
WHITE PAPER

DESIGN PATTERNS FOR
BUILDING MULTI-TENANT

APPLICATIONS ON
SNOWFLAKE

WHITE PAPER

1 Introduction

2 Part One: Comparing Multi-Tenant Design Patterns

5 Part Two: Exploring Each Design Pattern
5 MTT design notes
14 OPT design notes
18 APT design notes

21 Part Three: Evaluating Tenancy Models
21 Storage and security considerations
22 Encryption, isolation, and data protection considerations
23 Billing, resource utilization, and network policy considerations

24 About Snowflake

WHITE PAPER 1

Introduction

Multi-tenant Snowflake applications typically conform to one of three design patterns:

• Multi-tenant table (MTT): MTT consolidates tenants within a shared table or warehouse. Centralizing tenants
in single, shared objects enables tenants to share compute and other resources efficiently.

• Object per tenant (OPT): OPT isolates tenants into separate tables, schemas, databases, and warehouses.
Although this approach allocates individual objects to tenants, the application still operates within a single
Snowflake account.

• Account per tenant (APT): APT isolates tenants into separate Snowflake accounts. Unlike OPT, each tenant within
the application has its own dedicated Snowflake account.

Tenancy models have different advantages regarding security, storage, compute, and connectivity, and a hybrid
approach may be needed to properly address these considerations. Hybrid tenancy models are common. For example,
a design might use a multi-tenant table to consolidate storage but allocate dedicated compute resources to each
tenant, thereby forming an MTT/OPT hybrid design.

This white paper has three parts:

• Part One helps data application builders understand the pros and cons as well as the costs and benefits of the
various patterns.

• Part Two describes each pattern in greater detail and offers guidance on the Snowflake features required for
proper implementation.

• Part Three provides additional information to help you evaluate tenancy models based on security, storage,
and compute requirements.

WHITE PAPER 2

PART ONE: COMPARING MULTI-TENANT DESIGN PATTERNS

This section compares and contrasts the three patterns and describes the requirements that tend to favor one
design approach over the others.

Multi-tenant table (MTT)

MTT’s chief characteristics are scalability and architectural simplicity.

• MTT is the most scalable design pattern in terms of the number of tenants an application can support. This
approach supports apps with millions of tenants.

• It has a simpler architecture within Snowflake. Simplicity matters because object proliferation makes managing
myriad objects increasingly difficult over time. With MTT, adding tenants does not cause the number of objects
to grow, but adding tenants to OPT and APT can result in hundreds or thousands of objects being created within
Snowflake.

From a cost standpoint, MTT is usually more cost-efficient because multiple customers utilize shared compute and
other resources more efficiently.

But MTT has a somewhat rigid requirement: To use MTT, an app’s data model has to have the same general shape
across all tenants. Application builders can achieve slight variances using custom columns that only apply to certain
types of tenants, but this approach introduces sparsity into the data.

Object per tenant (OPT)

OPT is a great fit if each tenant has a different data model. Unlike MTT, the tenant data shape can be unique for each
tenant. OPT does not scale as easily as MTT, however. OPT typically scales well from tens to hundreds of tenants,
but starts to become unwieldy when it includes thousands of tenant databases.

Security can factor into the decision to use an OPT design pattern. Some customers prefer the OPT model because
they don’t want to manage an entitlement table, secure views, or row-level security with strong processes behind
them. They are, however, comfortable using role-based access control (RBAC) to control who has specific access to
a database.

Some apps that use the OPT model give customers their own dedicated compute resources to satisfy contractual,
security, or regulatory requirements.

Account per tenant (APT)

APT isolates tenants at the account level. Typically, customers have a strong security reason for choosing this
approach. For example, organizations bound by strict regulatory mandates may choose this option if:

• They need to implement a dedicated connection string per tenant

• They require security measures such as Bring Your Own Tool (BYOT)

• They want to use per-tenant IP restrictions at the account level

APT requires the customer to also implement OPT, which can support a huge variety of tenant data shapes. In
addition, APT introduces more scaling limitations—tenant counts in the tens to low hundreds are typical; however,
customers with higher tenant numbers exist. APT can become unwieldy when managing thousands of tenant accounts.

WHITE PAPER 3

Summarizing the three patterns

Table 1 summarizes the similarities and differences among the three design patterns.

