BEST PRACTICES FOR
USING TABLEAU WITH
SNOWFLAKE

BY ALAN ELDRIDGE, ET. AL.

s

< snowflake

TABLE OF CONTENTS

1

Introduction
What Is Tableau?
What Is Snowflake?

Platform as a cloud service
Snowflake architecture

What You DON'T Have to Worry About with Snowflake
Creating Efficient Tableau Workbooks

Connecting Tableau to Snowflake
Use the right connector
Live connections versus Tableau extracts
Relationships versus joins
Assume Referential Integrity
Custom SQL
Initial SQL
Views
Materialized Views

16 Working with Semi-Structured Data

16 The VARIANT data type

18 Accessing semi-structured data from Tableau
20 RAWSQL

22 ELT

WHITE PAPER

https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html

23
23
23
25

26

27
27
28
28
28
29
31

33

34
34
36
38

39
39
39
39
40
40
41

41

42
42
42

Working with Snowflake Time Travel
Accessing historical data

Accessing Snowflake Time Travel data from Tableau
Working With Snowflake Clones

Working with Snowflake Secure Data Sharing

Implementing Role-Based Security
Setting up the data access rules
Passing in the user context
Column-level security solution for any data tool
Secure user defined functions (secure UDFS)
Tableau-only solution
Solution for any data tool

Using Custom Aggregations

Scaling Snowflake Warehouses
Resizing a warehouse to improve performance
Adding warehouses to improve concurrency
Scale Across

Caching
Tableau caching
Presentation layer
Client-side rendering in the browser
Server-side rendering with tiles

More about view models and bootstrap responses

Analytics layer
Data layer
Snowflake caching
Result caching
Warehouse caching

WHITE PAPER

https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html

43 Other Performance Considerations
43 Constraints
43 Temp tables

46 Measuring Performance
46 In Tableau

46 Performance recorder

47 Desktop logs

49 Server logs

50 Server performance views

50 Resource Monitoring Tool

51 TabJolt

51 In Snowflake

51 The Snowflake database

51 Snowflake Information Schema

51 Differences between account usage and Information Schema
52 Snowflake Query History

54 Snowflake Query Profile

55 Execution time

55 Statistics

55 “Exploding” joins

56 Queries too large to fit in memory

56 Inefficient pruning

57 Clustering

57 Linking performance data between Tableau and Snowflake

59 Conclusion
60 About Snowflake

WHITE PAPER

https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html
https://docs.snowflake.net/manuals/index.html

Introduction

Data is increasingly important for organizations. Greater volumes of data are being generated

and captured across systems at increasing levels of granularity. At the same time, more users

are demanding access to this data to answer questions and gain business insight.

Snowflake and Tableau are leading technologies addressing the challenges of increasing data
and demand. Snowflake provides a near limitless platform for data storage and processing,
and Tableau provides a highly intuitive, self-service data analytics platform.

The objective of this white paper is to help you make best use of features from these highly

complementary products. It is intended for Tableau users who are new to Snowflake,

Snowflake users who are new to Tableau, and any users who are new to both.

This white paper describes the best ways to work with key Snowflake and Tableau features including:

Tips for creating Tableau workbooks

Important things to know about connecting Tableau and Snowflake, including effective use of relationships and
joins, and information about when and how to use custom SQL

Best practices for using semi-structured data

Optimal ways to use Snowflake features such as Time Travel, Snowflake Secure Data Sharing, and scaling
When and how to use custom aggregations

Information about using role-based security

Methods for using caches to improve performance

Techniques to monitor performance

WHITE PAPER

1

WHAT IS TABLEAU?

Tableau Software is a business intelligence solution that integrates data analysis and reporting into a continuous
visual analysis cycle that lets everyday business users quickly explore data through charts and shift views on the
fly. Tableau combines data exploration, visualization, reporting, and dashboarding into an application that is easy to
learn and use.

Tableau’s solution set consists of three main products:

e Tableau Desktop is the end-user tool for data analysis and dashboard building. It can be used on its own or with
Tableau Server and Tableau Online.

e Tableau Prep is the data prep tool for cleaning, combining, and reshaping data before analysis and visualization.

e Tableau Server is the platform that provides services for collaboration, governance, administration, and content
sharing. This can be deployed on premises or in the cloud (on AWS, Microsoft Azure, or GCP). Tableau Online is
a software-as-a-service version of Tableau Server.

Either working standalone with Tableau Desktop, or by publishing content to Tableau Server or Tableau Online,
you can directly work with data stored in Snowflake’s cloud data platform.

WHAT IS SNOWFLAKE?

Snowflake’s Data Cloud is a global network where thousands of organizations mobilize data with near-unlimited
scale, concurrency, and performance. Inside the Data Cloud, organizations have a single unified view of data so they
can easily discover and securely share governed data, and execute diverse analytics workloads. Snowflake provides
a tightly integrated analytic data warehouse as a service, billed based on consumption. It is faster, easier to use, and
far more flexible than traditional data warehouse offerings.

Snowflake uses a SQL database engine and a unique architecture designed specifically for the cloud.

Platform as a cloud service

Snowflake is a true Saa$S offering. There is no hardware (virtual or physical) or software for you to select, install,
configure, or manage. In addition, ongoing maintenance, management, and tuning are handled by Snowflake.

All components of Snowflake's service (other than an optional command-line client) run in a secure public or
government cloud infrastructure.

Snowflake is cloud agnostic and uses virtual compute instances from each cloud provider (AWS EC2, Azure VM,
Google Compute Engine). In addition, it uses object or file storage from AWS S3, Azure Blob Storage, or Google
Cloud Storage for persistent storage of data. Due to Snowflake’s unique architecture and cloud independence,
you can seamlessly replicate data and operate from any of the clouds simultaneously.

For more information about Snowflake, visit the

WHITE PAPER

https://www.snowflake.com

Snowflake architecture

Snowflake’s architecture is a hybrid of traditional shared-disk database architectures and shared-nothing database
architectures. Similar to shared-disk architectures, Snowflake uses a central data repository for persisted data that
is accessible from all compute nodes in the data platform. But similar to shared-nothing architectures, Snowflake
processes queries using massively parallel processing (MPP) compute clusters where each node in the cluster
stores a portion of the entire data set locally. This approach offers the data management simplicity of a shared-
disk architecture, but with the performance and scale-out benefits of a shared-nothing architecture.

CLOUD SERVICEs

SECup,
GOvVER ITy &

NANCE

&) Google Cloud aW§ A\ Azure

Figure 1

Snowflake’s unique architecture consists of three layers built upon a public cloud infrastructure:

e Cloud services: Services that coordinate activities across Snowflake, processing user requests from login to
query dispatch. This layer provides optimization, management, security, sharing, and other features.

e Multi-cluster compute: Snowflake processes queries using virtual warehouses. Each virtual warehouse is an
MPP compute cluster composed of multiple compute nodes allocated by Snowflake from Amazon EC2, Azure
VM, or Google Cloud Compute. Each virtual warehouse has independent compute resources, so high demand
in one virtual warehouse has no impact on the performance of other virtual warehouses. For more information,
see in the Snowflake online documentation.

e Centralized Storage: Snowflake uses AWS S3, Azure Blob Storage, or Google Cloud Storage to store data
into its internal optimized, compressed, columnar format using micro-partitions. Snowflake manages the data
organization, file size, structure, compression, metadata, statistics, and replication. Data objects stored by
Snowflake are not directly visible by customers, but they are accessible through SQL query operations run
using Snowflake.

WHITE PAPER

https://docs.snowflake.com/en/user-guide/warehouses.html

WHAT YOU DON’T HAVE TO WORRY ABOUT WITH SNOWFLAKE

Because Snowflake is a cross-cloud platform offered as a service, there are lots of things you don't need to worry
about compared to a traditional on-premises solution:

Installing, provisioning, and maintaining hardware and software: All you need to do is create an account and load
your data. You can then immediately connect from Tableau and start querying.

Determining the capacity of your data warehouse: Snowflake has scalable compute and storage, so it can
accommodate all of your data and all of your users. You can adjust the count and size of your virtual warehouses
to handle peaks and lulls in your data usage. You can even turn your warehouses completely off to stop incurring
costs when you are not using them.

Learning new tools and expanded SQL capabilities: Snowflake is fully ANSI-SQL compliant, so you can use the
skills and tools you already have (like Tableau). Snowflake provides connectors for ODBC, JDBC, Python, Spark,
and Node.js, as well as web and command-line interfaces.

