functional-level business and IT roles,
157-158, 161

granting privileges, 163
system-level, 158-161
virtual warehouses, 163, 166

cybersecurity workload, 388-401

D
dashboard visualization, 358-367

aggregating and bucketing data, 363-366
chart visualizations, 361-362
creating dashboard and tiles, 358-360
editing and deleting tiles, 366
private link for collaboration, 368

data analytics, workloads, 380-383
data applications, workload, 383

data caching, 28, 46-50, 353
Data Classification, 249-251
data clean rooms, 316, 341
data clustering, 299-306, 309

clustering key, 79, 303-306
and materialized views, 307
and micro-partitions, 45, 291-299
reclustering, 306
versus search optimization service, 392-401
width and depth, 299-303

data collaboration, 367-369, 378-380
data compression for storage, 45, 189, 295
data concurrency, 24, 35-37
Data Control Language (DCL), 112, 113
Data Definition Language (DDL), 28, 112, 113,

271-276
data democratization, 244, 380
Data Dictionary (see INFORMA‐

TION_SCHEMA)
data egress fees, 264
data engineering workload, 372
data governance controls, 244-258

classification of data, 249-251
external tokenization, 256
INFORMATION_SCHEMA, 245
masking of data, 251-253
object dependencies, 257
object tagging, 245-249
row access policies and row-level security,

253-256
secure views and secure UDFs, 257

data ingress fees, Snowflake’s lack of, 264
data lake, 3, 377, 390-391
data loading and unloading, 183-226

alternatives to, 222
best practices for data engineers, 223-225
data sources, 191
data types, 185, 224
file compression, 189
file formats, 80, 185-188
frequency of data processing, 189-190
loading tools, 192-222

data pipelines, 212-221
SnowSQL CLI, 210-212
SQL commands in worksheets, 192-204
UI Load Data wizard, 204-210

stage references, 80, 190-191
unloading tools, 186, 222

Index | 433

Data Manipulation Language (DML), 28, 112,
114, 192, 295

data masking, 251-253
data monetization, 379
data normalization, 293, 374
data pipelines, 212-221

Apache Kafka, 213-220
automating Snowpipe, 218-220
CI/CD pipeline, 279
importance in data engineering, 372
REST endpoints, calling Snowpipe, 221

data protection and recovery, 237-243
Data Query Language (DQL), 112, 114
data sampling (Snowsight), 348-353
data science, 378, 385
data sharing

account costs, 322, 330, 334
as alternative to data loading, 222
query results in collaboration, 368
regulatory and compliance requirements

for, 379
security considerations, 343

data sources, for loading and unloading, 191
Data Superhero program, 18
data transfer costs, 264
data transformation, 183

continuous loading, 190
COPY INTO command, 212
custom Kafka code for, 217
for data pipelines, 212
DCM tools, 280
in steps, 225
NoSQL as not requiring before storing, 25
prior to loading in Snowflake, 224
and semi-structured data types, 185
within Snowflake, 377
Snowflake's data ingestion process, 373
Snowpark’s role in, 386-387

data types, 126-141
binary, 129-130
data loading and unloading, 185, 224
date and time input/output, 130
numeric, 127-129
with search optimization service, 308
semi-structured, 131-137, 185, 224
string, 129-130
unstructured, 137-141

Data Vault 2.0 modeling, 374-376
data warehousing, 1

data workloads (see workloads)
database change management (DCM), 278,

280-281
database storage layer, 45-46, 63
databases

cloning versus sharing, 343
column-based, 26, 45-46, 118, 121, 251-253
creating and managing, 54-63
deleting with stored procedure, 93
encryption and compression of data in, 45
grouping of data by database, 54
on inbound shares versus regular databases,

331
migration tools, 280
permanent versus transient, 54, 72
replication considerations, 244
selecting in Snowsight, 12-13
sharing multiple databases, 319
tables in (see tables)
unstructured data storage, 138

DATABASES account view, 66
dataflow, 212
date and time input/output data types, 130
DCL commands, 112, 113
DCM (database change management), 278,

280-281
DDL commands, 28, 112, 113, 271-276
DELETE command, 71
Delta Lake, 71
democratization of data access and analytics,

245, 380
DEMO_DB database, 62
derived columns, 118, 121
DESCRIBE command, 78
DevOps framework, 278, 280-281
direct identifier privacy category, 250
direct sharing, 316, 318-332

inbound shares, consumer use of, 330-332,
343

outbound shares, creating, 318-330
directory tables for unstructured data, 138, 139
discretionary access control, 148
DML commands, 28, 112, 114, 192, 295
document-based NoSQL databases, 26
DQL command, 113, 114
drift challenge in managing data, 280
DROP command, 174
DROP DATABASE command, 55
DROP TABLE command, 76