TABLE 1: DESIGN PATTERN SIMILARITIES AND DIFFERENCES

MTT OPT APT

Data model
characteristics

• Tenant data needs to follow
the same general shape.

• Data is stamped with a
tenant_id, so within a row
it’s easy to tell what tenant
the data belongs to.

• Tenant data shape can
be unique to each tenant
or similar across multiple
tenants.

• Tenant data shape can
be unique to each tenant
or similar across multiple
tenants.

Scalability
• This model scales from tens

to millions of tenants and
beyond, although upper
scale limits are unknown.

• This model scales from tens
to hundreds of tenants in
typical deployments.

• This model scales from tens
to low hundreds of tenants
in typical deployments.

Security
concerns

• Requires developers to
manage security, such as an
entitlement table, secure
views, or row-level security
settings.

• Requires application owner
to be proficient in RBAC
and row-level security.

• Enables customers who are
comfortable using RBAC
to isolate tenants without
requiring them to manage
entitlement tables with
strong processes.

• Isolates tenants, thereby
reducing the risk of
mismanaging security.

• Allows for strict security
measures (encryption keys,
IP allow lists, better-than-
RBAC controls) by isolating
tenants by account.

• Allows for strict network
measures, such as bring
your own technology
(BYOT), Snowflake UI login,
and dedicated connection
string per tenant.

WHITE PAPER 4

Table 2 lists notes and drawbacks to consider when evaluating design patterns.

TABLE 2: DESIGN PATTERN NOTES AND DRAWBACKS

MTT OPT APT

Notes

• Pooling customers on
shared, scalable compute
saves money and is simpler
to operationalize.

• Compute can be pooled or
isolated per tenant based
on customer goals. Pooled
compute frequently saves
money but increases the
possibility of contention
between tenants.

• Using this design feels
familiar for customers who
are re-platforming from a
legacy database platform.

Drawbacks

• Multi-region data sharing
can be a challenge, but
see Incorporating OPT to
facilitate multi-region data
sharing.

• To improve performance
you might need to shard
large tables.

• MERGE, UPDATE, and
auto-clustering operations
can be a challenge on very
large tables.

• It’s hard to determine per-
tenant storage costs in a
multi-tenant table.

• Creating objects within
Snowflake is easy, but
maintaining a consistent
state across many similar
objects is hard. As numbers
increase, keeping objects in
sync becomes difficult.

• Compute per tenant can
increase costs because
you lose the ability to pool
compute across tenants.

• Increased automation is
required to maintain and
version objects.

• Creating an account within
Snowflake is easy, but
maintaining a consistent
state across accounts is
hard.

• Compute per tenant can
increase costs because
you lose the ability to pool
compute across tenants.

• Increased automation is
required to create and
manage accounts and
objects.

WHITE PAPER 5

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 1: A serving database with secure views ensures application users see only their tenant rows.

PART TWO: EXPLORING EACH DESIGN PATTERN

MTT design notes

NOTE: Many of the concepts covered in this section apply to the OPT and APT models as well.

The logical diagram depicted in Figure 1 represents a fairly common application setup:

• Application users access tenant data via secure views in a serving database (highlighted in red).

• An entitlements table controls which Snowflake users or roles have access to which tenants.

• Secure views ensure application users only see their tenant rows.

• All tables are clustered by a tenant_id type column.

To enforce that users can see only their tenant rows, tenants query through secure views, which JOIN base tables
to the entitlements table on tenant_id. Common tables, where everybody gets to see all the rows, use regular views
pointed to the base tables.

WHITE PAPER 6

Snowflake recommends creating a hierarchy of roles based on privilege and functional access, with a role and user
defined per tenant. Set the privileges for dedicated tenant roles by following role-based hierarchy best practices.

Figure 2 depicts application setup at the schema level. Secure views occupy one schema, and base tables and the
entitlements table occupy a second schema to separate the privileges that determine who can access what data.
Secure tables and common tables help segregate developer users and application users. There may also be instances
where you want to create sandbox areas for individual customers to do more-sophisticated things, and you can use
a schema per customer to separate that as well. Users can be given default namespaces (database.schema) to further
direct access.

Figure 2: Schema-level view of database objects based on RBAC

WHITE PAPER 7

Secure views use the current_role() parameter to filter the base table using a JOIN to the entitlements table where
the value of current_role() matches one or more rows in the entitlements table.