Siloed structured and semi-structured data: Business users increasingly need to work with both traditionally
structured data (for example, data in VARCHAR, INT, and DATE columns in tables) as well as semi-structured data
in formats like XML, JSON ,and Parquet. Snowflake provides a special data type called that enables you
to load your semi-structured data in natively and then query it with SQL.

Optimizing and maintaining your data: You can run analytic queries quickly and easily without worrying about
managing how your data is indexed or distributed across partitions. Snowflake also provides built-in data
protection capabilities, so you don't need to worry about snapshots, backups, or other administrative tasks like
running VACUUM jobs.

Securing your data and complying with international privacy regulations: All data is encrypted when it is loaded
into Snowflake, and it is kept encrypted at all times when at rest and in transit. If your business requirements
include working with data that requires HIPAA, PII, PCI, FEDRamp compliance, and more, Snowflake can support
these validations with the and higher editions.

Sharing data securely: Snowflake Secure Data Sharing enables you to share near real-time data internally and
externally between Snowflake accounts without copying and moving data sets. Data providers provide secure
data shares to their data consumers, who can view and seamlessly combine it with their own data sources.
Snowflake Data Marketplace includes many data sets that you can incorporate into your existing business data,
such as weather, demographics, or traffic, for greater data-driven insights.

CREATING EFFICIENT TABLEAU WORKBOOKS

To create efficient Tableau workbooks, follow the guidelines in the white paper.

The key points are:

Keep it simple: Most performance problems are caused by inefficient workbook design. Allow your users to
incrementally drill down to details by filtering, rather than trying to show everything at once.

Less is more: The fewer rows and columns you work with, the faster your queries will execute. Also, the fewer
marks you draw, the faster your workbooks will render.

Trust your tools: The query generator in Tableau is one of the most efficient on the market, so trust it to create
the queries for you. The less you customize queries, the better they will be.

WHITE PAPER

https://docs.snowflake.com/en/sql-reference/data-types-semistructured.html
https://docs.snowflake.com/en/user-guide/intro-editions.html#overview-of-editions
https://www.tableau.com/learn/whitepapers/designing-efficient-workbooks

CONNECTING TABLEAU TO SNOWFLAKE

This section describes several important considerations for connecting Tableau to Snowflake, including selecting the

right connector, when to use relationships, when to use initial SQL, and how to use views.

Use the right connector

To connect to Tableau to Snowflake, use the native connector option, Snowflake, as shown below. This ensures that

Tableau generates SQL optimized for running on Snowflake.

o0 e Tableau - Book1

Connect

Microsoft Excel
Text file

JSON file

PDF file

Spatial file
Statistical file

More...

Tableau Server
Oracle

Amazon Redshift
Snowflake

Microsoft SQL Server

More.

ed
Sample - APAC Superstore
Sample - Superstore
TPC-H 1000GB (Snowfla...
TPC-H 100GB (Snowflake)

Tableau Server
‘Amazon Athena
Amazon Aurora
Amazon EMR
‘Amazon Redshift
Anaplan

Apache Drill
Aster Database
Box

Cloudera Hadoop
Denodo

Dropbox

EXASOL

Firebird

Google Analytics
Google BigQuery
Google Cloud SQL
Google Sheets
Hortonworks Hadoop Hive
HP Vertica
Kognitio

MapR Hadocop Hive

Marketo

MemSQL

Microsoft SQL Server
MongoD8 BI Connector
MySQL

OData

OneDrive

Oracle

Oracle Eloqua

Pivotal Greenplum Database
PostgreSQL

Presto

QuickBooks Online
Salesforce

SAP HANA

ServiceNow ITSM
SharePoint Lists
Snowflake

Spark SQL

Teradata

Web Data Connector

Not this...

Use this...

Figure 2

For details on connection information, see the

After you select the native connector, you see the following dialog box:

Snowflake
Server:

Role: Optional

Enter information to sign in to the server:
Authentication: Username and Password
Username:

Password:

Enter custom driver parameters:

Initial SQL...

Figure 3

WHITE PAPER

5

https://help.tableau.com/current/pro/desktop/en-us/examples_snowflake.htm

Enter the information as prompted. Here are some notes to keep in mind:

e Role: The role determines which warehouses, databases, schemas, and tables are accessible. If you leave this

blank, the system defaults to the Snowflake default role.

e SAML IdP (Okta): If you are using SAML authentication, enter externalbrowser. This will open a web browser to
your SAML provider and enable you to authenticate through the browser.

After you sign in, you see the data source panel. This dialog box lets you select the virtual warehouse, database, and

schema. It also lets you set up relationships and joins.

Connections Add

seaustl.ap-so...computing.com
Snowilake
Liteltem

Warehouse

DEMO_WH -

Database
SNOWFLAKE_SAMPLE_DATA -

= i
Schema |EE| I= Sortfields | Data source order

- TPC-H 1GB (Snowflake)

Tableau - Book1

Filters
Extract 0 | Add

Connection
® Live

@ l Customers
(8] arTsuee

v Show aliases Show hidden fields rows.

TPCH_SF1 S

Abc Abc

Table P Cusi Nation Cust r‘dame
[CUSTOMER (...CUSTOMER)

EE LINEITEM (TR..F1.LINEITEM)

FE NATION (TPCH_SF1.NATICN)

FE ORDERS (TP..F1.ORDERS)

EE PART (TPCH_SF1.PART)

EE PARTSUPP (T..1 PARTSUPP)

EE REGION (TPCH_SF1 REGION)

EE SUPPLIER (T...1.SUPPLIER)

F& New Custom SQL

O Data Source Sheetl [B 0

Abe v Abo # Abc

Cust Address T CustPhone Cust Account Bala... Cust Market Segm

Update Now ‘

Automatically Update ‘

Figure 4

Live connections versus Tableau extracts

The data source panel enables you to select either a live connection or an extract (upper right corner). To take
advantage of Snowflake’s high performance data warehouse, select Live.

However, you may want to use a Tableau extract (a compressed snapshot of data loaded into memory) for any of the

following situations:

e Users require an offline data cache that can be used without a connection to Snowflake.

e Users are joining Snowflake with other data sources that are slow. Creating an extract will pull data from both
sources and remove the performance bottleneck from the additional source.

e Users create aggregated extracts to act as summarized data caches. This can be an effective approach to working
with large, slow data lakes. However, because Snowflake can provide fast query results when processing large
volumes of structured and semi-structured data, this may be unnecessary.

Note: To create or modify an extract connection, you need a live connection. (You cannot use webedit.)

The following sections describe alternatives for connecting Snowflake and Tableau, including relationships, custom
SQL, initial SQL, and views. All of the approaches are valid if implemented correctly. You should select the most
appropriate solution based on your particular needs of performance, data freshness, maintainability, and reusability.

WHITE PAPER

Relationships versus joins

Tableau 2020.2 introduced new data modeling capabilities that enable users to create relationships between tables
rather than specifying the join type and key. Relationships are a dynamic, flexible way to combine data from multiple
tables for analysis. We recommend using relationships as your first approach to combining your data because it
makes data preparation and analysis easier and more intuitive. Use joins only when you absolutely need to.

Here are some advantages to using relationships to combine tables:

¢ Make your data source easier to define, change, and reuse.
e Make it easier to analyze data across multiple tables at the correct level of detail (LOD).
e Do not require the use of LOD expressions or LOD calculations for analysis at different levels of detail.

e Only query data from tables with fields used in the current viz.

The Tableau query engine produces the following optimal query that joins only the tables needed and returns just the
displayed columns:

SELECT “CUSTOMER”’C_MKTSEGMENT” AS “C_MKTSEGMENT”,
COUNT(DISTINCT “ORDERS”’O_ORDERKEY”) AS “ctd:O_ORDERKEY:0k’,
DATE_TRUNC('MONTH?"ORDERS””O_ORDERDATE”) AS “tmn:O_ORDERDATE:ok”
FROM “TPCH_SF1""ORDERS” “ORDERS”
LEFT JOIN “TPCH_SF1""CUSTOMER” “CUSTOMER” ON (“ORDERS”’O_CUSTKEY" =
“CUSTOMER”’C_CUSTKEY”)
GROUPBY 1,

3

Based on the actions in the drag and drop, Tableau will create the optimal SQL with the necessary joins.

