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analytics data platform as a service, billed based on 
consumption. It is faster, easier to use, and far more 
flexible than traditional data warehouse offerings.

Snowflake uses a SQL database engine and a unique 
architecture designed specifically for the cloud. There 
is no hardware (virtual or physical) or software for you 
to select, install, configure, or manage. In addition, 
ongoing maintenance, management, and tuning are 
handled by Snowflake.

All components of Snowflake’s service (other than 
optional customer clients) run in a secure cloud 
infrastructure.

Snowflake is cloud-agnostic and uses virtual compute 
instances from each cloud provider (Amazon 
EC2, Azure VM, and Google Compute Engine). In 
addition, it uses object or file storage from Amazon 
S3, Azure Blob Storage, or Google Cloud Storage 
for persistent storage of data. Due to Snowflake’s 
unique architecture and cloud independence, you can 
seamlessly replicate data and operate from any of 
these clouds simultaneously.

SNOWFLAKE ARCHITECTURE

Snowflake’s architecture is a hybrid of traditional 
shared-disk database architectures and shared-
nothing database architectures. Similar to shared-disk 
architectures, Snowflake uses a central data repository 
for persisted data that is accessible from all compute 
nodes in the platform. But similar to shared-nothing 
architectures, Snowflake processes queries using 
massively parallel processing (MPP) compute clusters 
where each node in the cluster stores a portion of the 
entire data set locally. This approach offers the data 
management simplicity of a shared disk architecture, 
but with the performance and scale-out benefits of a 
shared-nothing architecture.

As shown in Figure 1, Snowflake’s unique architecture 
consists of three layers built upon a public cloud 
infrastructure:

•  Cloud services: Cloud services coordinate activities 
across Snowflake, processing user requests from login 
to query dispatch. This layer provides optimization, 
management, security, sharing, and other features.

•  Multi-cluster compute: Snowflake processes queries 
using virtual warehouses. Each virtual warehouse is  
an MPP compute cluster composed of multiple compute 
nodes allocated by Snowflake from Amazon EC2, 
Azure VM, or Google Cloud Compute. Each virtual 

INTRODUCTION

Companies in every industry acknowledge that 
data is one of their most important assets. And yet, 
companies consistently fall short of realizing the 
potential of their data. 

Why is this the case? One key reason is the 
proliferation of data silos, which create expensive and 
time-consuming bottlenecks, erode trust, and render 
governance and collaboration nearly impossible.

This is where Snowflake and dbt come in. 

The Snowflake Data Cloud is one global, unified 
system connecting companies and data providers to 
relevant data for their business. Wherever data or 
users live, Snowflake delivers a single and seamless 
experience across multiple public clouds, eliminating 
previous silos.

dbt is a transformation workflow that lets teams 
quickly and collaboratively deploy analytics code 
following software engineering best practices such as 
modularity, portability, CI/CD, and documentation. 
With dbt, anyone who knows SQL can contribute to 
production-grade data pipelines. 

By combining dbt with Snowflake, data teams can 
collaborate on data transformation workflows while 
operating out of a central source of truth. Snowflake 
and dbt form the backbone of a data infrastructure 
designed for collaboration, agility, and scalability.

When Snowflake is combined with dbt, customers 
can operationalize and automate Snowflake’s 
hallmark scalability within dbt as part of their analytics 
engineering workflow. The result is that Snowflake 
customers pay only for the resources they need, when 
they need them, which maximizes efficiency and 
results in minimal waste and lower costs. 

This paper will provide some best practices for using 
dbt with Snowflake to create this efficient workflow. 

WHAT IS SNOWFLAKE?

Snowflake’s Data Cloud is a global network where 
thousands of organizations mobilize data with near-
unlimited scale, concurrency, and performance. Inside 
the Data Cloud, organizations have a single unified 
view of data so they can easily discover and securely 
share governed data, and execute diverse analytics 
workloads. Snowflake provides a tightly integrated 

https://docs.snowflake.com/en/user-guide/intro-key-concepts.html
https://www.snowflake.com/
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warehouse has independent compute resources, so 
high demand in one virtual warehouse has no impact on 
the performance of other virtual warehouses. For more 
information, see “Virtual Warehouses” in the Snowflake 
documentation.

•  Centralized storage: Snowflake uses Amazon S3, 
Azure Blob Storage, or Google Cloud Storage to 
store data into its internal optimized, compressed, 
columnar format using micro-partitions. Snowflake 
manages the data organization, file size, structure, 
compression, metadata, statistics, and replication. Data 
objects stored by Snowflake are not directly visible by 
customers, but they are accessible through SQL query 
operations that are run using Snowflake.

BENEFITS OF USING SNOWFLAKE

Snowflake is a cross-cloud platform, which means 
there are several things users coming from a more 
traditional on-premises solution will no longer need to 
worry about:

•  Installing, provisioning, and maintaining hardware and 
software: All you need to do is create an account and 
load your data. You can then immediately connect from 
dbt and start transforming data.

•  Determining the capacity of a data warehouse: 
Snowflake has scalable compute and storage, so it can 
accommodate all of your data and all of your users. 
You can adjust the count and size of your virtual 
warehouses to handle peaks and lulls in your data 
usage. You can even turn your warehouses completely 
off to stop incurring costs when you are not using them.

•  Learning new tools and expanded SQL capabilities: 
Snowflake is fully compliant with ANSI-SQL, so you can 
use the skills and tools you already have. Snowflake 
provides connectors for ODBC, JDBC, Python, 
Spark, and Node.js, as well as web and command-line 
interfaces. On top of that, Snowpark is an initiative that 
will provide even more options for data engineers to 
express their business logic by directly working with 
Scala, Java, and Python Data Frames.

•  Siloed structured and semi-structured data: Business 
users increasingly need to work with both traditionally 
structured data (for example, data in VARCHAR, INT, 
and DATE columns in tables) as well as semi-structured 
data in formats such as XML, JSON, and Parquet. 
Snowflake provides a special data type called VARIANT 
that enables you to load your semi-structured data 
natively and then query it with SQL.

•  Optimizing and maintaining your data: You can run 
analytic queries quickly and easily without worrying 
about managing how your data is indexed or distributed 
across partitions. Snowflake also provides built-in data 
protection capabilities, so you don’t need to worry 
about snapshots, backups, or other administrative tasks 
such as running VACUUM jobs.

•  Securing data and complying with international privacy 
regulations: All data is encrypted when it is loaded into 
Snowflake, and it is kept encrypted at all times when 
at rest and in transit. If your business requirements 
include working with data that requires HIPAA, PII, 
PCI DSS, FedRAMP compliance, and more, Snowflake’s 
Business Critical edition and higher editions can 
support these validations.

Figure 1: Three layers of Snowflake’s architecture

https://docs.snowflake.com/en/user-guide/warehouses.html
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•  Sharing data securely: Snowflake Secure Data Sharing 
enables you to share near real-time data internally and 
externally between Snowflake accounts without copying 
and moving data sets. Data providers provide secure 
data shares to their data consumers, who can view 
and seamlessly combine the data with their own data 
sources. Snowflake Data Marketplace includes many 
data sets that you can incorporate into your existing 
business data—such as data for weather, demographics, 
or traffic—for greater data-driven insights.

WHAT IS DBT?

When data teams work in silos, data quality suffers. 
dbt provides a common space for analysts, data 
engineers, and data scientists to collaborate on 
transformation workflows using their shared 
knowledge of SQL.