434 | Index

dynamic data and static data, splitting of, 293
dynamic data masking, 251

E
E2EE (end-to-end encryption), 237
Economy scaling method, multicluster virtual

warehouse, 36
ELT (Extract Load Transform) tools, 212, 221,

224
ENABLED_ROLES account view, 66
encryption, 45, 237-238, 243
end-to-end encryption (E2EE), 237
ETL (Extract Transform Load) tools, 212, 221,

224, 253
event notification types, cloud messaging, 218
EXECUTE TASK command, 103
extended detection and response (XDR), 390
external cloud storage, accessing without load‐

ing, 222
external functions, 140, 144
external stages, 79, 81, 82, 138
external tables, 70, 73, 244
external tokenization, 256
EXTERNAL_TABLES database view, 67
Extract Load Transform (ELT) tools, 212, 221,

224
Extract Transform Load (ETL) tools, 212, 221,

224, 253

F
fail-safe data protection and recovery, 46, 55,

72, 238, 241-243
failover, 243
federated authentication, 232
file compression, 189
file formats, 81, 185-188
FILE_FORMATS database view, 67
finance industry, 314, 380
firewall access management, 233-235
fixed-point number data types, 127-129
fixed-size sampling based on number of rows,

349
FLATTEN function, 132, 136-137
floating-point number data types, 127-129
formatting SQL, Snowsight worksheet, 15
fraction-based sampling based on probability,

349, 353
frequency of data processing, 189-190
FROM clause, 117, 118

fully qualified names for tables, 76
functional-level custom roles, 157-158, 161
functions

aggregate, 142-143
external, 140, 144
Java, 140
QUERY_HISTORY profiling, 288
scalar, 141
SQL, 141-143
system, 143
table, 143
task, 104
UDFs (see user-defined functions (UDFs))
window, 142

FUNCTIONS database view, 67

G
GEOGRAPHY data type, 126
geospatial data, 126
GET command, 222
GET_PRESIGNED_URL function, 140
global cloud services (GCS) layer, 27-29, 47
governance, data (see data governance controls)
GRANT statements, 139
granting privileges, 64, 162-165, 271
graph-based databases, 26
GROUP BY clause, 118

H
Hadoop environments, 71
hardware security module (HSM), 237
HASH() function, 288
healthcare industry, 315, 381
hierarchical key model for encryption, 237
horizontal database partitioning, 292
HSM (hardware security module), 237
hub tables, 375
hybrid columnar architecture, 27, 45-46
hybrid tables (Unistore), 70, 402

I
identifier privacy category, 250
identifiers, syntax rules, 246
identity and access management (IAM) roles,

190
identity and access management roles, 190
identity provider (IdP), 179, 232
inbound shares, 330-332, 343

Index | 435

independent query, uncorrelated subquery as,
120

indirect identifier privacy category, 250
INFORMATION_SCHEMA, 29, 65-69

account views, 65-67
versus ACCOUNT_USAGE share, 331
database views, 67-69, 245
stored procedures, 90

INFORMATION_SCHEMA_CATA‐
LOG_NAME account view, 66

inherited object tags, 247
Inmon data warehouse design, 374
INSERT ALL command, 198
INSERT command, 97, 192
INSERT INTO command, 71, 192
integration users, 231
interactive results (Snowsight), 353-358
internal stages, 79, 80, 138, 190-191
interval constants, data and time data types, 131
IP addresses, and security measures, 233
IT and functional-level business roles, 157-158

J
Java functions, processing data with, 140
JavaScript UDFs, 84-86, 224
JavaScript, stored procedures, 89-95
JSON (NDJSON) standard format, 186
JSON data, loading into a stage, 81
JSON file format options, 187-188

K
Kafka, 213-220
Kafka Connector, 214-217
Kafka Streams API, 214
key-value databases, 26
Kimball dimensional model, 374, 376
KSQL, 214

L
large data volume and complex query process‐

ing, 31-35
LATERAL JOIN function, 137
LIMIT clause, 347, 352
LIMIT/FETCH clause, 118
link tables, 375
Linstedt, Dan, 375
LIST @~; or ls@~;, 80, 191
literals, numeric data types, 129

loading of data (see data loading and unload‐
ing)

LOAD_HISTORY account view, 66
logical operators, 125
logistics services, 315, 382
long-running queries, 35, 125, 288
Looker dashboard, 277

M
machine learning models, 383
MANAGE GRANTS privilege, 64, 104
managed access schema, 64
manufacturing industry, 382
Mao, Francis, 18
marketing analytics, 382
Marketplace, 316, 333-340
masking of data, 251-253
materialized tables, 71
materialized views, 76, 77-79, 306-308, 309
Max Clusters value, setting, 37
Maximized multicluster virtual warehouse, 36,