More information on relationships can be found

Assume Referential Integrity

In some cases, you can improve query performance for joins by selecting the option to Assume Referential Integrity
from the Data menu. When you use this option, Tableau will include the joined table in the query only if it is
specifically referenced by fields in the view.

Data
Edit Connection
Refresh
Mew Data Source Ctri+D
Duplicate Data Source
Paste Data CrlsV

Close
Tableau Data Server L

Edit Data Source Filters...
Convert To Custom SQL
Set Initial SQL

Assume Referential Integrity [:}
Figure 5

Using this setting is appropriate when you know that your data has referential integrity but your database is not
enforcing or cannot enforce referential integrity (note: Snowflake does not enforce referential integrity). The Assume
Referential Integrity option in Tableau can only affect performance on Tableau’s end. If your data does not have
referential integrity and you turn on this setting, query results may not be reliable.

WHITE PAPER

https://help.tableau.com/current/online/en-us/datasource_relationships_learnmorepage.htm

Custom SQL

Tableau can generate efficient queries if you define the relationships between the tables and let the query engine
write SQL specific to the view being created. However, sometimes specifying relationships in the data connection
window does not offer all the flexibility you need.

Although creating a data connection using a custom SQL statement can be useful, it can reduce performance. This is
because, in contrast to defining relationships, custom SQL is never deconstructed and is always executed atomically.
This means no join culling occurs, and the whole query may have to be processed, possibly multiple times.

If you need to use custom SQL, for example to analyze semi-structured data or use Snowflake Time Travel, there are
best practices you can follow to mitigate some of the issues. These include Initial SQL and Views.
Example

Consider the example used in the Relationships versus joins section. It shows the number of records in the TPCH_SF1
sample schema for each month, broken down by the market segment:

e0e Tableau - Book1
| & (EEl = [- e (g - B3 £ - T f |standard ~| | Hil-OJ g = Show Me
Data Analytics * Pages iii Columns MONTH(Order Dat..
£ TPC-H SF1 (DEMO_DB) i= Rows CNTD(Order ID)
Dimensions mole P
iters ateTime
v B Customer Sheet 1 -
4ue Cust Address 1712018 12000070

ase Cust Market Segment

ae Cust Name

Abe Cust Nation

Anc Cust Phone A Automatic

Abe Cust Region
¥ |8
. Ordier Color Size Label

Aue Order Clerk Sl o
abe Order Comment.
Detal | Tooltip | Patn
E3 Order Date
4 OrderID B Cust Market Se..
abe Order Priority
4 Order Ship Priority
Ak Order Status
v = Order ltem
B3 Item Commit Date
Measures

4000 Cust Market Segment

M AUTOMOBILE
M BUILDING
I FURNITURE
[HOUSEHOLD
B VACHINERY

Marks

3500

2500

2000

Distinct count of Order ID

)
8

4 Item Extended Price
4 Item Line Number
IemQly
4 ltemTax
4 Order Total Price
v Part
4 Retail Price
~ B Supplier 9
4 PartOty 1992 1993 199 1995 1996 1997 1998
Parameters
£ AsAtDateTime

1000

Month of Order Date

6 Data Source sheet1 [B I

400marks 1 rowby Lcolumn SUM of CNTD(Order ID): 1.500.000 & ManElgndge v]

Figure 6

WHITE PAPER

If the underlying data model uses the recommended approach of relating the tables, the resulting query joins only
the tables needed and returns just the columns being displayed:

SELECT “CUSTOMER"’C_MKTSEGMENT” AS “C_MKTSEGMENT”",
COUNT(DISTINCT “ORDERS"”’O_ORDERKEY”) AS “ctd:O_ORDERKEY:ok’,

DATE_TRUNC(MONTH’"ORDERS”’O_ORDERDATE") AS “tmn:O_ORDERDATE:ok”
FROM “TPCH_SF1"’ORDERS” “ORDERS”

LEFT JOIN “TPCH_SF1"”CUSTOMER” “CUSTOMER” ON (“ORDERS”’O_CUSTKEY” =
“CUSTOMER”’C_CUSTKEY”)

GROUPBY 1,
3

This results in the following optimal query plan:

JWEYBURNE_SFC
SYSADMIN

History > 8:51:13 AM for 8.2s

Lastrefreshed 8:5153AM

Profile Overview Finished
Result (7] o% Sof 7 nodes

Aggregate [1] aapy | Total Execution Time (7.741s)

Detalls Profile

- — (100%)
Join (6] 227% %

TableScan (4] 62%
Aggregate [1] 338% TryDeduplicate [5] 31%

TableScan (2] %

Join [6] 27.7%

1857 MB
150k 15M i
2

Filter (3] 0% TryDeduplicate (5] 31%

150k

TableScan (2] 31% TableScan (4] 6.2%
SNOWFLAKE SAMPL e

Figure 7

What happens, though, if business logic is embedded in the data model? Using custom SQL, there are two approaches.
You can isolate the custom SQL to the affected part of the model, keeping the rest of the schema as join definitions,
or you can encapsulate the entire data model (with all table joins) into a single, monolithic custom SQL statement.

WHITE PAPER

9

To demonstrate the first approach, the following example replaces the ORDERS table with a custom SQL statement:
3+ Good Custom SQL

= [

Schrma e e eatcwemsa
SeLEcT +
Frow 170

TPoSF1

CUSTOMER ..CUSTOMER)
u

Figure 8

Tableau generates the following query (the custom SQL is highlighted):

SELECT “CUSTOMER”’C_MKTSEGMENT” AS “C_MKTSEGMENT”,
COUNT(DISTINCT “Custom SQL Query””O_ORDERKEY”) AS “ctd:O_ORDERKEY:ok’,
DATE_TRUNC(‘MONTH?Custom SQL Query””O_ORDERDATE") AS “tmn:O_ORDERDATE:ok”
FROM (

LEFT JOIN “TPCH_SF1"”CUSTOMER” “CUSTOMER” ON (TRUNC(“Custom SQL Query””O_CUSTKEY”) =
“CUSTOMER"’C_CUSTKEY”)
GROUPBY 1,

3

The custom SQL is not decomposed, but because its scope is just for the ORDERS table, Tableau can cull (eliminate)
the joins to the unneeded tables. The Snowflake optimizer then parses this into an optimal query plan, identical to
the initial example:

Q 53 S o 2 JWEYBURNE_SFC
History. Account op Partner Connect el ® STEADMM
History > 1:31:27 PM for 787ms. Lastrefreshed 151:310M | &
Detalls Profile
e
Sor7nodes
Result [7) o% Aggregate (1) s otal Ex ime (426me)
Projecton (5] asx
Join 6) 22%
w0

Aggregate (1] 58.7% Total Statistics

10000 %
961 M8
15M 10000 %
Join 6]) 22% 2184 M8
2
”°
Filter (3] 0% Projection (5] 6%

TableScan [2] 0% TableScan [4] 0%

Figure 9

WHITE PAPER

10

New Tableau users might try using the second approach and encapsulate the entire data model (with all table joins)

into a single, monolithic custom SQL statement.

0 O Tableau - Book1
i = 5
N & S 8- Bad Custom SQL Connetion Fiters
® Live Extract 0| Add
Connections Add
seaust] ap-so..computing.com
S | custom st Query
Warehouse
DEMO_WH - e e Edit Custom SQL
BELECT
Dadsbase FROM “TPCH1"."LINEITEM" “LineIten"
INNER JOIN "TPCH1"."ORDERS" "Orders" ON ("LineItem"."L_ORDERKEY" = "Orders"."O_ORDERKEY")
DEMO_DB R INNER JOIN “TPCH1"."CUSTOMER" "Customers” ON (“Orders"."O_CUSTKEY" = "Customers"."C_CUSTKEY")
INNER JOIN "TPCH1"."PART" “Parts" ON ("LineItem"."L_PARTKEY" = "Parts"."P_PARTKEY")
Schema | INNER JOIN "TPCH1"."PARTSUPP" "PARTSUPP" ON ("Parts"."P_PARTKEY" = "PARTSUPP'"."PS_PARTKEY") =
@ = ¢ INNER JOIN "TPCH1"."SUPPLIER" "Suppliers" ON ("PARTSUPP"."PS_SUPPKEY" = "Suppliers"."S_SUPPKEY") 7 e
gECET 2 1" 7 INNER JOIN "TPCH1"."NATION" "CustNation" ON ("Custome _NATIONKEY" = "CustNation"."N_NATIONKEY") |
INNER JOIN "TPCH1"."REGION" "CustRegion" ON ("CustNation"."N_REGIONKEY" = "CustRegion"."R_REGIONKEY")
Table #
Al S Recommended Custom S} tom SO Query
Item Line lem Ship Date
Enter table name - B | B
£ CUSTOMER (... CUSTOMER)
£ FOO_YW (TPCH1.FOO_VW)
f LINEITEM (TPCHL.LINEITEM)
£ NATION (TPCHL.NATION)
F ORDERS (TPCH1 ORDERS)
PART (TPCHL.PART,
by) Preview Results... | Insert Parameter cancel | (CE
[PARTSUPP (T..1 PARTSUPP)
o oot G it T —————
£ SUPPLIER (T..1.SUPPLIER)
£ New Custom SQL
B Data Source Joined Tables | Good Custom SQL | BadCustom SQL | TimeTravel | [} B} [0}
& MenEidridge ~ ! ! =n
Figure 10