By applying proven software development best 
practices such as modularity, portability, version 
control, testing, and documentation, dbt’s analytics 
engineering workflow helps data teams build trusted 
data, faster.

dbt transforms the data already in your data 
warehouse. Transformations are expressed in simple 
SQL SELECT statements and, when executed, dbt 

compiles the code, infers dependency graphs, runs 
models in order, and writes the necessary DDL/DML 
to execute against your Snowflake instance. This 
makes it possible for users to focus on writing SQL and 
not worry about the rest. For writing code that is DRY 
(don't repeat yourself), users can use Jinja alongside 
SQL to express repeated logic using control structures 
such as loops and statements. 

DBT CLOUD

dbt Cloud is the fastest and most reliable way to 
deploy dbt. It provides a centralized experience for 
teams to develop, test, schedule, and investigate data 
models—all in one web-based UI (see Figure 2). This 
is made possible through features such as an intuitive 
IDE, automated testing and documentation, in-app 
scheduling and alerting, access control, and a native 
Git integration.

dbt Cloud also eliminates the setup and  
maintenance work required to manage data 
transformations in Snowflake at scale. A turn-key 
adapter establishes a secure connection built to 
handle enterprise loads, while allowing for fine-
grained policies and permissions.

Figure 2: dbt Cloud provides a centralized experience for developing, testing, scheduling, and investigating data models.
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CUSTOMER USE CASE

When Ben Singleton joined JetBlue as its Director of 
Data Science & Analytics, he stepped into a whirlpool 
of demands that his team struggled to keep up with. 
The data team was facing a barrage of concerns and 
low stakeholder trust. 

“My welcome to JetBlue involved a group of senior 
leaders making it clear that they were frustrated with 
the current state of data,” Singleton said. 

What made matters worse was the experts were not 
empowered to take ownership of their own data due 
to the inaccessibility of the data stack. 

As Singleton dug, he realized the solution wasn’t 
incremental performance improvement but rather 
a complete infrastructure overhaul. By pairing 
Snowflake with dbt, JetBlue was able to transform 
the data team from being a bottleneck to being the 
enablers of a data democracy.

“Every C-level executive wants more questions 
answered with data, they want that data faster, and 
they want it in many different ways. It’s critical for 
us,” Singleton said. All of this was done without an 
increase in infrastructure costs. To read more about 
JetBlue’s success story, see the JetBlue case study.¹  

The remainder of this paper dives into the exact 
dbt and Snowflake best practices that JetBlue and 
thousands of other clients have implemented to 
optimize performance. 

OPTIMIZING SNOWFLAKE

Your business logic is defined in dbt, but dbt 
ultimately pushes down all processing to Snowflake. 
For that reason, optimizing the Snowflake side of 
your deployment is critical to maximizing your query 
performance and minimizing deployment costs. The 
table on the following page summarizes the main 
areas and relevant best practices for Snowflake and 
serves as a checklist for your deployment.

“Every C-level executive  

wants more questions 

answered with data, they want 

that data faster, and they want 

it in many different ways.  

It’s critical for us.”

Ben Singleton 
Director of Data Science  

& Analytics, JetBlue



WHITE PAPER 7

AREA BEST PRACTICES WHY

Automated resource 
optimization for dbt  
query tuning

Automatic clustering Automated table maintenance

Materialized views Pre-compute complex logic 

Query acceleration services Automated scale out part of query 
to speed up performance without 
resizing warehouse

Resource management  
and monitoring

Auto-suspend policies Automatic stop of warehouse to 
reduce costs 

Resource monitors Control of resource utilization  
and cost

Naming conventions Ease of tracking, allocation,  
and reporting

Role-based access control Governance and cost allocation

Monitoring Resource and cost  
consumption monitoring

Individual dbt  
workload elasticity

Scaling up for performance Resizing warehouse to increase 
performance for complex workload

Scaling out for concurrency Spinning up additional warehouses 
to support a spike in concurrency

Writing effective  
SQL statements

Applying filters as early as possible Optimizing row operations and 
reducing records in subsequent 
operations

Querying only what you need Selecting only the columns needed 
to optimize columnar store

Joining on unique keys Optimizing JOIN operations and 
avoiding cross-joins

Avoiding complex functions and 
UDFs in WHERE clauses

Pruning
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•  You no longer need to run manual operations to re-
cluster data.

•  Incremental clustering is done as new data arrives or a 
large amount of data is modified.

•  Data pipelines consisting of DML operations (INSERT, 
DELETE, UPDATE, MERGE) can run concurrently and 
are not blocked.

•  Snowflake performs automatic reclustering in the 
background, and you do not need to specify a 
warehouse to use.

•  You can resume and suspend automatic clustering on 
a per-table basis, and you are billed by the second for 
only the compute resources used.

•  Snowflake internally manages the state of clustered 
tables, as well as the resources (servers, memory, and 
so on) used for all automated clustering operations. This 
allows Snowflake to dynamically allocate resources as 
needed, resulting in the most efficient and effective 
reclustering. The Automatic Clustering service does 
not perform any unnecessary reclustering. Reclustering 
is triggered only when a table would benefit from the 
operation.

dbt supports table clustering on Snowflake. To 
control clustering for a table or incremental model, 
use the cluster_by configuration. Refer to the 
Snowflake configuration guide for more details.

Materialized views

A materialized view is a pre-computed data set 
derived from a query specification (the SELECT in 
the view definition) and stored for later use. Because 
the data is pre-computed, querying a materialized 
view (MV) is faster than executing a query against the 
base table of the view. This performance difference 
can be significant when a query is run frequently or 
is sufficiently complex. As a result, MVs can speed 
up expensive aggregation, projection, and selection 
operations, especially those that run frequently and 
that run on large data sets. dbt does not support 
MVs out of the box as materializations; therefore, 
we recommend using custom materializations 
as a solution to achieve similar purposes. The 
dbt materializations section in this white paper 
explains how MVs can be used in dbt via a custom 
materialization.

AUTOMATED RESOURCE OPTIMIZATION  
FOR DBT QUERY TUNING

Performance and scale are core to Snowflake. 
Snowflake’s functionality is designed such that 
users can focus on core analytical tasks instead of 
on tuning the platform or investing in complicated 
workload management.  

Automatic clustering

Traditionally, legacy on-premises and cloud data 
warehouses relied on static partitioning of large 
tables to achieve acceptable performance and enable 
better scaling. In these systems, a partition is a unit 
of management that is manipulated independently 
using specialized DDL and syntax; however, static 
partitioning has a number of well-known limitations, 
such as maintenance overhead and data skew, which 
can result in disproportionately sized partitions. It 
was the user’s responsibility to constantly optimize 
the underlying data storage. This involved work 
such as updating indexes and statistics, post-
load vacuuming procedures, choosing the right 
distribution keys, dealing with slow partitions due to 
growing skews, and manually reordering data as new 
data arrived or got modified. 

In contrast to a data warehouse, Snowflake 
implements a powerful and unique form of 
partitioning called micro-partitioning, which delivers 
all the advantages of static partitioning without the 
known limitations, as well as providing additional 
significant benefits. Snowflake scalable, multi-
cluster virtual warehouse technology automates 
the maintenance of micro-partitions. This means 
Snowflake efficiently and automatically executes 
the re-clustering in the background. There’s no need 
to create, size, or resize a virtual warehouse. The 
compute service continuously monitors the clustering 
quality of all registered clustered tables. It starts with 
the most unclustered micro-partitions and iteratively 
performs the clustering until an optimal clustering 
depth is achieved.