42
metadata

in micro-partitioning, 299
and Secure Data Sharing, 314
in Snowsight results, 353

metadata cache, 28, 47, 48
MFA (multifactor authentication), 7, 232
micro-batch processing, 190
micro-partitions, 45, 291-299
Microsoft Azure, 219-219
Microsoft Power BI dashboard, 277
multi-account strategy, access controls, 2, 178
multicluster virtual warehouses, 35-37, 42, 43
multifactor authentication (MFA), 7, 232
multiple databases, sharing, 319
multirow insert caution, query syntax, 123-124
multirow SQL command inserts, 194-198
multitable SQL command inserts, 198-201

N
named stages, 79, 80, 82, 191
namespace, 54
naming best practices

Kafka topic names, 215
objects, 20, 423

Native Applications, 388
NDJSON standard format, 186
near–real-time processing, 190

436 | Index

network connections, troubleshooting, 235
network security policies, 233-235
Newline delimited JSON standard format, 186
nonmaterialized views, 76, 79
normalization optimization technique, 293, 374
NoSQL alternatives, 25
notifications and other actions, resource moni‐

tor, 269
numeric data types, 127-129

O
OAuth integration, 232
OBJECT data type, 131, 185
object dependencies, 257
object hierarchy, 65, 70, 80
objects

access control, 150-153
custom access roles, 158
dependencies, data governance controls,

257
granting privileges to, 162
naming best practices, 20, 423
organization, 178
permanent, 244
pipes, 95
replicating, 244
resource monitor, 266
schema object hierarchy, 70
sequence, 95
shareable, 343
streams (see streams)
tagging, 245-249, 276
temporary, 243
transient, 243, 244
user, 169

OBJECT_INSERT function, 202-204
OBJECT_PRIVILEGES database view, 67
operational data store (ODS), 402
operators, query, 115, 124
ORDER BY clause, 118
ORGADMIN role, 178
outbound shares, 318-330

P
Parquet files, 189, 224
partitions, 45, 291-299
passwords, 171
permanent objects, replicating, 244

permanent versus transient databases, 54, 61,
72

personalized versus standard data listings, Mar‐
ketplace, 337-340

pipelines (see data pipelines)
pipes, 95
PIPES database view, 67
Powered by Snowflake, 384
precision, numeric data types, 127
presigned URL access, 140
previewing fields and data, 349-352
privacy consideration

access restriction types, 148
data clean rooms, 341
medical privacy features, 230
private dashboard link for collaboration,

368
tag classification, 250
and Unified ID 2.0, 315

Private Data Exchange, 316, 340, 341
privileges, granting, 64, 162-165, 271
probability, fraction-base sampling based on,

349
PROCEDURES database view, 67
Provider Studio, 336
providers in data sharing, 318, 322-328,

335-336
proxy service for remote service calls, 144
PUBLIC role, 151, 155
PUBLIC schema, 65, 85
publishing industry, 315
PUT command, 205, 211
Python Worksheets, 385, 388

Q
QUALIFY clause, 118
quasi-identifier privacy category, 250
queries, 115-126

of ACCOUNT_USAGE view, 276
aggregation versus search optimization, 308
context setting, 8-14
development and management, 115-117
formatting in Snowsight, 15
limits on, 126
long-running, 35, 125, 288
operators, 115, 124
performance and optimization (see query

performance)
query processing layer, 29-44

Index | 437

sharing query results in collaboration, 368
subqueries, 118-122, 125
syntax, 115, 117-124
Time Travel, 238

query complexity, as criterion for virtual ware‐
house size, 35

query execution plan, 48
query optimizer, 49
query performance, 125, 287-310

analyzing, 287-291
comparing techniques, 309
data clustering, 299-306
materialized views, 306-308
micro-partitions, 291-299
search optimization service, 308

Query Profile tool, 290
query result cache, 47
QUERY_HISTORY profiling, 288

R
raw data cache, 49-50
RBAC (role-based access control), 148, 232, 281
reader accounts, 328-330, 330
reclustering, 306
referential integrity constraints as informa‐

tional, 374
REFERENTIAL_CONSTRAINTS database

view, 67
remote disk layer (see database storage layer)
remote service calls through proxy service, 144
replication, data, 243, 314
REPLICATION_DATABASES account view, 66
resharing of data shares, prohibition on, 344
resource monitors, 266-276

ACCOUNTADMIN as owner of, 150, 152
credit quota, 268, 269
credit usage, 268, 269
data sharing, 330
DDL commands, 271-276
notifications and other actions, 269
rules for assignments, 269-271