Again, the custom SQL is not decomposed so the Tableau query engine wraps the custom SQL in a surrounding
SELECT statement. This means there is no join culling and Snowflake is required to join all the tables together
before the required subset of data is selected (the custom SQL is highlighted):

SELECT “Custom SQL Query””C_MKTSEGMENT” AS “C_MKTSEGMENT”,

COUNT(DISTINCT “Custom SQL Query”’O_ORDERKEY") AS “ctd:O_ORDERKEY:ok”,

DATE_TRUNC(‘MONTH’’Custom SQL Query”’O_ORDERDATE") AS “tmn:O_ORDERDATE:ok”
FROM (

SELECT *

FROM “TPCH_SF1""LINEITEM” “Lineltem”

INNER JOIN “TPCH_SF1"”ORDERS” “Orders” ON (“Lineltem”’L_ORDERKEY” =
“Orders””O_ORDERKEY”)

INNER JOIN “TPCH_SF1""CUSTOMER” “Customers” ON (“Orders”"O_CUSTKEY”
“Customers””C_CUSTKEY")

INNER JOIN “TPCH_SF1""PART” “Parts” ON (“Lineltem””’L_PARTKEY" = “Parts”’P_PARTKEY")

INNER JOIN “TPCH_SF1"”PARTSUPP” “PARTSUPP” ON (“Parts”’P_PARTKEY” =
“PARTSUPP”’PS_PARTKEY”)

INNER JOIN “TPCH_SF1""SUPPLIER” “Suppliers” ON (“PARTSUPP"’PS_SUPPKEY" =
“Suppliers”’S_SUPPKEY”)

INNER JOIN “TPCH_SF1""NATION” “CustNation” ON (“Customers”’C_NATIONKEY” =
“CustNation””N_NATIONKEY”)

INNER JOIN “TPCH_SF1""REGION" “CustRegion” ON (“CustNation”’N_REGIONKEY” =
“CustRegion”’R_REGIONKEY”)
) “Custom SQL Query”
GROUPBY 1,

3

WHITE PAPER

n

This results in a less efficient query:

Last refroshed 15936 PM | &

Profile Overview Finished

aem)
- —(100%)
%

s
n%
nx

TryDeaupleats (2]

Figure 11

This approach is inefficient as this entire query plan needs to be run for potentially every query in the dashboard.

Initial SQL

If, for some reason, you need to use custom SQL, you can avoid repeated runs by using initial SQL to create a
temporary table to be the selected table in your query. Because initial SQL is executed only once when the workbook
is opened (as opposed to every time the visualization is changed for custom SQL), this could significantly improve
performance, but the data populated into the temp table will be static for the duration of the session, even if the data
in the underlying tables changes.

You can also use initial SQL to set additional session context within Snowflake. Commands such as USE
WAREHOUSE, USE ROLE, and USE DATABASE can be leveraged to alter the Tableau Server user’s operational
context in Snowflake from the original author. Note the Tableau Server user must have rights in Snowflake to change
to the new context. Further, the Tableau Server user’s context can be sent into initial SQL to a Table Value Function
(TVF) to pull back a highly targeted data set for that user.

Other variables from Tableau can also be passed into Snowflake to address additional use cases in the integration.
These variables are listed below (see for more details):

PARAMETER DESCRIPTION EXAMPLE VALUE

The user name of the current server user. Use when setting up
TableauServerUser impersonation on the server. Returns an empty string if the user is jsmith
not signed in to Tableau Server.

The user name and domain of the current server user. Use when
TableauServerUserFull setting up impersonation on the server. Returns an empty string if domain.lan\jsmith
the user is not signed in to Tableau Server.

TableauApp The name of the Tableau application. Low
TableauVersion The version of the Tableau application. Low

The name of the Tableau workbook. Use only in workbooks with an
embedded data source.

WorkbookName Med

WHITE PAPER

12

https://help.tableau.com/current/pro/desktop/en-us/connect_basic_initialsql.htm

Example

Using the example above, instead of placing the entire query in a custom SQL statement, you could use it in an initial
SQL block and instantiate a temporary table:

CREATE OR REPLACE TEMP TABLE TPCH1.FOO AS
SELECT *
FROM “TPCH1""LINEITEM” “Lineltem”

INNER JOIN “TPCH1"”ORDERS” “Orders” ON (“Lineltem””’L_ORDERKEY” =
“Orders”’O_ORDERKEY”)

INNER JOIN “TPCH1""CUSTOMER” “Customers” ON (“Orders””O_CUSTKEY” =
“Customers””C_CUSTKEY”)

INNER JOIN “TPCH1""PART” “Parts” ON (“Lineltem””L_PARTKEY” = “Parts””P_PARTKEY")

INNER JOIN “TPCH1""PARTSUPP” “PARTSUPP” ON (“Parts”’P_PARTKEY” =
“PARTSUPP”’PS_PARTKEY”)

INNER JOIN “TPCH1""SUPPLIER” “Suppliers” ON (“PARTSUPP""PS_SUPPKEY” =
“Suppliers””’S_SUPPKEY”)

INNER JOIN “TPCH1"’NATION” “CustNation” ON (“Customers”’C_NATIONKEY” =
“CustNation””N_NATIONKEY")

INNER JOIN “TPCH1""REGION" “CustRegion” ON (“CustNation”’N_REGIONKEY” =
“CustRegion””"R_REGIONKEY");

The FOO table is selected as the data source:

e0e Tableau - Book1

B~ Initial SQL Temp Table Connectian Fiters

@ Live Extract 0| Add
Connections Add
seaust1.ap-so...computing.com
Sranake | oo
Warehouse
DEMO_WH -
Database
DEMO_DB -
Schema
TPCHL < = Sortfields | Data source order - Show aliases || Show hidden fields | rows.
Table # # # #* # abe Abe =]
All 10 Racorhanced f00 700 f00 700 00 ro0 ro0 70
Item Line Number Item Qty Item Extended Price Item Discount Item Tax Item Return Flag Item Status Item Ship Date
Enter table name -

FR CUSTOMER (...CUSTOMER)
E FOO (TPCHL.FOO)

B FOO_VW(TPCH1.FO0_VW)
BB LINEITEM (TPCHLLINEITEM)
FH NATION (TPCH1.NATION) Update Now
FT ORDERS (TPCH1.ORDERS)
[T PART (TPCH1.PART)

FR PARTSUPP (T..1.PARTSUPP)
R REGION (TPCHL.REGION)
FE SUPPLIER (T...1.SUPPLIER)

Automatically Update

F7 New Custom SQL

8
£

© pata Source Joined Tables Good Custom SQL Bad Custom SQL TimeTravel Initial SQL Temp Table | [,

& Manfldidge + Wery|iEmm

Figure 12

And Tableau generates the following query:

SELECT “FOO_VW"’C_MKTSEGMENT” AS “C_MKTSEGMENT”,
COUNT(DISTINCT “FOO_VW"’O_ORDERKEY”) AS “ctd:O_ORDERKEY:o0k”,
DATE_TRUNC(‘MONTH"FOO_VW"”’O_ORDERDATE”) AS “tmn:O_ORDERDATE:ok”
FROM “TPCH1"’FOQO” “FOO”
GROUPBY 1,

3

WHITE PAPER 13

This has a very simple query plan and fast execution time, but the data returned will not reflect changes to the
underlying fact tables until a new session is started and the temp table is recreated.