With Snowflake, you can define clustered tables if 
the natural ingestion order is not sufficient in the 
presence of varying data access patterns. Automatic 
clustering is a Snowflake service that seamlessly and 
continually manages all reclustering, as needed, of 
clustered tables. Its benefits include the following:  

https://docs.snowflake.com/en/user-guide/views-materialized.html
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Snowflake’s compute service monitors the base 
tables for MVs and kicks off refresh statements for 
the corresponding MVs if significant changes are 
detected. This maintenance process of all dependent 
MVs is asynchronous. In scenarios where a user 
is accessing an MV that has yet to be updated, 
Snowflake’s query engine will perform a combined 
execution with the base table to always ensure 
consistent query results. Similar to Snowflake’s 
automatic clustering with the ability to resume or 
suspend per table, a user can resume and suspend 
the automatic maintenance on a per-MV basis. The 
automatic refresh process consumes resources 
and can result in increased credit usage. However, 
Snowflake ensures efficient credit usage by billing 
your account only for the actual resources used. 
Billing is calculated in one-second increments. 

You can control the cost of maintaining MVs by 
carefully choosing how many views to create,  
which tables to create them on, and each view’s 
definition (including the number of rows and columns 
in that view).

You can also control costs by suspending or resuming 
a MV; however, suspending maintenance typically 
only defers costs rather than reducing them. The 
longer that maintenance has been deferred, the more 
maintenance there is to do.

If you are concerned about the cost of maintaining 
MVs, we recommend you start slowly with this 
feature (that is, create only a few MVs on selected 
tables) and monitor the costs over time.

It’s a good idea to carefully evaluate these guidelines 
based on your dbt deployment to see if querying 
from MVs will boost performance compared to base 
tables or regular views without cost overhead.

Query acceleration services

Sizing the warehouse just right for a workload is 
generally a hard trade-off between minimizing 
cost and maximizing query performance. You’ll 
usually have to monitor, measure, and pick an 
acceptable point in this price-performance spectrum 
and readjust as required.  Workloads that are 
unpredictable in terms of either the number of 
concurrent queries or the amount of data required for 
a given query make this challenging. 

MVs are particularly useful when:

•  Query results contain a small number of rows and/or 
columns relative to the base table (the table on which 
the view is defined)

•  Query results contain results that require significant 
processing, including: 
 – Analysis of semi-structured data 
 – Aggregates that take a long time to calculate

•  The query is on an external table (that is, data sets 
stored in files in an external stage), which might have 
slower performance compared to querying native 
database tables

•  The view’s base table does not change frequently

In general, when deciding whether to create an MV 
or a regular view, use the following criteria:

•  Create an MV when all of the following are true:

–  The query results from the view don’t change often. 
This almost always means that the underlying/base 
table for the view doesn’t change often or at least the 
subset of base table rows used in the MV  
doesn’t change often.

–  The results of the view are used often  
(typically, significantly more often than the query 
results change).

–  The query consumes a lot of resources. Typically,  
this means that the query consumes a lot of 
processing time or credits, but it could also mean 
that the query consumes a lot of storage space for 
intermediate results.

•  Create a regular view when any of the following  
are true:

–  The results of the view change often.

–  The results are not used often (relative to the rate at 
which the results change).

–  The query is not resource-intensive so it is not costly 
to re-run it.

These criteria are just guidelines. An MV might 
provide benefits even if it is not used often—
especially if the results change less frequently than 
the usage of the view. 

There are also other factors to consider when 
deciding whether to use a regular view or an MV. One 
such example is the cost of storing and maintaining 
the MV. If the results are not used very often (even 
if they are used more often than they change), the 
additional storage and compute resource costs might 
not be worth the performance gain. 
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RESOURCE MANAGEMENT AND MONITORING

A virtual warehouse consumes Snowflake credits 
while it runs, and the amount consumed depends 
on the size of the warehouse and how long it 
runs. Snowflake provides a rich set of resource 
management and monitoring capabilities to help 
control costs and avoid unexpected credit usage, not 
just for dbt transformation jobs but for all workloads.  

Auto-suspend policies 
The very first resource control that you should 
implement is setting auto-suspend policies for each 
of your warehouses. This feature automatically 
stops warehouses after they’ve been idle for a 
predetermined amount of time. 

We recommend setting auto-suspend according  
to your workload and your requirements for 
warehouse availability:

•  If you enable auto-suspend for your dbt workload, we 
recommend setting a more aggressive policy with the 
standard recommendation being 60 seconds, because 
there is little benefit from caching.

•  You might want to consider disabling auto-suspend for  
a warehouse if:

–  You have a heavy, steady workload for  
the warehouse.

–  You require the warehouse to be available with no 
delay or lag time. While warehouse provisioning is 
generally very fast (for example, 1 or 2 seconds), it’s 
not entirely instant; depending on the size of the 
warehouse and the availability of compute resources 
to provision, it can take longer.

If you do choose to disable auto-suspend, you should 
carefully consider the costs associated with running a 
warehouse continually even when the warehouse is 
not processing queries. The costs can be significant, 
especially for larger warehouses (X-Large, 2X-Large, 
or larger.).

We recommend that you customize auto-suspend 
thresholds for warehouses assigned to different 
workloads to assist in warehouse responsiveness: 

•  Warehouses used for queries that benefit from caching 
should have a longer auto-suspend period to allow for 
the reuse of results in the query cache.

•  Warehouses used for data loading can be suspended 
immediately after queries are completed. Enabling auto-
resume will restart a virtual warehouse as soon as it 
receives a query.

Multi-cluster warehouses handle the first case well 
and scale out only when there are enough queries to 
justify it. For the case where there is an unpredictable 
amount of data in the queries, you usually have to 
either wait longer for queries that look at larger data 
sets or resize the entire warehouse, which affects all 
clusters in the warehouse and the entire workload. 

Snowflake’s Query Acceleration Service provides a 
good default for the price-performance spectrum by 
automatically identifying and scaling out parts of the 
query plan that are easily parallelizable (for example, 
per-file operations such as filters, aggregations, scans, 
and join probes using bloom filters). The benefit is 
a much reduced query runtime at a lower cost than 
would result from just using a larger warehouse. 

The Query Acceleration Service achieves this by 
elastically recruiting ephemeral worker nodes to 
lend a helping hand to the warehouse. Parallelizable 
fragments of the query plan are queued up for 
processing on leased workers, and the output of  
this fragment execution is materialized and 
consumed by the warehouse workers as a stream. 
As a result, a query over a large data set can finish 
faster, use fewer resources on the warehouse, and 
potentially, cost fewer total credits than it would with 
the current model. 

What makes this feature unique is:

•  It supports filter types, including joins

•  No specialized hardware is required

•  You can enable, disable, or configure the service 
without disrupting your workload

This is a great feature to use in your dbt deployment 
if you are looking to:

•  Accelerate long-running dbt queries that scan a  
lot of data 

•  Reduce the impact of scan-heavy outliers

•  Scale performance beyond the largest warehouse size

•  Speed up performance without changing the  
warehouse size

Please note that this feature is currently managed 
outside of dbt.

This feature is in private preview at the time of this 
white paper’s first publication; please reach out to 
your Snowflake representative if you are interested in 
experiencing this feature with your dbt deployment.
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•  If either the warehouse-level or account-level resource 
monitor reaches its defined threshold, the warehouse is 
suspended. This enables controlling global credit usage 
while also providing fine-grained control over credit 
usage for individual or specific warehouses.  

•  In addition, an account-level resource monitor does 
not control credit usage by the Snowflake-provided 
warehouses (used for Snowpipe, automatic reclustering, 
and MVs); the monitor controls only the virtual 
warehouses created in your account.

Considering these rules, the following are some 
recommendations on resource monitoring strategy:

•  Define an account-level budget.

•  Define priority warehouse(s) including warehouses for 
dbt workloads and carve from the master budget for 
priority warehouses.

•  Create a resource allocation story and map.