REST API (Snowpipe), 213, 221
REST endpoints, calling Snowpipe, 221
restoring data (see Time Travel)
result cache, 28
retail verticals, data analytics, 382
REVOKE statements, 139
role-based access control (RBAC), 148, 232, 281
roles

and access control (see access controls)
management of, 176, 232
role switching, 6
secondary, 177
super user or super role, 155
user management, 53, 153

root task, 102
row access policies and row-level security,

253-256
row-by-row data processing, avoiding, 224

S
SAMPLE clause, 347, 353
sampling of data (Snowsight), 348-353
satellite tables, 375
scalability of data platform architectures, 23,

24-25, 28, 30
scalar functions, 141
scale, numeric data types, 127
scaling out with clusters, 35-37, 43, 293
scaling up process for virtual warehouse, 31-35
schemas, 45, 63-70

ACCOUNT_USAGE schema, 69-70
in data sharing design consideration, 342
granting privileges, 64
INFORMATION_SCHEMA, 65-69
object hierarchy, 70
organizing of data by, 54
permanent versus transient, 64
retention time for, 63
schema objects hierarchy, 65

SCHEMATA database view, 67
SCIM 2.0, identity provider integration, 178
scoped URL access, 139
search optimization service, 308, 392-401
secondary roles, access controls, 177
securable database objects, 53-109

creating and managing databases, 54-63
extending SQL, 82-95
hierarchy, 150
pipes, 95
schemas, 45, 54, 63-70, 342
sequences, 95
stages, 79-82
stored procedures, 82-84, 89-95
streams, 95-101
tables, 70-76
tasks, 102-108
UDFs, 82-95, 257

438 | Index

views, 76-79
Secure Data Sharing, 2, 313-345

cloning versus sharing, 343
data clean rooms, 316, 341
data collaboration, 378-380
design considerations, 342
direct sharing, 316, 318-332

inbound shares, 330-332
outbound shares, 318-330

performance considerations, 343
Private Data Exchange, 316, 340, 341
security considerations, 343
sharing of data shares, 344
Snowflake Marketplace, 316, 333-340
Snowgrid, 314
Time Travel considerations, 344
Unified ID 2.0, 315
use cases, 314

Secure Socket Layer (SSL), 235
secure SQL UDTF that returns tabular value,

87-89
secure UDFs, 82, 87-89, 96, 257
secure views, 77, 257
security considerations, 230-244

access controls (see access controls)
versus access efficiency, 147
ACCESS_HISTORY account usage view,

235-237, 245, 249
account access control, 231-235
cloud services layer management of, 28
data governance (see data governance con‐

trols)
data protection and recovery, 237-243
data sharing (see Secure Data Sharing)
replication and failover, 243
securable objects (see securable objects)
Snowflake features, 230

security data lake, 3, 390-391
security information and event management

(SIEM), 3, 388-391
security orchestration, automation, response

(SOAR), 389
SECURITYADMIN role, 104, 155, 172
SELECT command, 114, 117, 195
SELECT statement, 11, 89
SELECT SYSTEM$WHITELIST() function,

235
SELECT SYSTEM$WHITELIST_PRIVATE‐

LINK() function, 235

selectivity of database table, 303-306
semi-structured data types, 131-137, 185, 224
sensitive information privacy category, 250
sequence objects, 95
SEQUENCES database view, 67
serverless compute model, 102, 225
session variables, creating UDFs with, 144
SET command, 144
set operators, 125
shadow IT, 231
sharding (horizontal partitioning), 292
shared-disk architecture, 24
shared-nothing architecture, 25
sharing data (see Secure Data Sharing)
shortcuts, Snowsight, 16
SHOW command, 78, 173
SHOW DATABASES command, 55, 60, 151
SHOW MATERIALIZED VIEWS command,

77
SHOW NETWORK POLICIES statement, 235
SHOW SCHEMAS command, 63, 68
SHOW TABLES command, 61
SHOW TAGS statement, 247
SHOW VARIABLES command, 144
SHOW VIEWS command, 77
SIEM (see security information and event man‐

agement)
Sigma dashboard, 277
single sign-on (SSO), 232
Smart Autocomplete, 14
snapshot of database, 46
SnowCD, 235
Snowday event, 19
Snowflake Data Cloud Platform

architecture (see architecture)
benefits and innovations, 1-3
certifications, 19
code example caveats, 19-20
community, 17-18
edition comparison, 428
events, 19
monthly bill, 262-265
naming standards, 20
virtual warehouses (see virtual warehouses)

Snowflake Data Exchange, 3
SNOWFLAKE database, 62, 69
Snowflake Marketplace, 316, 333-340
Snowflake Native Application Framework, 385
Snowflake Organizations, 2