Note: If you plan to publish your workbook to share with others, be sure that the administrator has not restricted
initial SQL from running. Also, note that temp tables take up additional space in Snowflake that will contribute to
the account storage charges, but because they are ephemeral this is generally not significant.

Views

Views are another alternative to using custom SQL. Unlike initial SQL, views ensure that your results contain
current data. Here is an example of a view:

CREATE OR REPLACE VIEW FOO_VW AS

In Tableau, use the view as the data source:

[XeX) | Tableau - Custom SQL Example
< s} i
&l B+ TPC-H SF1 View (Snowflake) p— Fiters
9 Live Extract 0 | Add

Connections Add

seaust1.ap-so..computing.com

Sroulaia B

Warehouse

DEMO_WH -
Database

DEMO_DB -
Schema

PUBLIC -
Table p

A FOo E| = Sortfields Datasource order - Show aliases Show hidden fieids rows

&3 FOo_VW

EH MELBOURNE_TREES_CSV # # # # # # # # abe

B8 MELBOURNE_TREES_JSON L Orderkey LPartkey L Suppkey L Linenumber L Quantity LExtendedprice L Discount LTax LReturnflag

3 New Custom SQL

Update Now

Automatically Update

Figure 13

WHITE PAPER 14

The query generated by Tableau is simple:

SELECT “FOO_VW"’C_MKTSEGMENT” AS “C_MKTSEGMENT”,
COUNT(DISTINCT “FOO_VW""O_ORDERKEY”) AS “ctd:O_ORDERKEY:ok”,
DATE_TRUNC(‘MONTH’"FOO_VW""O_ORDERDATE") AS “tmn:O_ORDERDATE:ok”
FROM “TPCH1"’FOO_VW” “FOO_VW”
GROUPBY 1,
3

However, this takes longer to run and has a less efficient query plan as the view needs to be evaluated at query time.
The benefit is that you will always see up-to-date data in your results:

® O ® /i soL worksheet x \ Alan
“ C & Secure | https:/jseaustl.ap- 2 ing.com/console#/monitoring/queries/detail?queryld=99669081-b18b-42fb-a07d-94036f8... ¥ I'[", 90 oy [:]
i Apps S Snowflake FSDemos ESSAML ESBlog EJServices B Partners ESNews [Personal £ interesting ESjArchive B Google Apps 4ii Home
b s P > Q) ?) Alan Eldridge
sezsnowflake £ - ¥ ?
an Databases Warehouses Worksheet History Help BYSATANL
History > 5:28:15 PM for 3.0s Last refreshed at 5:20:17PM &
Details Profile
— & Most Expensive Nodes Profile Overview (Finished)
801 23 nodes
— 3819 | Total Execution Time (2.4965)
p— 9 (100%)
Join [21] 19.4% Processing %%
® Synchronization 4%
P g Join [20] 1.6% | | o Inializaton 1%
Join [19] 11.6%
— N = Total Statistics
Join [22] 71%
10
== 5 == = JoinFilter [18] 5% | | Seanprogress HO0.00%
Bytes scanned 4030 MB
Join[16] 26% | | Percentage scanned from cache 100.00 %
JoinFilter [15] 19% Pruning
Partitions scanned 3
Partitions total 3

Figure 14

Materialized Views

In scenarios where view performance against a single table is less than desirable, consider using

(MVs). Materialized views are automatically and transparently maintained by Snowflake. A background service
updates the materialized view after changes are made to the base table. This is more efficient and less error-prone
than manually maintaining the equivalent of a materialized view at the application level. Data accessed through
materialized views is always current, regardless of the amount of DML that has been performed on the base table.

It's important to note that users don't need to specify a materialized view in a SQL statement in order for the view
to be used. The query optimizer can automatically rewrite queries against the base table or regular views to use the
materialized view instead.

For example, suppose that a materialized view contains all of the rows and columns that are needed by a query
against a base table. The optimizer can decide to rewrite the query to use the materialized view, rather than the base
table. This can dramatically speed up a query, especially if the base table contains a large amount of historical data.

WHITE PAPER

15

https://docs.snowflake.com/en/user-guide/views-materialized.html

WORKING WITH SEMI-STRUCTURED DATA

Today, business users work with data in multiple forms from numerous sources, including an ever-expanding
amount of machine-generated data from applications, sensors, and mobile devices. Increasingly, this data is
provided in semi-structured data formats such as JSON, Avro, ORC, Parquet, and XML that have flexible schemas.
These semi-structured data formats do not conform to the standards of traditionally structured data, but instead
contain tags or other types of markup that identify individual, distinct elements within the data:

{ “city”: {
“coord”: { “lat”: -37.813999, “lon": 144.963318 },
“country”: “AU”",
“findname”: “MELBOURNE”,
“id": 2158177,
“name”: “Melbourne”,
“zoom”: 51},
“clouds”: {
“all”: 88 },
“main”: {
“humidity”: 31, “pressure”: 1010, “temp”: 303.4,
“temp_max”": 305.15, “temp_min": 301.15},
“rain”:
“3h": 0.57 },
“time”: 1514426634,
“weather”: [{
“description”: “light rain”, “icon”: “10d”",
“id”: 500, “main”: “Rain” }],
“wind”: {
“deg”: 350, “speed”: 4.1}

Two of the key attributes that distinguish semi-structured data from structured data are nested data structures
and the lack of a fixed schema:

e Unlike structured data, which represents data as a flat table, semi-structured data can contain multiple-level
hierarchies of nested information.

e Structured data requires a fixed schema that is defined before the data can be loaded and queried in a
relational database system. Semi-structured data does not require a prior schema definition, and the schema
can constantly evolve so new attributes can be added at any time.

Tableau 10.1 introduced support for directly reading JSON data files. However, you can achieve broader support
for semi-structured data by first loading the data into Snowflake. Snowflake provides native support for semi-
structured data, including:

o Flexible schema data types for loading semi-structured data without transformation
e Direct ingestion of JSON, Avro, ORC, Parquet, and XML file formats
e Automatic conversion of data to Snowflake’s optimized internal storage format

¢ Database optimization for fast and efficient querying of semi-structured data

The VARIANT data type

Rather than requiring semi-structured data to be parsed and transformed into a traditional schema of single-value
columns, Snowflake stores semi-structured data in a single column of a special type: VARIANT. Each VARIANT
column can contain an entire semi-structured object consisting of multiple key-value pairs. For example:

WHITE PAPER

SELECT * FROM SNOWFLAKE_SAMPLE_DATAWEATHERWEATHER_14_TOTAL
LIMIT 2;

V::VARIANT T::TIMESTAMP

{ “city”: { “coord”: { “lat": 27.716667, “lon": 85.316666 },
“country”: “NP”, “findname”: “KATHMANDU”, “id": 1283240, “name”:
“Kathmandu”, “zoom”: 7 }, “clouds”: { “all”: 75 }, “main”: { “humidity”: 65,
“pressure”: 1009, “temp”: 300.15, “temp_max”: 300.15, “temp_min": 1.5ep.2017 04:02:54
300.15}, “time”: 1504263774, “weather”: [{ “description”: “broken
clouds”, “icon”: “04d”, “id": 803, “main”: “Clouds” }], “wind”: { “deg”: 290,
“speed”: 2.6 }}

{ “city”: { “coord”: { “lat”: 8.598333, “lon": -71.144997 },
“country”: “VE”, “findname”: “MERIDA’, “id”: 3632308, “name”: “Merida”,
“zoom”: 8 }, “clouds”: { “all”: 12 }, “main”: { “grnd_level”: 819.46, “hu-
midity”: 90, “pressure”: 819.46, “sea_level”: 1027.57, “temp”: 287.006,
“temp_max”: 287.006, “temp_min": 287.006 }, “time”: 1504263774,
“weather”: [{ “description”: “few clouds”, “icon”: “02d”, “id”: 801, “main”:
“Clouds” }], “wind”: { “deg”: 122.002, “speed”: 0.75 } }

1.5ep.2017 04:02:54

The VARIANT type stores the individual keys and their values in a columnar format, just like normal columns in a
relational table. This means that storage and query performance for operations on data in a VARIANT column are
very similar to storage and query performance for data in a normal relational column.?