Figure 3 illustrates an example scenario for a resource 
monitoring strategy in which one resource monitor is 
set at the account level, and individual warehouses 
are assigned to two other resource monitors:

Resource monitors

Resource monitors can be used by account 
administrators to impose limits on the number of 
credits that are consumed by different workloads, 
including dbt jobs within each monthly billing  
period, by:

•  User-managed virtual warehouses

•  Virtual warehouses used by cloud services

When these limits are either close to being reached 
or have been reached, the resource monitor can send 
alert notifications or suspend the warehouses.

It is essential to be aware of the following rules about 
resource monitors:

•  A monitor can be assigned to one or more warehouses. 

•  Each warehouse can be assigned to only one  
resource monitor. 

•  A monitor can be set at the account level to control 
credit usage for all warehouses in your account. 

•  An account-level resource monitor does not override 
resource monitor assignment for individual warehouses.

Figure 3: Example scenario for a resource monitoring strategy

WAREHOUSE 3 WAREHOUSE 4WAREHOUSE 1 WAREHOUSE 2 WAREHOUSE 5

RESOURCE 
MONITOR 2

RESOURCE 
MONITOR 3

Credit quota = 5,000 Credit quota = 1,000 Credit quota = 2,500

Set for 
the account

RESOURCE 
MONITOR 1

Assigned to Assigned to

https://docs.snowflake.com/en/user-guide/resource-monitors.html
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time to suspend, even when the action is Suspend 
Immediate, thereby consuming additional credits.

If you wish to strictly enforce your quotas, we 
recommend the following:

•  Utilize buffers in the quota thresholds for actions (for 
example, set a threshold to 90% instead of 100%).  
This will help ensure that your credit usage doesn’t 
exceed the quota.

•  To more strictly control credit usage for individual 
warehouses, assign only a single warehouse to  
each resource monitor. When multiple warehouses  
are assigned to the same resource monitor, they  
share the same quota thresholds, which may result in 
credit usage for one warehouse impacting the other 
assigned warehouses.

When a resource monitor reaches the threshold 
for an action, it generates one of the following 
notifications, based on the action performed:

•  The assigned warehouses will be suspended after all 
running queries complete.

•  All running queries in the assigned warehouses will be 
canceled and the warehouses suspended immediately.

•  A threshold has been reached, but no action has  
been performed.

Notifications are disabled by default and can be 
received only by account administrators with the 
ACCOUNTADMIN role. To receive notifications, 
each account administrator must explicitly enable 
notifications through their preferences in the web 
interface. In addition, if an account administrator 
chooses to receive email notifications, they must 
provide (and verify) a valid email address before they 
will receive any emails. 

We recommend having well-defined naming 
conventions to separate warehouses between hub 
and spokes for tracking, governance (RBAC), and 
resource monitors for consumption alerts. 

Naming conventions 

Your resource monitor naming conventions are a 
foundation for tracking, allocation, and reporting. 
They should follow an enterprise plan for the domain 
(that is, function/market + environment). They 
should also align to your virtual warehouse naming 
convention when more granularity is needed.

In the example (Figure 3 on the previous page), the 
credit quota for the entire account is 5,000 per 
month; if this quota is reached within the interval, the 
actions defined for the resource monitor (Suspend, 
Suspend Immediate, and so on) are enforced for all 
five warehouses.

Warehouse 3 performs ETL including ETL for dbt 
jobs. From historical ETL loads, we estimated it can 
consume a maximum of 1,000 credits for the month. 
We assigned this warehouse to Resource Monitor 2.

Warehouse 4 and 5 are dedicated to the business 
intelligence and data science teams. Based on their 
historical usage, we estimated they can consume a 
maximum combined total of 2,500 credits for the 
month. We assigned these warehouses to Resource 
Monitor 3.

Warehouse 1 and 2 are for development and testing. 
Based on historical usage, we don’t need to place a 
specific resource monitor for them. 

The credits consumed by Warehouses 3, 4, and 5 may 
be less than their quotas if the account-level quota is 
reached first.

The used credits for a resource monitor reflect 
the sum of all credits consumed by all assigned 
warehouses within the specified interval. If a monitor 
has a Suspend or Suspend Immediately action 
defined and its used credits reach the threshold for 
the action, any warehouses assigned to the monitor 
are suspended and cannot be resumed until one of 
the following conditions is met:

•  The next interval, if any, starts, as dictated by the start 
date for the monitor.

•  The credit quota for the monitor is increased.

•  The credit threshold for the suspended action  
is increased.

•  The warehouses are no longer assigned to the monitor.

•  The monitor is dropped.

Resource monitors are not intended for strictly 
controlling consumption on an hourly basis; they 
are intended for tracking and controlling credit 
consumption per interval (day, week, month, and 
so on). Also, they are not intended for setting 
precise limits on credit usage (that is, down to 
the level of individual credits). For example, when 
credit quota thresholds are reached for a resource 
monitor, the assigned warehouses may take some 
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USA_PRD_DATASCIENCE_ADHOC: A resource 
monitor set to monitor and send alerts for just the 
single production data science warehouse for the USA.

USA_PRD_SERVICE_WAREHOUSES: A resource 
monitor set to monitor and send alerts for all 
production services (for example, ELT, reporting tools, 
and so on) warehouses for the USA. 

Role-based access control (RBAC) 

Team members have access only to their assigned 
database and virtual warehouse resources to ensure 
accurate cost allocation. 
 
Monitoring 
An important first step to managing credit 
consumption is to monitor it. Snowflake offers 
several capabilities to closely monitor resource 
consumption.

The first such resource is the Admin Billing and Usage 
page in the web interface, which offers a breakdown 
of consumption by day and hour for individual 
warehouses as well as for cloud services. This data 
can be downloaded for further analysis. Figure 4 
through Figure 6 show example credit, storage,  
and data transfers consumption from the  
Snowsight dashboard.

The following is a sample naming convention:

<domain>_<team>_<function>_<base_name>

<team>: The name of the team (for example, 
engineering, analytics, data science, service, and so 
on) that the warehouses being monitored have been 
allocated to. When used, this should be the same 
as the team name used within the names of the 
warehouses. 

<function>: The processing function (for example, 
development, ELT, reporting, ad hoc, and so on) 
generally being performed by the warehouses to be 
monitored.  When used, this should be the same as 
the processing function name used within the names 
of the warehouses.

<base name>: A general-purpose name segment to 
further distinguish one resource monitor from another. 
When used, this may be aligned with the base names 
used within the names of the warehouses or it may 
be something more generic to represent the group of 
warehouses.

An example of applying the naming conventions above 
might look something like this:

USA_WAREHOUSES: A resource monitor set to 
monitor and send alerts for all warehouses allocated to 
the USA spoke.

Figure 4: Example credit consumption from the Snowsight dashboard
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Figure 5: Example storage consumption from the Snowsight dashboard

Figure 6: Example data transfers consumption from the Snowsight dashboard
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This historical data can be used to build  
advanced forecasting models to predict future  
credit consumption. This trove of data is especially 
important to customers who have complex 
multiaccount organizations.

For admins who are interested in diving even deeper 
into resource optimization, Snowflake provides the 
account usage and information schemas. These tables 
offer granular details on every aspect of account 
usage, including for roles, sessions, users, individual 
queries, and even the performance or “load” on each 
virtual warehouse. 