In a data application, you can implement secure views by user or by role.

Secure views based on CURRENT_USER (see Figure 3) make sense if you have one database user per tenant and you
don’t need fine-grained control of different users within the tenant.

Figure 3: Secure views based on CURRENT_USER()

WHITE PAPER 8

Secure views based on CURRENT_ROLE (see Figure 4) allow fine-grained entitlements between application users.
You can have multiple sets of privileges within a given tenant and selectively assign privileges to tenant users, for
example, users who can write data into the sandbox versus users who cannot.

MAINTAINING THE ENTITLEMENT TABLE

Application data security depends on the entitlements table working correctly, so managing the entitlement table
is a major priority for data application builders. Snowflake recommends starting with the following best practices.

Regarding security:

• Lock down entitlement tables with restrictive permissions.

• Manage the entitlement table with a systematic process. Avoid poor practices such as adding new customers
by running single INSERT/UPDATE statements against the entitlement tables.

• Eliminate human error by wrapping processing in procedures that are automated and have controls in place.
Procedures can execute either inside or outside of Snowflake.

• To find issues, run regular regression tests after entitlement table updates to test secure view results against
expected outcomes.

Regarding optimization:

• Tenants should have a unique numeric identifier (that is, a tenant_id).

• Cluster all transaction tables by tenant_id and a meaningful date field, at minimum. (The reverse, date then
tenant_id, is also fine.)

• Sort load dimension tables representing tenants initially, and use incrementing identifiers for tenants.

• Despite the small size, cluster the entitlement table if there are a lot of users or roles per tenant; otherwise,
sort by load.

Figure 4: Secure views based on CURRENT_ROLE()

WHITE PAPER 9

Table clustering is common in an MTT model because each tenant typically can access only its own slice of the data.
The type of table and the data model (such as star schema or highly denormalized) also play a role in determining which
tables you need to cluster.

Sometimes you can do simple sort ordering when the table loads to make the data easy to access and to help
with partition pruning. But be aware that auto-clustering runs as a background service and is not instantaneous.
Depending on how frequently the data is updated and loaded within the application, auto-clustering may not be
enough and may require additional workarounds, such as changing how data pipelines are structured.

Figure 5: Cluster tables by tenant_id and DATE

WHITE PAPER 10

AUTHENTICATING TO SNOWFLAKE

The way application users connect to Snowflake is a little different from most other Snowflake users. Because
application users come through an application tier, users are typically unaware that Snowflake exists, as shown
in Figure 6.

Applications need to handle authentication to Snowflake on behalf of the user. There are multiple ways to do
authentication, but the following principles generally apply:

• Application users authenticate to the application as they normally would.

• There is typically a secrets manager at the application-tier level that stores credentials for the corresponding
Snowflake user. The application is programmed to obtain a Snowflake session using one of several supported
authentication methods.

• Users are only authorized to query secure views and are only authorized to see their tenant based on the user/
role linked to tenant_id.

Figure 7 shows an application that establishes a Snowflake session based on a lookup by a secrets manager. Note
that the application manages the key-pair user authentication flow and stores the Snowflake user and session access
token. Network policies control access to Snowflake from the application tier over Azure Private Link, which is
optional. And, finally, RBAC routes users to default warehouses and databases and allows users to access only the
data that they are permitted to see within the application.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 6: Users authenticate to Snowflake through the application tier.

WHITE PAPER 11

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 8: Separate the working databases used for transformation or ingestion from the service database as needed for your application.

Figure 7: Obtaining and storing a user session via key-pair authentication

ISOLATING WORKING DATABASES (OPTIONAL)

Isolating working databases is optional. Some application builders directly load data into the serving database and
Snowflake points to the initial landing tables. But other builders need to run transformations in Snowflake before
serving data, in which case a best practice is to separate the serving database from the working databases used for
transformation or ingestion from outside sources. The application can be configured to write data to the serving
database or the working databases as appropriate for the application functionality.

Snowflake recommends separating databases to simplify application administration. For example, it’s easier to
configure RBAC to control “what should be done where” and “who has access to what” if databases are separate.

Regarding workload processing, you can do some of these processes offline if that makes sense for the application,
and then apply them to the serving database as appropriate.