Note that the maximum number of key-value pairs for a single VARIANT column is 1,000. If your semi-structured
data has more than 1,000 key-value pairs, you may benefit from spreading the data across multiple VARIANT
columns. Additionally, each VARIANT entry is limited to a maximum size of 16 MB of compressed data.

You can query individual key-value pairs directly from VARIANT columns with a minor extension to traditional
SQL syntax:

SELECT V:TIME:TIMESTAMP TIME,
V:CITY:NAME::VARCHAR CITY,
V:CITY.COUNTRY::\VARCHAR COUNTRY,
(V:IMAIN.TEMP_MAX - 273.15)::FLOAT AS TEMP_MAX,
(V:MAIN.TEMP_MIN - 273.15)::FLOAT AS TEMP_MIN,
V:WEATHER[0].MAIN::VARCHAR AS WEATHER_MAIN

FROM SNOWFLAKE_SAMPLE_DATAWEATHERWEATHER_14_TOTAL;

CITY COUNTRY TEMP_MAX TEMP_MIN WEATHER_MAIN
8-Jan-2018 1:05 am Melbourne AU 20 19 Rain
8-Jan-2018 12:02 am Melbourne AU 19 18 Rain
7-Jan-2018 11:05 pm Melbourne AU 19 18 Clouds

Detailed information about working with semi-structured data is in the Snowflake online documentation.

1 For non-array data that uses only native JSON types (strings and numbers, not timestamps). Non-native values such as dates and timestamps are stored as
strings when loaded into a VARIANT column, so operations on these values could be slower and consume more space than when stored in a relational column
with the corresponding data type. For more information, visit the Snowflake Documentation.

WHITE PAPER 17

https://docs.snowflake.com/en/user-guide/semistructured-concepts.html
https://docs.snowflake.com/en/user-guide/querying-semistructured.html

Accessing semi-structured data from Tableau

Tableau does not recognize the VARIANT data type so it doesn’t automatically create queries with the SQL

extensions outlined above. This means you need to manually create the SQL necessary for accessing the data in

these columns.

One way to access semi-structured data is to use custom SQL. Be sure to follow the best practices for using custom
SQL described earlier. Specifically, don’t use a monolithic statement that joins across multiple tables. Instead, use

a discrete statement to reference the key-value pairs from the VARIANT column and then join that custom SQL
“table” with the other regular tables. Also remember to select Assume Referential Integrity in Tableau so the query

generator can cull tables when they are not required.

Example

To use the WEATHER_14_TOTAL table in the sample WEATHER schema, create a custom SQL “table” in Tableau

using the following query:

Tableau - Book1
s | < o)
s &l & B Weather (JSON) P—
9 Live Extract
Connections Add
seaust1.ap-so..computing.com
snoe I "
Warehouse
DEMO_WH
Database
SNOWFLAKE_SAMPLE_DATA = L 2K] Edit Custom SQL
SELECT V:time::TIMESTAMP TINE,
Vicity:id AS ID,
Scheme Vicity:name: :VARCHAR CITY,
WEATHER -] 1a Vicity.country: :VARCHAR COUNTRY, L
Vicity.coord. lat: :FLOAT LAT,
Toble | Vicity.coord.lon: :FLOAT LON, Show hidden fieids
All 5 Recommended 8 (V:main. temp_ma; 73.15) : : FLOAT AS TEMP_MAX,
(V:main.temp_min — 273.15)::FLOAT AS TEMP_MIN, ”
e = Vimain.humidity: :NUMBER AS HUMIDITY, £
Vimain.pressure: :NUMBER AS PRESSURE, PMIN HUMIDITY
FS DAILY_14.T0..Y_14_TOTAL) 1 Viweather [@].id: :NUMBER AS WEATHER_ID, E
S DAILY_16_T0..Y_16_TOTAL) Viweather (0] .main: :VARCHAR AS WEATHER_MAIN,
Viweather (0] .description: :VARCHAR AS WEATHER_DESC,
B FOLRLY, L4, 14 TOTAL) Viweather[@].icon: :VARCHAR AS WEATHER_ICON,
B HOURLY_16_..._16_TOTAL) V:wind.deg: :NUMBER AS WIND_DEG,
= WEATHER_14.._14.TOTAL) Viwind. speed: :FLOAT AS WIND_SPEED,
| Viclouds.all: :NUMBER AS CLOUDS_ALL
5 New Custom SQL FROM SNOWFLAKE_SAMPLE_DATA.WEATHER. WEATHER_14_TOTAL
| Preview Results... Insert Parameter [cancel | ([CTHN

0 Data Source Shestl Sheet2 [B 0}
& AmnBididge >

Figure 15

Filters
0| Add

rows

#

PRESSUI

WHITE PAPER

18

This data source can then be used to create vizzes and dashboards as if the user were connected to a traditional
structured schema, with similar performance:

e0e +#| Tableau - Weather JSON
FANEE S ENE TR ok by - bg- £ 2 i g EMA=RN < showne
Data Analytics ¢ | Pages fii Columns [
[Weather (JSON) = Rows LAT
Dimensions PR g
Fitters o MaxTemp
Ave CITY & COUNTRY (Combi, Cities
« & COUNTRY.CITY Action (COUNTRY.. @
18.000 27.000
® COUNTRY
(]
® Cmy s ° Highlight CITY
A 1D %
® LAT O Auomatic =
- EAI:)
B TIME Color | Sz Label
Abe WEATHER_DESC
Abc WEATHER_ICON o o
Detall | Tooltip
WEATHER_ID
Abe WEATHER MAIN k] MAX(TEMP_M.. o ®
AL Measure Names -« D 5J b
®
.2 G <
S
AN
Measures i
CLOUDS_ALL A
HUMIDITY feeland
PRESSURE
TEMP_MAX) 7
& TEMPMIN Netherlands
WIND_DEG 2R o
WIND_SPEED O ean)
@ Latitude (generated) T et ';’.f
® Longitude (generated) oY Belgjum ™ %
4 Number of Records V‘“Y I b
Measure Values r5 ﬂ o (
[ren— e j
B Data Source Time Gities | Countries E WeatherDashboard B} H} [}
672marks 1rowbylcolumn SUMof MAX(TEMP_MAX): 15.033.401 & Alan Eldridge. =4 u

Figure 16

In this example, the WEATHER_14_TOTAL table has about 66 million records, and response times in Tableau using an
XS warehouse were acceptable.

Of course, as outlined earlier, this SQL could also be used in a view or an initial SQL statement to create a temp table.
The specific approach you use should be dictated by your needs. Alternatively, as a way to ensure governance and a
consistent view of the JSON data, you can always publish the data source to Tableau Server (or Tableau Online) for
reuse across multiple users and workbooks:

2|¢>E8 6

Data Analytics N
£ Weather (JSON)
Dimensions el
At CITY & COUNTRY (Combl...
v & COUNTRY,CITY
® COUNTRY
® oy
Abe 1D
® LAT
@ LON
£ TIME
avc WEATHER_DESC
ave WEATHER_ICON
WEATHER_ID
Abe WEATHER_MAIN
Abc Measure Names

Measures.

4 CLOUDS ALL

HUMIDITY

PRESSURE

TEMP_MAX

4 TEMP_MIN

4 WIND_DEG

WIND_SPEED

@ Latitude (generated)
@ Longitude (generated)
=4 Number of Records
4 Measure Values

0 Data Source

“#| Tableau - Weather JSON

bl -cP [B- | 2F|2- 1 & | stancara
Poss i s
i= Rows AVG(TEMP_MAX)
Filters
et (D} 2542 London, | oy bata Source to Tableau Server
Project
koo Default
~/ Automatic - 20 roil
” & Weather (JSON)
Color Size Label
Description
olo ~
Detail Tooltip Path 15
BN it & COUNT. x
= Togs
2 Add
H
=10
9 Permissions
z

Time | Cities Countries EH Weather Dashboard [}

2927 marks 1 rowby 1 column SUM of AVG(TEMP_MAX): 32.177.58

Same as project (Default) Edit

Authentication
Embedded password Edit

More Options

Update workbook to use the published data source

=

75ep17 225ep17 70ct17

B %

Figure 17

220ct17

6Nov 17
Hour of TIME

21Nov17

& Aan Eldidge

6Dec17

£ Show Me

21Dec17 5lJan1g

WHITE PAPER

19

RAWSQL

Tableau provides several functions, called RAWSQL functions, that enable you to pass SQL fragments directly to
the underlying data source for processing. Use this to access additional database functions such as HLL or even
to access user-defined functions in Snowflake. For more information about RAWSQL functions, see the

Example

For example, these RAWSQL functions dynamically extract values from a VARIANT field:

Country () weather (RAW p 4

RAWSQL_STR("V:city.country::string", [V])

The calculation is valid A v “

Figure 18

This SQL fragment is passed through to Snowflake without alteration.
Here is a query from a calculation based on RAWSQL statements (the fragments are highlighted):

SELECT ()AS “ID”,
AVG((() AS “avg:temp_max:ok”

FROM “WEATHER”’WEATHER_14_TOTAL" “WEATHER_14_TOTAL’ GROUP BY 1

The advantage of this approach is that you can extract specific VARIANT values without needing to create an entire
custom SQL table statement.