Monitoring credit usage

VIEW DESCRIPTION

METERING_DAILY_HISTORY Daily credit usage and rebates across all service types 
within the last year

WAREHOUSE_METERING_HISTORY Hourly credit usage per warehouse within the last year

QUERY_HISTORY A record of every query (including SQL text), elapsed  
and compute time, and key statistics

VIEW DESCRIPTION

DATABASE_STORAGE_USAGE_HISTORY Average daily usage (bytes) by database

TABLE_STORAGE_METRICS Detailed storage records for tables

Monitoring storage usage

https://docs.snowflake.com/en/sql-reference/account-usage/metering_daily_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/warehouse_metering_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/query_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/database_storage_usage_history.html
https://docs.snowflake.com/en/sql-reference/account-usage/table_storage_metrics.html
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including the ability to forecast future usage. We 
recommend sharing the account usage dashboards 
offered by your customers’ preferred BI vendors to 
help them gain visibility on their Snowflake usage 
and easily forecast future usage. Figure 8 shows an 
example from Tableau.²

dbt offers a package called the Snowflake spend 
package that can be used to monitor Snowflake usage. 
Refer to the dbt package section of this white paper 
for more details.

Many third-party BI vendors offer pre-built dashboards 
that can be used to automatically visualize this data, 

Figure 7: Warehouse Load Over Time page

Figure 8: Tableau dashboard for monitoring performance

Warehouses in the web interface. As shown in Figure 
7, the Warehouse Load Over Time page provides a bar 
chart and a slider for selecting the window of time to 
view in the chart.

The account usage and information schemas can be 
queried directly using SQL or analyzed and charted 
using Snowsight. The example provided below is 
of a load monitoring chart. To view the chart, click 

https://docs.snowflake.com/en/user-guide/warehouses-load-monitoring.html
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Snowflake supports resizing a warehouse at any 
time, even while running. If a query is running slowly 
and you have additional queries of similar size 
and complexity that you want to run on the same 
warehouse, you might choose to resize the warehouse 
while it is running; however, note the following:

•  As stated earlier, larger is not necessarily faster; for 
smaller, basic queries that are already executing quickly, 
you may not see any significant improvement after 
resizing.

•  Resizing a running warehouse does not impact queries 
that are already being processed by the warehouse; the 
additional compute resources, once fully provisioned, 
are used only for queued and new queries.

•  Resizing between a 5XL or 6XL warehouse to a 4XL or 
smaller warehouse will result in a brief period during 
which you are charged for both the new warehouse and 
the old warehouse while the old warehouse is quiesced.

INDIVIDUAL DBT WORKLOAD ELASTICITY 

Snowflake supports two ways to scale warehouses:

•  Scale up by resizing a warehouse.

•  Scale out by adding warehouses to a multi-cluster 
warehouse (requires Snowflake Enterprise Edition  
or higher).

Resizing a warehouse generally improves query 
performance, particularly for larger, more complex 
queries. It can also help reduce the queuing that 
occurs if a warehouse does not have enough compute 
resources to process all the queries that are submitted 
concurrently. Note that warehouse resizing is not 
intended for handling concurrency issues. Instead, 
in such cases, we recommend you use additional 
warehouses or use a multi-cluster warehouse (if this 
feature is available for your account). 

https://docs.snowflake.com/en/user-guide/intro-editions.html
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Figure 10: User resizes the warehouse to X-Large

subsequent queries are started on the newly  
allocated virtual warehouse. 

Note that if you start a massive task and amend the 
warehouse size while the query is executing, it will 
continue to execute on the original warehouse size. 
This means you may need to kill and restart a large 
running task to gain benefits of the larger warehouse. 

Also note that it is not possible to automatically adjust 
warehouse size. However, you could script the ALTER 
WAREHOUSE statement to automate the process as 
part of a batch ETL operation, for example.

Scaling up for performance 

The purpose of scaling up is to improve query 
performance and save cost. Let’s look at an example 
to illustrate this.

A user running an X-Small virtual warehouse is 
illustrated in Figure 9. The user executes an ALTER 
WAREHOUSE statement to resize the warehouse to 
X-Large, as shown in Figure 10.

As a result, the number of nodes increases from 1 to 
16. During the resize operation, any currently running 
queries are allowed to complete and any queued or 

Figure 9: User running an X-Small virtual warehouse
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create table terabyte_sized_copy as
select *

from sample_data.tpcds_sf10tcl.store_sales;

The table below shows the elapsed time and cost for 
different warehouses.

Let’s now look at some benchmark data. Below is a 
simple query, similar to many ETL queries in practice, 
to load 1.3 TB of data. It was executed on various 
warehouse sizes.

T-SHIRT SIZE ELAPSED TIME COST (CREDITS)

X-Small 5	hours	and	30	minutes 5.5

Small 1 hour and 53 minutes 3.7

Medium 1 hour and zero minutes 4.0

Large 37 minutes and 57 seconds 5.0

XLarge 16 minutes and 7 seconds 4.2

2X-Large 7 minutes and 41 seconds 4.0

3X-Large 4 minutes and 52 seconds 5.1

4X-Large 2	minutes	and	32	seconds 5.4

Improvement 132	X Same

transformations, and querying. Previously, customers 
who needed to support compute-intensive workloads 
for data processing had to do batch processing and use 
multiple 4XL warehouses to accomplish their tasks. The 
new 5XL and 6XL virtual warehouse sizes give users the 
ability to run larger compute-intensive workloads in a 
performant fashion without any batching.

For a dbt workload, you should be strategic about 
what warehouse size you use. By default, dbt will 
use the warehouse declared in the connection. If you 
want to adjust the warehouse size, you can either 
declare a static warehouse configuration on the 
model or project level or as a dynamic macro such as 
the one shared in the Snowflake_utils package. 

This allows you to automate selection of the 
warehouse used for your models without manually 
updating your connection. Our recommendation  
is to use a larger warehouse for incremental  
full-refresh runs where you are rebuilding a large 
table from scratch. 

Here are some interesting observations from the 
table above:

•  For a large operation, as the warehouse size increases, 
the elapsed time drops by approximately half.

•  Each step up in warehouse size doubles the  
cost per hour.

•  However, since the warehouse can be suspended after 
the task is completed, the actual cost of each operation 
is approximately the same.

•  Going from X-Small to 4X-Large yields a 132x 
performance improvement with the same cost. This 
clearly illustrates how and why scaling up helps to 
improve performance and save cost.

•  Look at how compute resources can be dynamically 
scaled up, down, or out for each individual workload 
based on demand, and also suspend automatically to 
stop incurring cost, which is based on per-second billing. 

•  New 5XL and 6XL virtual warehouse sizes are now 
available on AWS and in public preview on Azure at 
the time of this white paper’s first publication. These 
sizes give users the ability to add more compute power 
to their workloads and enable faster data loading, 

https://docs.getdbt.com/reference/resource-configs/snowflake-configs#configuring-virtual-warehouses
https://docs.getdbt.com/reference/resource-configs/snowflake-configs#configuring-virtual-warehouses
https://hub.getdbt.com/montreal-analytics/snowflake_utils/latest/
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anticipates that there will soon be a dramatic change 
in the number of users online. In Figure 12, the 
customer executes an ALTER WAREHOUSE command 
to enable the multi-cluster warehouse feature. This 
command might look like:

alter warehouse PROD_VWH set

   min_cluster_count = 1

   max_cluster_count = 10;

Scaling out for concurrency

Multi-cluster warehouses are best utilized for scaling 
resources to improve concurrency for users and 
queries. They are not as beneficial for improving the 
performance of slow-running queries or data loading; 
for those types of operations, resizing the warehouse 
provides more benefits. 

Figure 11 illustrates a customer running queries 
against an X-Small warehouse. The performance 
is satisfactory, but in this example, the customer  

Figure 11: Customer runs queries  
against an X-Small warehouse

Figure 12: Customer executes an ALTER WAREHOUSE  
command to enable the multi-cluster warehouse feature

Automatically Scale Out: 1 – 10 same size clusters

WRITING EFFECTIVE SQL STATEMENTS

To optimize performance, it’s crucial to write effective 
SQL queries in dbt for execution on Snowflake.