WHITE PAPER 12

ISOLATING WORKLOADS OR POOLING TO SAVE COSTS

Similar to database separation being a general best practice, workload separation based on the type of workload is
a good idea. Specific recommendations include:

• Giving developers their own warehouse for development work

• Pooling application users on a common multi-cluster warehouse or isolating them onto dedicated warehouses
based on application requirements

• Using different warehouses for different application purposes

• Isolating other workloads to their own warehouses

When it comes to tenants, app builders need to decide whether to give tenants a dedicated warehouse versus
pooling them on common warehouses or multi-cluster warehouses. Cost will be a factor. You can pool dashboard
queries more easily than ad hoc queries because they’re predictable. Ad hoc usage can introduce unexpected and
unplanned expenses. Strict per-tenant cost of goods sold (COGS) calculations are a reason to separate tenants into
dedicated warehouses because pooled heuristics are less precise. Some applications pool users by default but offer
the option to pay extra to get a dedicated warehouse.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 9: Separating workloads based on the type of workload is a best practice.

WHITE PAPER 13

ROUTING USERS TO WAREHOUSES

To make application management easier, it’s essential to configure RBAC and default warehouses in Snowflake to
route users to the correct warehouses. Proper planning and upfront configuration will ensure that user lookups
within the secrets manager and the application tier will automatically route the user to the right database and the
right warehouse.

The following guidance applies to routing users:

• You can grant roles the privilege to operate (modify) or use (run queries against) a given warehouse.

• Users can be configured to use a specific warehouse by default, but roles cannot.

• Users with access to multiple warehouses can choose to use a warehouse upon establishing a session or before
query execution.

Figure 10: Configuring RBAC and default warehouses in Snowflake makes managing the application tier easier.

WHITE PAPER 14

OPT design notes

OPT enables you to isolate tenant data by database, schema, and table, and use RBAC to control which user or role
can see or query an object. Separating customers into their own databases is the most common practice (see Figure
11), because it is the easiest, cleanest isolation level, but some app builders separate customers into dedicated tables,
for example, in embedded analytics use cases in which data applications create a report table per tenant.

Which objects to use for isolation depends on factors such as your data pipeline design, your software development
life cycle process, the consistency of your data shape, and more. How many total tenants do you expect to have?
How many tables will you use? Think through the features you plan to use, such as replication and zero-copy cloning.
(Replication can only be done at the database level. And, while zero-copy cloning can take place at all three levels, it’s
cleaner to clone a database.) All of these factors and more come into play when you implement OPT.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 11: Isolating customers into their own databases is the most common OPT pattern.

WHITE PAPER 15

USING AUTOMATION TO CREATE NEW TENANTS

If you implement the OPT or APT pattern, use automation to create new tenants (see Figure 12). Automation
can be written inside or outside of Snowflake to create new tenants based on a template. Your template should
cover databases, schemas, tables, compute, security, and anything else new tenants require. Automation is
necessary because when you start to get into the hundreds and thousands of objects, tenant creation and ongoing
enhancements become too unwieldy to manage any other way.

Third-party products, such as Flyway and others, can help synchronize template updates with existing tenants.

Figure 12: Use automation to create and synchronize tenants when implementing either OPT or APT model.

AUTHENTICATING AND AUTHORIZING

OPT authentication and authorization is similar to MTT authentication (see Authenticating to Snowflake), but with
OPT authentication, routing users to the right databases becomes even more important.

The routing process is similar to what is described in Routing users to warehouses (see Figure 13), but users are
routed to different objects because the context changes relative to MTT authentication. When done properly, user
lookup within the secrets manager and application tier automatically routes the user to the right database and the
right warehouse.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 13: OPT authentication is unchanged from MTT authentication, but routing users to the right databases becomes even more important.

https://flywaydb.org/

WHITE PAPER 16

ISOLATING INGESTION/TRANSFORMATION DATABASES IN THE OPT MODEL

When planning how to isolate your serving database from your working (ingestion/transformation) database, consider
how your data will fan out to and fan in from tenant databases for common processing. Frequently, running separate
workloads on a separate, per-tenant basis will cost more than consolidating the workloads into a single instance.
For example, if you settle on multiple tables per tenant and each has its own pipeline, the cost will likely be higher
than if you manage a single transformation process in a common data store that application users cannot access. If
necessary, after transformation you can distribute data into multiple tenant-specific objects or store data in a single,
shared, serving database.