Example

This example uses a Snowflake table, TBL_Holidays, that is defined and populated with dates. First, create a UDF file
in Snowflake to look at the number of holidays between two dates:

--Create a UDF to Find Holiday Counts
CREATE OR REPLACE FUNCTION UDF_HOLIDAYS(DATESTART Date, DATEEND Date)
RETURNS INTEGER
AS
$%
SELECT COUNT(*) FROM TBL_HOLIDAYS WHERE DATE_HOLIDAY BETWEEN DATESTART AND DATEEND
$%;

WHITE PAPER

20

http://onlinehelp.tableau.com/current/pro/desktop/en-us/functions_functions_passthrough.html

Now in Tableau the Snowflake UDF can be addressed with RAWSQL:

RAW_SQL X RAWSQLAGG_INT("sql_expr",
Eniter search text [argl], ... [argN])
RAWSQLAGG_INT(" RAWSQLAGG_BOOL Returns an integer result
SELECT COUNT{+) RS AR DAIE from a given aggregate SQL
FROM TBL_HOLIDAYS . RAWSQLAGG_DATETIME expression. The SQL
\?':E'?E ??TETTOL{EA\: BFT":?}EN %1 AND %2", RAWSQLAGG_INT expression is passed
Date Start], [Date Enc

RAWSQLAGG_REAL
RAWSQLAGG_STR
RAWSQL_BOOL
RAWSQL_DATE
RAWSQL_DATETIME
RAWSQL_INT
RAWSQL_REAL
RAWSQL_STR

The calculation is valid. 1 Dependency “

Figure 19

RAWSQLAGG_INT("
SELECT COUNT(¥)
FROM TBL_HOLIDAYS
WHERE DATE_HOLIDAY BETWEEN %1 AND %2”,

[Date Start], [Date End])

directly to the underlying
database. Use %n in the SQL
expression as a substitution
syntax for database values.
In this example, %1 is equal
to [Sales].

Example: RAWSQLAGG_INT("500
+ SUM(%1)", [Sales])

This will now return the number of custom-defined holidays between two dates in Tableau from a table populated in

Snowflake.

You can extend these types of functions to custom aggregations or you can use an external function to perform
additional data-related tasks on the aggregated data before visualization in Tableau.

WHITE PAPER

21

ELT

Although there are benefits to keeping your semi-structured data in VARIANT data types, if your data schema is well
defined and static, you may benefit from performing ELT transformations to convert your data into a traditional data
schema.

There are multiple ways to do this:

e Use SQL statements directly in Snowflake (for more details about the supported semi-structured data functions,
see the Snowflake .) If you need to conditionally separate the data into multiple tables you can use
Snowflake's multi-table insert statement to improve performance, as shown . Two features that Snowflake
offers to assist in the building of extensible ELT pipelines are Streams and Tasks. A stream object records data
manipulation language (DML) changes made to tables, including inserts, updates, and deletes, as well as metadata
about each change. This allows you to take actions on the changed data, such as separating semi-structured data
into multiple tables. Tasks are used to define these actions and schedule their execution.

e Use third-party ETL/ELT tools from Snowflake partners such as Informatica, Matillion, Fivetran, Alteryx, and
others. Note that if you are dealing with large volumes of data, use tools that can take advantage of in-DB
processing. This means that the data processing will be pushed down into Snowflake, which greatly increases
workflow performance by eliminating the need to transfer massive amounts of data out of Snowflake to the ETL
tool, manipulate it locally, and then push it back into Snowflake.

Connect In-DB (3) - Configuration ~ & X [| New Workflow1® X
Manage In-DB Connections x
onnec

N comect Data Source
@ Creaeo 2 (Srontise 2

L

R Tevieor Query Connection Type

(e =)

Comections
(=) [Cnew || Deeee

Connection Name

Password Encryption
[Enceypt for User ~|

Read [Wae |
Driver
[Snowfiake ODBC -

Connection String

Options

Name Value
1 Table/fiekiName SQU Style [Quoted -
s @0Ermors POConvE | |2 Read Uncommitted
=

Results - Connect In-DB [3) - Me.

(ok][comet][ooty][Heo]
Figure 20

o Two features that Snowflake offers to assist in the building of extensible ELT pipelines are and .
A stream object records data manipulation language (DML) changes made to tables, including inserts, updates,
and deletes, as well as metadata about each change. This allows you to take actions on the changed data, such
as separating semi-structured data into multiple tables. Tasks are used to define these actions and schedule
their execution.

WHITE PAPER

22

https://docs.snowflake.net/manuals/sql-reference/functions-semistructured.html#semi-structured-data-functions
https://docs.snowflake.net/manuals/sql-reference/sql/insert-multi-table.html
https://docs.snowflake.com/en/user-guide/streams.html
https://docs.snowflake.com/en/user-guide/tasks-intro.html

WORKING WITH SNOWFLAKE TIME TRAVEL

Snowflake Time Travel is a powerful feature that lets you access historical data. For Tableau, it enables users to
query data from the past that has since been updated or deleted.

When any data manipulation operations are performed on a table (such as INSERT, UPDATE, or DELETE)
Snowflake retains previous versions of the table data for a defined period of time. This enables you to query
earlier versions of the data using an AT or BEFORE clause.

Accessing historical data

The following query selects historical data from a table as of the date and time represented by the specified
timestamp:

SELECT *
FROM my_table AT(timestamp => ‘Mon, 01 May 2015 16:20:00 -0700’::timestamp);

The following query selects historical data from a table as of five minutes ago:

SELECT *
FROM my_table AT(offset => -60*5);

The following query selects historical data from a table up to, but not including, any changes made by the
specified statement:

SELECT *
FROM my_table BEFORE(statement => ‘8e5d0ca9-005e-44e6-b858-a8f5b37c5726);

Time travel features are standard for all accounts for up to one day. Extended time travel (up to 90 days) requires
Snowflake Enterprise Edition or higher. In addition, time travel requires additional data storage, which has
associated fees.

Accessing Snowflake Time Travel data from Tableau

As with semi-structured data, Tableau does not automatically understand how to create time travel queries in
Snowflake, so you must use custom SQL. Be sure to use best practices by limiting the scope of your custom SQL
to the tables affected.

WHITE PAPER

23

Example

The following Tableau data source shows a copy of the TPCH_SF1 schema, with time travel enabled. To query the
Lineltem table and use the data it contained at an arbitrary point in the past, use a custom SQL statement for just the
Lineltem table. In this case, set an AT clause and use a parameter to pass in the time value:

€2 EC

Connections.

seaust1.ap-so...computing.com
Sroufaie

Warehouse
DEMO_WH

Database
DEMO_DB

Schema

TPCH1

Table
Al S

Enter table name

[CUSTOMER (...CUSTOMER)
ER FOO_VW (TPCH1.FO0_VW)
FR LINEITEM (TPCHLLINEITEM)
FR NATION (TPCH1.NATION)
[ORDERS (TPCH1 ORDERS)
[PART (TPCHLPART)

[PARTSUPP (T..1 PARTSUPP)
[REGION (TPCH1.REGION)
[SUPPLIER (T...1.SUPPLIER)

73 New Custom SQL

© Data Source Sheet1 [

Recommended thatio]

Tableau - Book1

£+ TPC-H SF1 (DEMO_DB)

ORE™ ®

- ec® Edit Custom SQL

Connection

@® Live

| customers

supP

SELECT *
FROM TPCH1.LINEITEM AT(timestamp =» <Parameters.As At DateTime=)

Preview Results...