Query order of execution

A query is often written is this order:

SELECT

FROM

JOIN

WHERE

GROUP BY

ORDER BY 

LIMIT

The system will automatically scale out by adding 
additional clusters of the same size as additional 
concurrent users run queries. The system also will 
automatically scale back as demand is reduced. As a 
result, the customer pays only for resources that were 
active during the period. 

In cases where a large load is anticipated from a 
pipeline or from usage patterns, the min_cluster 
parameter can be set beforehand to bring all 
compute resources online. This will reduce the delays 
in bringing compute online, which usually happens 
only after query queuing and only gradually with a 
cluster every 20 seconds. 

https://docs.snowflake.com/en/user-guide/warehouses-multicluster.html
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Joining on unique keys

Joining on nonunique keys can make your data output 
explode in magnitude, for example, where each row in 
table1 matches multiple rows in table2. Figure 14 shows 
an example execution plan where this happens, wherein 
the JOIN operation is the most costly operation.

Best practices for JOIN operations are: 

•  Ensuring keys are distinct (deduplicate) 

•  Understanding the relationships between your tables 
before joining

•  Avoiding many-to-many joins

•  Avoiding unintentional cross-joins

The order of execution for this query in Snowflake  
is shown in Figure 13 above. Accordingly, the 
example above would execute in the following order:

Step 1: FROM clause (cross-product and  
join operators)

Step 2: WHERE clause (row conditions)

Step 3: GROUP BY clause (sort on grouping  
columns, compute aggregates)

Step 4: HAVING clause (group conditions)

Step 5: ORDER BY clause

Step 6: Columns not in SELECT eliminated  
(projection operation)

SQL first checks which data table it will work 
with, and then it checks the filters, after which it 
groups the data. Finally it retrieves the data—and, if 
necessary, sorts it and prints only the first <X> lines. 

Applying filters as early as possible

As you can see from the order of execution, ROW 
operations are performed before GROUP operations. 
Thus, it’s important to think about optimizing ROW 
operations before GROUP operations in your 
query. It’s recommended to apply filters early at the 
WHERE-clause level.  

Querying only what you need

Snowflake uses a columnar format to store data, 
so the number of columns retrieved from a query 
matters a great deal for performance. Best practice is 
to select only the columns you need. You should:  

•  Avoid using SELECT * to return all columns

•  Avoid queries with SELECT long string columns or 
SELECT entire variant column 

Figure 13: The order of query execution

ROWS GROUPS RESULT

•  FROM

•  JOIN

•  WHERE

•  GROUP BY

•  HAVING

•  ORDER BY

•  LIMIT

•  SELECT

Figure 14: Example execution plan in which the JOIN is costly 
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On the Snowflake layer, the account should be set up 
with minimal separation of raw and analytics databases, 
as well as with clearly defined production and 
development schemas. There are different iterations of 
this setup, and you should create what meets the needs 
of your workflow. The goal here is  
to remove any confusion as to where objects should  
be built during the different stages of development  
and deployment. 

dbt developers should have control of their own 
development sandboxes so they can safely build any 
objects they have permissions to build. A sandbox often 
takes the form of a personal schema to ensure that other 
developers don’t accidentally delete or update objects. 
To learn more, check out this blog post. 

On the dbt layer, environment definitions consist of 
two things: the connection details and a dbt concept 
called target. 

When setting up your connection, you provide a data 
warehouse and schema. Those will be the default 
Snowflake schema and database you will be building 
objects into. 

Meanwhile, how your target comes into play differs 
slightly depending on the dbt interface you are using. 
If you’re using the command line, the target is the 
connection you wish to connect to (and thus the 
default schema/database). You can also use the target 
to apply Jinja conditions in your code, allowing you to 
adjust the compiled code based on the target. If you're 
using dbt Cloud, the target can be used only to apply 
conditional logic; the default schema/database will be 
defined in the environment settings. 

As a best practice for development, the default schema 
should be your sandbox schema, while for production, 
the default should be a production schema. As a project 
grows in size, you should define custom databases/
schemas either via hard-coding or via dynamic logic 
using targets so that, depending on the environment 
you’re working in, the database/schema changes to the 
associated Snowflake environment. 

When you combine environments with the ref 
function, code promotion is dramatically simplified. The 
ref function dynamically changes the object being 

Avoiding complex functions and UDFs in  
WHERE clauses

While built-in functions and UDFs can be 
tremendously useful, they can also impact 
performance when used in query predicates. Figure 
15 is an example of this scenario in which a log 
function is used where it should not be used. 

OPTIMIZING DBT

dbt is a transformation workflow that lets analytics 
engineers transform data by simply writing SQL 
statements. At its core, the way it operates with 
Snowflake is by compiling the SQL for Snowflake 
to execute. This means you can perform all of your 
data transformations inside of your data warehouse, 
making your process more efficient because there’s 
no need for data transference. You also get full access 
to Snowflake’s extensive analytics functionalities, 
now framed by the dbt workflow. In this section, 
we discuss specific dbt best practices that optimize 
Snowflake resources and functionalities. For broader 
dbt best practices, check out this discourse post. 

Use environments

Mitigate risk by defining environments in  
Snowflake and dbt. Making use of distinct 
environments may not be new in the world of 
software engineering but definitely can be in the 
world of data. The primary benefit of using clearly 
defined production and development environments 
is the mitigation of risk: in particular, the risk of 
costly rebuilds if anything breaks in production. 
With dbt and Snowflake, you can define cohesive 
environments and operate in them with minimal 
friction. Before even beginning development work in 
dbt, you should create and strictly implement  
these environments. 

Figure 15: Example of using a log function inappropriately 

https://discourse.getdbt.com/t/your-essential-dbt-project-checklist/1377
https://docs.getdbt.com/reference/dbt-jinja-functions/target
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas
https://docs.getdbt.com/reference/dbt-jinja-functions/target#snowflake
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://discourse.getdbt.com/t/your-essential-dbt-project-checklist/1377
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allows updating the logic only in one place. You can also 
implement a variable in the logic to adjust the time period 
specified in the WHERE clause (with a default date that 
can be overridden in a run).

Here is sample code that allows you to call this macro 
into a dbt model and add the WHERE clause when the 
target is dev:

{% macro limit_in_dev(timestamp) %}

   -- this filter will only apply during a dev run

    {% if target.name == 'dev' %}

        where {{timestamp}} > dateadd('day', 
-{{var('development_days_of_data')}}, current_date)

    {% endif %}

For larger projects, you can also use macros to limit 
rebuilding existing objects. By operationalizing the 
Snowflake Zero-Copy Cloning feature, you can ensure 
that your environments are synced up by cloning from 
another environment to stay up to date. This is fantastic 
for developers who prefer to simply clone from an existing 
development schema or from the production schema to 
have all the necessary objects to run the entire project 
and update only what is necessary. By putting this macro 
into your project, you ensure that developers are writing 
the correct DDL every time because all they have to do is 
execute it rather than manually write it every time.

referenced based on the environment, without you 
having to write conditional logic. This means that 
when you select from a referenced object, dbt will 
automatically know the appropriate schema and/or 
database to interpolate. 

This makes it possible for your code to never have 
to change as it’s promoted from development to 
production because dbt is always aware of the 
underlying environment. Figure 16 (below) shows an 
example of how a dbt model relates to a Snowflake 
database. You can configure the dbt model  
df_model to explicitly build into the Snowflake  
df_{environment} every time or based on 
conditional logic.