Index | 439

Snowflake Summit, 19
SNOWFLAKE user, 173
SNOWFLAKE_SAMPLE_DATA database, 62
Snowgrid, 314
Snowpark API, 224
Snowpark developer framework, 2, 222, 384,

385-388
Snowpipe, 95

automating, 218-220
billing, 216
integration user for, 231
optimum file size, 213
REST endpoints, calling, 221
streaming data, 221

SnowPro Core certification exam, 19
Snowsight, 3, 347-369

automatic statistics, 353-358
collaboration, 367-369
creating database with, 56-59
dashboard visualization, 358-367
data sampling, 348-353
interactive results, 353-358
limits on number of records, 348
orientation for, 4-5
preferences, 6-7
Profile, 7
role switching, 6
Support, 7
version history, 16-17, 280
worksheet navigation, 8-17

SnowSQL CLI, 111, 183
multifactor authentication with, 232
PUT and COPY INTO commands, 210-212
query development with, 115-117
Snowflake Load Data wizard, 209

SQL (Structured Query Language), 111
SQL commands, 112-114

data types (see data types)
functions (see functions)
importance of order, 152
inserted into worksheets, 192-204
query shortcuts in Snowsight, 16
UDFs versus stored procedures, 83

SQL UDF, 84, 87-89
SSD cache, 49
SSL (Secure Socket Layer), 235
SSO (single sign-on), 232
stage file URL access, 139, 140
stages, 79-82

external, 79, 81, 82, 138
internal, 79, 80, 138, 190-191

STAGES database view, 68
standalone task, 102
Standard multicluster virtual warehouse, 36
standard versus personalized data listings, Mar‐

ketplace, 337-340
STATEMENT_TIMEOUT_IN_SECONDS

duration value, 125
static data and dynamic data, splitting of, 293
static data masking, 253
storage, data, 45-46, 63

fees, 264
integration, 190

stored procedures, 82-84, 89-95
Streamlit, 388
streams, 95, 96-101, 139, 190, 213
string data types, 129-130
structured data, 111, 192-198, 206-210
Structured Query Language (SQL), 111
subqueries, 118-122, 125
super user or super role, 155
SYSADMIN role, 56, 60, 79, 150, 155, 164
System sampling (Snowsight), 349
SYSTEM$CLUSTERING_INFORMATION

function, 143, 302
SYSTEM$CURRENT_USER_TASK_NAME

function, 104
SYSTEM$ESTIMATE_SEARCH_OPTIMIZA‐

TION_COSTS function, 309
SYSTEM$TASK_DEPENDENTS_ENABLE

function, 103, 107
system-defined roles, access controls, 154-155
system-level custom roles, 158-161

T
table privileges, 68
Tableau Dashboards, 277
tables, 70-76

characteristics and workload, 303-305
external, 70, 73, 244
functions, 143
making changes with streams, 96-101
materialized, 71
permanent databases, 54, 61, 72
stages, 79-82, 191
transient databases, 54, 72, 225, 264

TABLES database view, 68
TABLESAMPLE and SAMPLE, 353

440 | Index

TABLE_CONSTRAINTS database view, 68
TABLE_PRIVILEGES database view, 68
TABLE_STORAGE_METRICS database view,

68
tagging of objects, 245-249, 276
TASKADMIN role, 104
tasks, 93-95, 102-108, 139
TASK_DEPENDENTS function, 104
TASK_HISTORY function, 104
TCL commands, 113, 114
temporary internal stages, 81
temporary keyword, 80
temporary objects, 243
temporary tables, 70, 73
testing and validating access control, 166-169
testing framework tools, 281
third normal form approach, 374
thresholds, resource monitor, 271
tiles, dashboard visualization, 358-360, 366
Time Travel, 46

advantages of, 280
commands for, 239
data protection and recovery, 238-243
data shares, 344
default period, 55
retention period, 239

TIMESTAMP_TZ values, 125
TOP<n> clause, 117
traditional data platform architectures, 24-26

NoSQL alternatives, 25
scalable architecture, 24
shared-disk architecture, 24

Transaction Control Language (TCL), 112, 114
transactional versus analytical workloads (Uni‐

store), 401
transforming data (see data transformation)
transient database tables, 54, 72, 225, 264
transient objects, 243, 244
trial account setup, 427
triggers, resource monitor, 269
trucking companies, 315
TRUNCATE command, 71

U
UDFs (see user-defined functions)
UI LOAD Data wizard, 204-210
uncorrelated versus correlated subqueries,