To optimize efficiency and cost, consider hybrid models, such as the hybrid OPT/MPT model described previously.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 14: Tenant data can be ingested and transformed through one working database and fanned out to tenant serving databases.

WHITE PAPER 17

INCORPORATING OPT TO FACILITATE MULTI-REGION DATA SHARING

As noted previously, multi-region data sharing can be a challenge for the MTT model. If you need to share data in
cloud/region pairs other than your primary one, and you do not want to replicate all tenant data to all cloud/region
pairs, consider incorporating OPT into your MTT design.

Because Snowflake supports replication at the entire database level, it’s not possible to send only certain tenant
slices from a multi-tenant database somewhere else. While it’s possible to replicate an entire multi-tenant table
to all clouds and regions where it’s required, over time this design will become unmanageable as data sizes and
the number of tenants grow. For example, Figure 15 shows a multi-tenant, multi-CSP (content security policy) app
design. Customer D shares data on GCP, but it does not make sense to replicate Customer D’s data on Azure if no
one accesses it there.

NOTE: If you have a data sharing use case, consider using Snowflake Data Marketplace to take advantage of the latest features.

Snowflake
Authentication

Developer
Warehouse

ELT Warehouse

Pooled Warehouses

Dedicated Customer
Data Warehouse

Figure 15: If you do not want to replicate all tenant data to all cloud/region pairs, consider incorporating OPT into your MTT design.

WHITE PAPER 18

APT design notes

With the APT model, there is typically one Snowflake account, one warehouse, and one database per tenant.

There can be exceptions, for example:

• Multiple tenants can share an account to form a hybrid of APT and MTT model (see Figure 16).

• There might be an additional administrative warehouse for data loading or administrative activities, depending
on whether the data is going out to the account through data sharing, or if some form of ETL or ELT is used to do
additional processing within the tenant account. For example, some applications load the data and don’t need to
do anything further in the tenant account because it’s done elsewhere.

• Many APT designs can rely on single-cluster warehouses. A heavily used application may require many clusters,
including multi-cluster warehouses.

ELT Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Developer
Warehouse

Figure 16: Multiple tenants can share an account to form a hybrid of the APT and MTT models.

WHITE PAPER 19

ELT Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Developer
Warehouse

Figure 17: Sometimes data application builders decide not to authenticate users in the application tier and instead require users to log in
to their Snowflake accounts directly, either through the UI or a BYOT solution.

AUTHENTICATING

With the APT model, authenticating via the application tier largely works the same as with the MTT and OPT models.
The key difference is that the account URL changes per tenant. It’s also possible for users to log in to their Snowflake
account directly, either through the UI or a BYOT (bring your own technology) solution.

WHITE PAPER 20

INGESTING AND TRANSFORMING DATA

As mentioned previously, applications typically use a central account to manage the working databases used for
ingestion from outside sources or transformation.

You can share tenant data with tenant accounts using Snowflake Secure Data Sharing. This can also be done with
an MTT or OPT approach.

You could also use ELT or Snowflake Database Replication to materialize data in the tenant accounts.

ELT Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Admin
Warehouse

User
Warehouse

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Snowflake
Authentication

Developer
Warehouse

Figure 18: Data can pass to the account through an ETL/ELT process or through Secure Data Sharing, in which case the
data is directly loaded into the accounts.

WHITE PAPER 21

PART THREE: EVALUATING TENANCY MODELS

You should evaluate all three tenancy models, but Snowflake recommends starting with the MTT pattern. It’s
generally instructive to first evaluate if the MTT pattern will work—and, if not, why.

Storage and security considerations

Decisions hinge on:

• Contractual obligations that dictate how data should be stored and encrypted

• Regulatory obligations that dictate how data should be stored and encrypted

• information security (InfoSec) standards on how data should be stored and encrypted

• Application owner’s perspective on the enforcement of database RBAC

• Application owner’s perspective on the enforcement of row-level security through entitlement tables and views

• How customers access the application:

• Recommendations to enforce modern authentication protocols:

 For human users, single sign-on (SSO) via Security Assertion Markup Language 2 (SAML 2)

 For programmatic use cases, OAuth 2 (token-based claims) or key-pair authentication

• Access is through the application’s UI

• Access is through the Snowflake UI

• Access is through a BYOT solution

• How consistent data shapes (data models) are across customers

Figure 19: Flowchart for evaluating storage and security requirements. OPT here refers to databases, schemas, and tables
(not virtual warehouses and compute).