In addition to creating clearly defined environments, 
there is an additional cost (and time) saving measure 
that target makes possible. During development, 
you may find that you often need only a subset of 
your data set to test and iterate over. A good way 
to limit your data set in this way is to implement 
conditional logic to limit data in dev.

Such macros can automate when a filter is applied 
and ensure only a limited amount of data is run. 
This allows you to do away with the hassle of 
remembering to apply and remove data limitations 
through environments. 

To more systematically apply this through a project, 
a good practice is to put the conditional logic into a 
macro and then call the macro across models. This 

Figure 16: Example of how a dbt model relates to a Snowflake database 

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-variables
https://docs.snowflake.com/en/sql-reference/sql/create-clone.html
https://discourse.getdbt.com/t/creating-a-dev-environment-quickly-on-snowflake/1151
https://discourse.getdbt.com/t/creating-a-dev-environment-quickly-on-snowflake/1151
https://docs.getdbt.com/reference/dbt-jinja-functions/target#use-targetname-to-limit-data-in-dev
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Our recommendation is to start with eight threads 
(meaning up to eight parallel models that do not 
violate dependencies can be run at the same time), and 
then increase the number of threads as your project 
expands. While there is no maximum number of threads 
you can declare, it’s important to note that increasing 
the number of threads increases the load on your 
warehouse, potentially constraining other usage.

The number of concurrent models being run is also  
a factor of your project’s dependencies. For that  
reason, we recommend structuring your code as 
multiple models, maximizing the number that can be 
run simultaneously.

As your project expands, you should continue to 
increase the number of threads while keeping an 
eye on your Snowflake compute. Hitting compute 
limitations as you increase the number of threads may 
be a good signal that it’s time to increase the Snowflake 
warehouse size as well. 

Figure 17 shows a sample dbt DAG. In this example, 
if a user declared three threads, dbt would know to 
run the first three staging models prior to running 
dim_suppliers. By specifying three threads, dbt will 
work on up to three models at once without violating 
dependencies; the actual number of models it can work 
on is constrained by the available paths through the 
dependency graph.

USE THE REF() FUNCTION AND SOURCES

Always use the ref function and sources in 
combination with threads.

To best leverage Snowflake’s resources, it’s important 
to carefully consider the design of your dbt project. 
One key way to do that is to ensure you are using the 
ref()and source()functions in every dbt model, 
rather than hard-coding database objects.

The ref function is a keystone of dbt’s functionality. 
By using the function, dbt is able to infer 
dependencies and ensure that the correct upstream 
tables and views are selected based on your 
environment. Simply put, it makes sense to always 
use the ref function when selecting from another 
model, rather than using the direct relation reference 
(for example, my_schema.my_table). 

When you use the ref function, dbt automatically 
establishes a lineage from the model being 
referenced to the model where that reference is 
declared, and then it uses it to optimize the build 
order and document lineage. 

After the ref() function creates the directed acyclic 
graph (DAG), dbt is able to optimally execute models 
based on the DAG and the number of threads or 
maximum number of paths through the graph dbt 
is allowed to work on. As you increase the number 
of threads, dbt increases the number of paths in the 
graph that it can work on at the same time, thus 
reducing the runtime of your project. 

Figure 17: A sample dbt DAG

https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/docs/introduction#:~:text=dbt%20builds%20a%20directed%20acyclic,predecessor%20of%20the%20current%20model.
https://docs.getdbt.com/dbt-cli/configure-your-profile#understanding-threads
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administrative tasks such as grant statements, or they 
can systemically remove deprecated objects. 

In the past, during object creation, there often needed 
to be a parallel administrative workflow alongside 
development that ensured proper permissions were 
granted on Snowflake objects. Today all of this can 
be done via Snowflake GRANT statements. dbt adds 
another layer of functionality here: It allows you to 
take all your GRANT statements, ensure they are 
run consistently, and version control them for simple 
auditability.

See this example of a macro written to GRANT 
statements. This macro, once implemented as a dbt 
hook, ensures that the GRANT statements are run after 
every dbt run, thus ensuring the right roles have access 
to newly created objects or future objects.  

Similarly, as projects grow in maturity, it’s common 
for them to have deprecated or unused objects in 
Snowflake. dbt allows you to maintain a standardized 
approach for culling such objects, using macros 
such as the one mentioned here. This allows you to 
operationalize how you tidy up your instance and to 
ensure that it is done on a schedule (via a dbt job).

Macros, in addition to making your SQL more flexible, 
allow you to compartmentalize your Snowflake 
administrative code and run it in a systematic fashion. 

Sources work similarly to the ref() function, with 
the key distinction being that rather than telling dbt 
how a model relates to another model, sources tell 
dbt how a model relates to a source object. Declaring 
a dependency from a model to a source in this way 
enables a couple of important things: It allows you 
to select from source tables in your models, and it 
opens the door to more extensive project testing and 
documentation involving your source data. Figure 18 
(below) shows a sample dbt DAG including a source 
node. The green node represents the source table 
that stg_tpch_nation has a dependency on. 

WRITE MODULAR, DRY CODE

Use Jinja to write DRY code and operationalize 
Snowflake administrative workflows.

dbt allows you to use Jinja, a Pythonic templating 
language that can expand on SQL’s capabilities. Jinja 
gives you the ability to use control structures and 
apply environment variables. 

Pieces of code written with Jinja that can be reused 
throughout a dbt project are called macros. They 
are analogous to functions in other programming 
languages, allowing you to define code in one central 
location and reuse it in other places. The ref and 
source functions mentioned above are examples  
of Jinja.

In addition to being helpful for environmental 
logic, macros can help operationalize Snowflake 

Figure 18: A sample dbt DAG including a source node

https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations#operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations#operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations
https://docs.getdbt.com/docs/building-a-dbt-project/hooks-operations
https://discourse.getdbt.com/t/clean-your-warehouse-of-old-and-deprecated-models-snowflake/1547
https://docs.getdbt.com/docs/building-a-dbt-project/using-sources
https://docs.getdbt.com/docs/building-a-dbt-project/jinja-macros
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to use the node selector state:modified to run 
only models that have changes, which is much more 
resource-efficient. 

dbt Documentation ensures that your data team and 
your data stakeholders have the resources they need 
for effective data discovery. The documentation brings 
clarity and consistency to the data models your team 
ships, so you can collectively focus on extracting value 
from the models instead of trying to understand them. 

Every dbt model should be documented with a 
model description and, when possible, a column-level 
description. Use doc blocks to create a description in 
one file to be applied throughout the project; these are 
useful particularly for column descriptions that appear 
on multiple models. 

If you’re interested in documentation for the Snowflake 
side, apply query tags to your models. These allow 
you to conveniently tag in Snowflake’s query history 
where a model was run. You can get as granular as 
is convenient there, by either implementing model-
specific query tags that allow you to see the query run 
attributed to a specific dbt model or by having one 
automatically set on the project level, such as with the 
following macro: 

USE DBT TESTS AND DOCUMENTATION

Have at least one dbt test and one model-level 
description associated with each model. 

Robust systems of quality assurance and discovery 
are key to establishing organizational trust in  
data. This is where dbt tests and documentation  
are invaluable. 

dbt tests allow you to validate assumptions about 
your data. Tests are an integral part of a CI/CD 
workflow, allowing you to mitigate downtime and 
prevent costly rebuilds. Over time, tests not only 
save you debugging time, but they also help optimize 
your usage of Snowflake resources so you’re using 
them where they are most valuable rather than to fix 
preventable mistakes. 

We recommend that, unless there is a compelling 
reason not to, every dbt model has a test associated 
with it. Primary key tests are a good default, as failure 
there points to a granularity change. 