120-122
UNDROP command, 60

Unified ID 2.0/privacy/cookies, 315
Unistore, 401-403
unloading tools, data, 186, 222
UNSET command, 144
unstructured data types, 137-141
USAGE_PRIVILEGES database view, 68
use cases, 138, 314
USE command, 20, 54
USE DATABASE command, 58
USE SECONDARY ROLES statement, 177
user management, 231-233

access controls, 169-175
assigning roles, 53, 165
dropping user, 174
query results cache access, 47
and roles, 153
with SCIM, 178
for separate virtual warehouses, 42

user stages, 79-82, 191
user-defined functions (UDFs), 82-95

JAVA UDFs, 140
JavaScript, 84-86, 224
secure, 257
session variables, creating with, 144
Snowpark, 386, 387
versus stored procedures, 83
task included, 84-86

user-level network policies, 234-235
USERADMIN role, 153, 155, 172
USER_ROLE, 105
USER_TASK_MANAGED_INITIAL_WARE‐

HOUSE_SIZE command, 108
UTIL_DB database, 62

V
VALIDATE function, 220
VARCHAR data type, 134
VARCHAR data type, multirow inserts, 123
variables, syntax, 144
VARIANT data type, 131-134, 185, 217
version history, 16-17, 280
vertical database partitioning, 293
views, 76-79

account, 65-67
database, 67-69, 245
materialized, 76, 77-79, 306-308, 309
nonmaterialized, 76, 79
secure, 77, 257

VIEWS database view, 68

Index | 441

virtual column values, 121
virtual warehouse cache, 49-50
virtual warehouse layer, 44, 266-276
virtual warehouses, 1-2, 21, 29-44

billing for, 44
choosing optimum size, 225
creating and using, 38-42
custom roles, 163, 166
default COMPUTE_WH, 9
default for user, 170
local disk cache, 47, 49
managing for size of files, 225
monitoring usage to reduce costs, 266-276
scaling out with clusters, 35-37, 43, 293
scaling up, 31-35
selecting a warehouse, 11
separation of storage and compute, 29
size of, 30, 266
workloads management, 42-44

visualizing data (see Snowsight)

W
web UI history, 289-291
web UI Load Data wizard, 204-210
web user interfaces, 3-5
WHEN-ELSE clause, 198
WHERE clause, 118, 302
window functions, 142

WITH clause, 117
workloads, 371-403

balancing query and DML for clustering,
306

cybersecurity, 388-401
data analytics, 380-383
data applications, 383
data collaboration, 378-380
data engineering, 372
data lake, 377, 390-391
data science, 378, 385
data warehousing, 374-376
separating workloads, 42-44
Unistore, 401-403

Worksheets navigation (Snowsight), 4-5, 8-17,
115
context setting, 8-14
formatting SQL, 15
shortcuts, 16
Smart Autocomplete, 14
version history, 16-17

X
XDR (extended detection and response), 390

Z
zero-copy cloning, 46, 261, 281-284

442 | Index

About the Author
Joyce Kay Avila has more than 25 years as a business and technology leader. She is a
Texas Certified Public Accountant and currently holds certifications in Snowflake and
Amazon Web Services. She also holds 12 Salesforce certifications, including the
Tableau CRM and Einstein Discovery certification as well as several Salesforce
Architect-level certifications.

Joyce earned bachelor’s degrees in computer science and accounting business admin‐
istration, obtained a master’s degree of business administration, and completed her
PhD coursework in accounting information systems.

In support of the Salesforce and Snowflake communities, Joyce produces a running
series of how-to videos on her YouTube channel. In 2022, she was selected by Snow‐
flake as one of 48 Snowflake Data Superheroes worldwide.

Colophon
The animal on the cover of Snowflake: The Definitive Guide is a junco (Junco), a type
of New World sparrow. There are multiple species within the genus, but the exact
number is debated.

The dark-eyed junco is one of the most common in North America. They prefer the
ground for many of their activities, such as foraging for insects and seeds, and build‐
ing their nests. They tend to lay three to five eggs in a clutch with an incubation
period of eleven to thirteen days. Juncos usually live in dry and forested areas, and
those that live up north migrate south for the winter.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Snowflake
	Copyright
	Table of Contents
	Preface
	Origin of the Book
	Who Is This Book For?
	Goals of the Book
	Navigating this Book
	Using Code Examples
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Snowflake Web User Interfaces
	Prep Work
	Snowsight Orientation
	Snowsight Preferences
	Navigating Snowsight Worksheets
	Context Setting
	Improved Productivity

	Snowflake Community
	Snowflake Certifications
	Snowday and Snowflake Summit Events
	Important Caveats About Code Examples in the Book
	Code Cleanup
	Summary
	Knowledge Check

	Chapter 2. Creating and Managing the Snowflake Architecture
	Prep Work
	Traditional Data Platform Architectures
	Shared-Disk (Scalable) Architecture
	Shared-Nothing (Scalable) Architecture
	NoSQL Alternatives