WHITE PAPER 22

Encryption, isolation, and data protection considerations

Here are some things to consider:

• Tri-Secret Secure (Bring Your Own Key) is available at the account level in Snowflake. This creates a composed
account master key from the account master generated by Snowflake’s hardware security module (HSM) and the
customer managed key introduced from the cloud service provider’s key management solution (KMS).

• Snowflake uses a four-tier hierarchy of encryption keys across the root, account, object, and file levels to encrypt
data at rest and prevent data from being accessed between accounts (except for data sharing).

• Encryption keys are wrapped to myopically control the scope of each encryption key, with a thirty-day rotation
policy enforced for account and object security keys. Periodic re-keying controls the key lifecycle to ensure no
encryption key in Snowflake persists longer than one year.

• Databases and schemas are largely logical constructs; they don’t physically separate data.

Figure 20: Flowchart for evaluating compute and security requirements. OPT means one virtual warehouse per tenant
and MTT refers to tenants on a pooled virtual warehouse.

WHITE PAPER 23

Decisions hinge on:

• Contractual obligations that dictate how tenants should be isolated on raw compute.

• Regulatory obligations that dictate how tenants should be isolated on raw compute.

• InfoSec standards on how tenants should be isolated on raw compute.

• Network policy requirements. Network Policies applied at the account level will be applied to all traffic connecting
to Snowflake. Snowflake supports both denylists and allowlists; denylist policies are applied first, with the
recommendation to allow only a customer’s trusted Classless Inter-Domain Routing (CIDR) range to be added to
the allowlist.

• User-level network policies can be applied for service accounts or dedicated source IP addresses; when the more-
granular policy is applied, All connections to Snowflake must be authenticated.

• Whether a virtual warehouse cache constitutes data that must be isolated.

• How COGS are managed per tenant or billed back to the customer. Calculating COGS per tenant is more
straightforward when each tenant has its own compute resources. If tenants share compute resources, you can
use a heuristic to calculate COGS per tenant, but it’s not as precise. Some apps need the precision, and some are
fine with a reasonable approximation.

• How customers access the application:

• Access is through the application’s UI

• Access is through the Snowflake UI

• Access is through a BYOT solution

• How many tenants could use a single virtual warehouse concurrently.

Billing, resource utilization, and network policy considerations

Here are some things to consider:

• Snowflake network policies (IP allowlists) can be applied at the account or user level.

• Snowflake virtual warehouses cache data from object stores temporarily for whole or partial reuse in subsequent
queries. RBAC and secure view rules still apply.

• Snowflake compute billing is done at the virtual warehouse level. Calculating per-query, per-user, or per-tenant
costs can be inexact if tenants share compute.

• Snowflake virtual warehouses do not allow for resource limits per user or per tenant.

WHITE PAPER

ABOUT SNOWFLAKE
Snowflake delivers the Data Cloud—a global network where thousands of organizations mobilize

data with near-unlimited scale, concurrency, and performance. Inside the Data Cloud, organizations
unite their siloed data, easily discover and securely share governed data, and execute diverse analytic
workloads. Wherever data or users live, Snowflake delivers a single and seamless experience across
multiple public clouds. Snowflake’s platform is the engine that powers and provides access to the

Data Cloud, creating a solution for data warehousing, data lakes, data engineering, data science, data
application development, and data sharing. Join Snowflake customers, partners, and data providers

already taking their businesses to new frontiers in the Data Cloud. snowflake.com

© 2021 Snowflake Inc. All rights reserved. Snowflake, the Snowflake logo, and all other Snowflake product, feature and service
names mentioned herein are registered trademarks or trademarks of Snowflake Inc. in the United States and other countries.

All other brand names or logos mentioned or used herein are for identification purposes only and may be the trademarks of their
respective holder(s). Snowflake may not be associated with, or be sponsored or endorsed by, any such holder(s).

http://www.snowflake.com
https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing/
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/snowflakedb/