When you implement a CI/CD process, be sure to 
use Slim CI builds for systemic quality checks. With 
Slim CI, you don't have to rebuild and test all your 
models; you can instead instruct dbt to run jobs on 
only modified or new resources. This allows you 

{% macro set_query_tag() -%}

  {% set new_query_tag = model.name %} {# always use model name #}

  {% if new_query_tag %}

    {% set original_query_tag = get_current_query_tag() %}

    {{ log("Setting query_tag to '" ~ new_query_tag ~ "'. Will reset to '" ~ 
original_query_tag ~ "' after materialization.") }}

    {% do run_query("alter session set query_tag = '{}'".format(new_query_tag)) %}

    {{ return(original_query_tag)}}

  {% endif %}

  {{ return(none)}}

{% endmacro %}

https://docs.getdbt.com/docs/building-a-dbt-project/documentation
https://docs.getdbt.com/docs/building-a-dbt-project/documentation#using-docs-blocks
https://docs.getdbt.com/reference/resource-configs/snowflake-configs#query-tags
https://docs.getdbt.com/docs/building-a-dbt-project/tests
https://docs.getdbt.com/docs/dbt-cloud/using-dbt-cloud/cloud-enabling-continuous-integration-with-github#slim-ci
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section). Doing this ensures that projects are aligned 
in companywide definitions of, for example, what a 
customer is, and it limits the amount of WET (write 
every time) code.   
 
BE INTENTIONAL ABOUT YOUR 
MATERIALIZATIONS

Choose the right materialization for your current 
needs and scale.

One of the easiest ways to fine-tune performance 
and control your runtimes is via materializations. 
Materializations are build strategies for how your dbt 
models persist in Snowflake. Four materializations 
are supported out of the box by dbt: view, table, 
incremental, and ephemeral. 

By default, dbt models are materialized as views. 
Views are saved queries that are always up to date, 
but they do not store results for faster querying later. 
If an alternative materialization is not declared, dbt will 
create a view. View materializations are a very natural 
starting point in a new project.

As the volume of your data increases, however, you 
will want to look into alternative materializations that 
store results and thus front-load the time spent when 
you query from an object. The next step up is a table 
materialization, which stores results as a queryable 
table. We recommend this materialization for any 
models queried by BI tools, or simply when you are 
querying a larger data set. 

Incremental materialization offers a way to improve 
build time without compromising query speed. 
Incremental models materialize as tables in Snowflake, 
but they have more-complex underlying DDL, making 
them more complex configurations. They reduce build 
time by transforming only what has been declared to 
be a new record (via logic you supply). 

In addition to the materializations outlined above, 
you also have the option of writing your own custom 
materializations in your project and then use them in 
the same way as you would use materializations that 
come with dbt. This enables you to declare the model 
to be materialized as a materialized_view and 
grants you the same abilities as maintaining lineage 
with the ref function, testing, and documentation. 

USE PACKAGES

Don’t reinvent the wheel. Use packages to help scale 
up your dbt project quickly.

Packages can be described as dbt’s version of Python 
libraries. They are shareable pieces of code that you 
can incorporate into your own project to help you 
tackle a problem someone else has already solved 
or to share your knowledge with others. Packages 
allow you to free up your time and energy to focus on 
implementing your own unique business logic. 

Some key packages live on the dbt Package Hub. 
There, you can find packages that simplify things 
such as:

•  Transforming data from a consistently structured  
SaaS data set

•  Writing dbt macros that solve the question  
“How do I write this in SQL?”

•  Navigating models and macros for a particular tool  
in your data stack

Every dbt project on Snowflake should have at least 
the dbt_utils package installed. This is an invaluable 
package that provides macros that help you write 
common data logic, such as creating a surrogate key or 
a list of dates to join. This package will help you scale 
up your dbt project much faster. 

If you’re using the Snowflake Dynamic Data Masking 
feature, we recommend using the dbt_snow_mask 
package. This package provides pre-written macros to 
operationalize your dynamic masking application in a 
way that’s scalable and follows best practices. 

The snowflake spend package is another great 
package that allows you to easily implement analytics 
for your Snowflake usage. You can use it to model how 
your warehouses are being used in detail, so you can 
make sure you use only the resources you actually 
want to use. We recommend using this package with 
a job in dbt Cloud, so you can easily set up alerting in 
case your usage crosses a certain threshold. 

At larger organizations, it is not uncommon to 
create custom internal packages that are shared 
among teams. This is a great way to standardize 
logic and definitions as projects expand across 
multiple repositories (something we discuss in a later 

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.getdbt.com/docs/guides/creating-new-materializations
https://docs.getdbt.com/docs/guides/creating-new-materializations
https://hub.getdbt.com/
https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
https://hub.getdbt.com/entechlog/dbt_snow_mask/latest/
https://hub.getdbt.com/entechlog/dbt_snow_mask/latest/
https://hub.getdbt.com/gitlabhq/snowflake_spend/latest/
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dbt project. Next, implement a “timebox” for testing 
the upgrade and, if possible, require either every user 
or a group of power users to upgrade to the latest 
dbt version for a set amount of time (such as 1 hour.) 

In that time, you should make clear there should 
be no merges to production and users should 
develop only on the updated version. If the test 
goes smoothly, you can then have everyone on your 
team upgrade to the latest version both in the IDE 
and locally (or continue with their updated version, 
as the case may be.) On the other hand, if for some 
reason the test was not successful, you can make an 
informed decision on whether your team will stay on 
the newest release or roll back to the previous dbt 
version, and then plan for the next steps to upgrade 
at a later date. 

 
CONCLUSION

Modern businesses need a modern data strategy 
built on platforms that support agility, scalability, and 
operational efficiency. dbt and Snowflake are two 
technologies that work together to provide just such 
a platform. They’re capable of unlocking tremendous 
value when used together. Following the best 
practices highlighted in this white paper allows you to 
unlock the most value possible while minimizing the 
amount of resources expended.

OPTIMIZE FOR SCALABILITY

Even when they start lean, dbt projects can expand 
in scale very quickly. We have seen dbt projects with 
about 100 models expand, with good reason, to 
over 1,000 for large enterprises. Because of this, we 
recommend the following approaches to help you 
avoid issues down the line. 

Plan for project scalability from the outset

Being proactive about project scalability requires 
that you have a good understanding of how your 
team members work with each other and what your 
desired workflow looks like. We recommend reading 
this Discourse post as an overview of factors and 
then considering what options are right for  
your team. 

Generally speaking, we recommend maintaining the 
mono-repository approach as long as possible. This 
allows you to have the simplest possible git workflow 
and provides a single pane through which to oversee 
your project. 

As your project and data team scale, you may want 
to consider breaking the project up into multiple 
repositories to simplify the processes of approval and 
code promotion. If you do this, we recommend you 
make sure your Snowflake environments are aligned 
with this approach and there is a continual, clear 
distinction regarding what project, git branch, and 
users are building into which Snowflake database  
or schema. 

Follow a process for upgrading dbt versions 

One of the ways teams get caught off guard is by not 
establishing how they plan to go about upgrading dbt. 
This can lead to teams deciding to forgo upgrading 
entirely or to different team members having 
different versions, which has downstream effects on 
which dbt features can be leveraged in the project. 
Being on top of upgrading your dbt version ensures 
you have access to the latest dbt functionality, 
including support for new Snowflake features.

Our recommended method to upgrading dbt is to use 
a timeboxed approach. You should start by reading 
the necessary changelog and migration guides to get 
a sense of what changes might be needed for your 

https://discourse.getdbt.com/t/how-to-configure-your-dbt-repository-one-or-many/2121
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