	The Snowflake Architecture
	The Cloud Services Layer
	Managing the Cloud Services Layer
	Billing for the Cloud Services Layer

	The Query Processing (Virtual Warehouse) Compute Layer
	Virtual Warehouse Size
	Scaling Up a Virtual Warehouse to Process Large Data Volumes and Complex Queries
	Scaling Out with Multicluster Virtual Warehouses to Maximize Concurrency
	Creating and Using Virtual Warehouses
	Separation of Workloads and Workload Management
	Billing for the Virtual Warehouse Layer

	Centralized (Hybrid Columnar) Database Storage Layer
	Introduction to Zero-Copy Cloning
	Introduction to Time Travel
	Billing for the Storage Layer

	Snowflake Caching
	Query Result Cache
	Metadata Cache
	Virtual Warehouse Local Disk Cache

	Code Cleanup
	Summary
	Knowledge Check

	Chapter 3. Creating and Managing Snowflake Securable Database Objects
	Prep Work
	Creating and Managing Snowflake Databases
	Creating and Managing Snowflake Schemas
	INFORMATION_SCHEMA
	ACCOUNT_USAGE Schema
	Schema Object Hierarchy

	Introduction to Snowflake Tables
	Creating and Managing Views
	Introduction to Snowflake Stages: File Format Included
	Extending SQL with Stored Procedures and UDFs
	User-Defined Function (UDF): Task Included
	Secure SQL UDTF That Returns Tabular Value (Market Basket Analysis Example)
	Stored Procedures

	Introduction to Pipes, Streams, and Sequences
	Snowflake Streams (Deep Dive)
	Snowflake Tasks (Deep Dive)
	Code Cleanup
	Summary
	Knowledge Check

	Chapter 4. Exploring Snowflake SQL Commands, Data Types, and Functions
	Prep Work
	Working with SQL Commands in Snowflake
	DDL Commands
	DCL Commands
	DML Commands
	TCL Commands
	DQL Command

	SQL Query Development, Syntax, and Operators in Snowflake
	SQL Development and Management
	Query Syntax
	Query Operators
	Long-Running Queries, and Query Performance and Optimization
	Snowflake Query Limits

	Introduction to Data Types Supported by Snowflake
	Numeric Data Types
	String and Binary Data Types
	Date and Time Input/Output Data Types
	Semi-Structured Data Types
	Unstructured Data Types
	How Snowflake Supports Unstructured Data Use

	Snowflake SQL Functions and Session Variables
	Using System-Defined (Built-In) Functions
	Creating SQL and JavaScript UDFs and Using Session Variables
	External Functions

	Code Cleanup
	Summary
	Knowledge Check

	Chapter 5. Leveraging Snowflake Access Controls
	Prep Work
	Creating Snowflake Objects
	Snowflake System-Defined Roles
	Creating Custom Roles
	Functional-Level Business and IT Roles
	System-Level Service Account and Object Access Roles

	Role Hierarchy Assignments: Assigning Roles to Other Roles
	Granting Privileges to Roles
	Assigning Roles to Users
	Testing and Validating Our Work
	User Management
	Role Management
	Snowflake Multi-Account Strategy
	Managing Users and Groups with SCIM
	Code Cleanup
	Summary
	Knowledge Check

	Chapter 6. Data Loading and Unloading
	Prep Work
	Basics of Data Loading and Unloading
	Data Types
	File Formats
	Data File Compression
	Frequency of Data Processing
	Snowflake Stage References
	Data Sources

	Data Loading Tools
	Snowflake Worksheet SQL Using INSERT INTO and INSERT ALL Commands
	Web UI Load Data Wizard
	SnowSQL CLI SQL PUT and COPY INTO Commands
	Data Pipelines
	Third-Party ETL and ELT Tools

	Alternatives to Loading Data
	Tools to Unload Data
	Data Loading Best Practices for Snowflake Data Engineers
	Select the Right Data Loading Tool and Consider the Appropriate Data Type Options
	Avoid Row-by-Row Data Processing
	Choose the Right Snowflake Virtual Warehouse Size and Split Files as Needed
	Transform Data in Steps and Use Transient Tables for Intermediate Results

	Code Cleanup
	Summary
	Knowledge Check

	Chapter 7. Implementing Data Governance, Account Security, and Data Protection and Recovery
	Prep Work
	Snowflake Security
	Controlling Account Access
	Monitoring Activity with the Snowflake ACCESS_HISTORY Account Usage View
	Data Protection and Recovery
	Replication and Failover

	Democratizing Data with Data Governance Controls
	INFORMATION_SCHEMA Data Dictionary
	Object Tagging
	Classification
	Data Masking
	Row Access Policies and Row-Level Security
	External Tokenization
	Secure Views and UDFs
	Object Dependencies

	Code Cleanup
	Summary
	Knowledge Check

	Chapter 8. Managing Snowflake Account Costs
	Prep Work
	Snowflake Monthly Bill
	Storage Fees
	Data Transfer Costs
	Compute Credits Consumed

	Creating Resource Monitors to Manage Virtual Warehouse Usage and Reduce Costs
	Resource Monitor Credit Quota
	Resource Monitor Credit Usage
	Resource Monitor Notifications and Other Actions
	Resource Monitor Rules for Assignments
	DDL Commands for Creating and Managing Resource Monitors

	Using Object Tagging for Cost Centers
	Querying the ACCOUNT_USAGE View
	Using BI Partner Dashboards to Monitor Snowflake Usage and Costs
	Snowflake Agile Software Delivery
	Why Do We Need DevOps?
	Continuous Data Integration, Continuous Delivery, and Continuous Deployment
	What Is Database Change Management?
	How Zero-Copy Cloning Can Be Used to Support Dev/Test Environments

	Code Cleanup
	Summary
	Knowledge Check

	Chapter 9. Analyzing and Improving Snowflake Query Performance
	Prep Work
	Analyzing Query Performance
	QUERY_HISTORY Profiling
	HASH() Function
	Web UI History

	Understanding Snowflake Micro-Partitions and Data Clustering
	Partitions Explained
	Snowflake Micro-Partitions Explained

	Snowflake Data Clustering Explained
	Clustering Width and Depth
	Choosing a Clustering Key
	Creating a Clustering Key
	Reclustering

	Performance Benefits of Materialized Views
	Exploring Other Query Optimization Techniques
	Search Optimization Service
	Query Optimization Techniques Compared

	Summary
	Code Cleanup
	Knowledge Check

	Chapter 10. Configuring and Managing Secure Data Sharing
	Snowflake Architecture Data Sharing Support
	The Power of Snowgrid
	Data Sharing Use Cases
	Snowflake Support for Unified ID 2.0
	Snowflake Secure Data Sharing Approaches
	Prep Work
	Snowflake’s Direct Secure Data Sharing Approach
	Creating Outbound Shares
	How Inbound Shares Are Used by Snowflake Data Consumers

	How to List and Shop on the Public Snowflake Marketplace
	Snowflake Marketplace for Providers
	Standard Versus Personalized Data Listings

	Harnessing the Power of a Snowflake Private Data Exchange
	Snowflake Data Clean Rooms
	Important Design, Security, and Performance Considerations
	Share Design Considerations
	Share Security Considerations
	Share Performance Considerations
	Difference Between Database Sharing and Database Cloning
	Data Shares and Time Travel Considerations
	Sharing of Data Shares

	Summary
	Code Cleanup
	Knowledge Check

	Chapter 11. Visualizing Data in Snowsight
	Prep Work
	Data Sampling in Snowsight
	Fixed-Size Sampling Based on a Specific Number of Rows
	Fraction-Based Sampling Based on Probability
	Previewing Fields and Data
	Sampling Examples

	Using Automatic Statistics and Interactive Results
	Snowsight Dashboard Visualization
	Creating a Dashboard and Tiles
	Working with Chart Visualizations
	Aggregating and Bucketing Data
	Editing and Deleting Tiles

	Collaboration
	Sharing Your Query Results
	Using a Private Link to Collaborate on Dashboards

	Summary
	Code Cleanup
	Knowledge Check

	Chapter 12. Workloads for the Snowflake Data Cloud
	Prep Work
	Data Engineering
	Data Warehousing
	Data Vault 2.0 Modeling
	Transforming Data within Snowflake

	Data Lake
	Data Collaboration
	Data Monetization
	Regulatory and Compliance Requirements for Data Sharing

	Data Analytics
	Advanced Analytics for the Finance Industry
	Advanced Analytics for the Healthcare Industry
	Advanced Analytics for the Manufacturing Industry and Logistics Services
	Marketing Analytics for Retail Verticals and the Communications and Media Industry

	Data Applications
	Data Science
	Snowpark
	Streamlit

	Cybersecurity Using Snowflake as a Security Data Lake
	Overcoming the Challenges of a SIEM-Only Architecture
	Search Optimization Service Versus Clustering

	Unistore
	Transactional Workload Versus Analytical Workload
	Hybrid Tables

	Summary
	Code Cleanup
	Knowledge Check

	Appendix A. Answers to the Knowledge Check Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Appendix B. Snowflake Object Naming Best Practices
	General (Character Related)
	General (Not Character Related)
	Standard Label Abbreviations

	Appendix C. Setting Up a Snowflake Trial Account
	Index
	About the Author
	Colophon