Insert Parameter | Cancel

Show aliases

Filters
Extract 0| Add

(§)—| custration
DS

Show hidden fields = rows.

b

B 0

Figure 21

Using this query in the following worksheet:

Data

Analytics .
[} TPC-HSF1 (DEMO_DE)

Dimensions R
v G Customer
abe Cust Address
abe Cust Market Segment
abe CustName
ape Cust Nation
abe Cust Phone
abe Cust Region
v G Order
awe Order Clerk
abe Order Comment
£ Order Date
4 Orderld
Abe Order Priority
4 Order Ship Priority
b Order Status
v Gz Orderltem
£ Item Commit Date
Measures
4 Item Extended Price
Item Line Number
Item Qty
Item Tax
Order Total Price.
v G Part
4 Retail Price
v G Supplier

4%k

£ AsAtDateTime
B Data Source

400marks 1rowby 1eolumn SUMoTCNTI

S EB g -«

Tableau - Book1
Vs T

iii Columns,

Standard ~

Hi- T g

3
3

= Rows

Fiters

Sheet 1

4000

Label
o 3000
Path

Detait

Tootip

B Cust Market Se..

2000

Distinct count of Order 1D

1000

1992 1993 1994 1995 1996

Month of Order Date

Sheet1 F B 0

D(Order D) 1.500.000

Figure 22

& an Ekidge

1997

& AlanElcricge

euston Reg
Cust Market Segm... Cust Region

™ #

Item Line

£ Show Me

As At DateTime
11172018120

Cust Market Segment
I AUTOMOBILE

M BUILDING

M FURNITURE

I HOUSEHOLD

Il MACHINERY

1998

WHITE PAPER

24

Results in the following query running in Snowflake (the custom SQL is highlighted):

SELECT “Customers””C_MKTSEGMENT” AS “C_MKTSEGMENT”",
COUNT(DISTINCT “Orders”"O_ORDERKEY”) AS “ctd:O_ORDERKEY:ok’,
DATE_TRUNC('MONTH' Orders””O_ORDERDATE”) AS “tmn:O_ORDERDATE:ok”
FROM (

) “Lineltem”
INNER JOIN “TPCH1"”ORDERS” “Orders” ON (“Lineltem””’L_ORDERKEY” = “Orders””O_ORDERKEY")
INNER JOIN “TPCH1""CUSTOMER” “Customers” ON (“Orders”’O_CUSTKEY” =
“Customers”’C_CUSTKEY")
GROUPBY 1,
3

The parameter makes it easy for you to select different as-at times. Again, this SQL could also be used in a view or in
an initial SQL statement to create a temp table, depending on your needs.

Working With Snowflake Clones

Another important feature that Snowflake offers are clones, sometimes referred to as “zero-copy clones” since they
take up no storage when they’re created. Clones can be used in conjunction with Time Travel to create point-in-time
snapshots of a database, schema, or table. They can also be used to create dev and test environments, as well as
personal sandboxes. Clones are mutable, meaning that data within a clone can be modified.

An additional benefit of clones is that users need not be concerned with AT or BEFORE clauses to access data.
Clones, by definition, represent data at a particular point in time.

WHITE PAPER 25

WORKING WITH SNOWFLAKE SECURE DATA SHARING

Snowflake Secure Data Sharing makes it possible to directly share data in near real time and in a secure, governed
and scalable way from Snowflake’s platform. Organizations can use it to easily share data internally across lines of
business, or even externally with customers and partners. Because no data is transmitted, it significantly reduces
the traditional pain points of storage duplication and latency. Instead, Snowflake Secure Data Sharing enables data
consumers to directly access read-only copies of live data in a data provider’s account.

The obvious advantage of this for Tableau users is the ability to query data shared by a provider and to know it is
always up-to-date. No ongoing data administration is required by the consumer.

Example

To access shared data, you first view the available inbound shares:

SHOW SHARES;

You can then create a database from the inbound share and apply appropriate privileges to the necessary roles:

//CREATE A DATABASE FROM THE SHARE
CREATE OR REPLACE DATABASE SNOWFLAKE_SAMPLE_DATA
FROM SHARE SNOWFLAKE.SHARED_SAMPLES;

//GRANT PERMISSIONS TO OTHERS
GRANT IMPORTED PRIVILEGES ON DATABASE SNOWFLAKE_SAMPLE_DATA TO ROLE PUBLIC;

Users can then access the database objects as if they were local. The tables and views appear to Tableau the same as
any other:

o0 e Tableau - Book1
Tl X = <
A = - ORDERS (TPCH_SF1.0RDERS) (TPCH_SF1) Connection Filters
@® Live Extract 0 | Add
Connections Add
seaust 1.ap-so...computing.com
Snonfake | Trr
Warehouse
| bEmo_wH -
Database
SNOWFLAKE_SAMPLE_DATA = B | = Sortfields Datasource order - Show aliases Show hidden fields | 1.000 rows
AL # # abe #* =] ave ave #* A
R] - = o e e]
e ———————— 0 Orderkey 0 Custkey 0 Orderstatus O Totalprice 0 Orderdate 0 Orderpriority OClerk 0 Shippriority 4
Table 3,600,001 106660 © 130,445.43 25/10/1995 3-MEDIUM Clerk#i000000776 o |
All 8 Recommended 2
3,600,002 106873 © 226,26336 26/5/1997 1-URGENT Clerk#000000337 0
il sl k: 3,600,003 112288 F 110,840.45 19/6/1993 2 MEDIUM Clerks#000000319 o
CUSTOMER (... CUSTOMER,
& !) 3,600,004 59,149 © 4584903 24/12/1967 s-Low Clerk#000000011 9
EE LINEITEM (TP..FLLINEITEM)
BB NATION (TPCH_SFLNATION) 3,600,005 42071 © 124317.01 4/10/1996 s-Low Clerk#000000121 0
FE ORDERS (TP..F1ORDERS) 3,600,006 133325 F 188,542.47 21/6/1993 2ZHIGH Clerki000000079 0 ¢
EE PART (TPCH_SF1.PART) 3,600,007 86974 0O 42,802.28 30/1/1997 2-HIGH Clerk#000000841 0 ¢
PARTSUPP (T...1.PARTSUPP]
& ¢ ! 3,600,032 3928 F 242,467.01 17/2/1995 1-URGENT Clerki#000000531 0
3 New Custom SQL 3,600,033 141910 © 23793861 9/3/1998 2HIGH Clerki000000973 0 1
O Data Source Sheetl [} B 04
& Aenbdricge ~]

Figure 23

WHITE PAPER

26

IMPLEMENTING ROLE-BASED SECURITY

A common data access requirement is role-based security where the data returned in a Tableau viz is restricted by
row, column, or both. There are multiple ways to achieve this in Tableau and Snowflake. The method you choose

depends on how reusable you want the data to be.

This section provides general guidelines for setting up data access rules. The guidelines are followed by information

about passing in user content, for both Tableau-only and generic solutions.

Setting up the data access rules

To restrict the data available to a user, you need to define records in a table for each user context and the data

elements you want to make accessible.

Example

Using the TPCH_SF1 schema in the sample data, you can create a simple REGION_SECURITY table as follows:

RS_REGIONKEY
1
2
3
4
5
1
2
3
4

Link this table via the REGION and NATION tables to the CUSTOMER table:

RS_USER

alan
alan
alan
alan
alan
clive
clive
kelly
kelly

eoce Tableau - Book1
€ ->ECS

- TPC-H SF1(DEMO_DB) Connection Filters
@ Lie Extract 0 add

Connections Add

seaust1.ap-so...computing.com

St ()| custraton QO custregion ()| resionsecuriry

‘Warehouse:

DEMO_WH - (@) suwpiers

Database

DEMO_DB
Schema

TPCH1
Table = i

B | I= Sortfields Datasourceorder - Show aliases Show hidden fields - | rows
Al 10 Recommended

Enter table name 5 ® e e Ao # ™ :
[CUSTOMER (...CUSTOMER) Cust Nation Cust Name Cust Address Cust Phone Cust Account Bala... Cust Market Segm... Cust Region L
BB FOO_VW (TPCH1.FOO_VW)

EB LINEITEM (TPCHL LINEITEM)

EE NATION (TPCH1.NATION)

2 ORDERS (TPCH1.0RDERS)

E5 PART (TPCH1PART)

[PARTSUPP (T..1PARTSUPP)

EE REGION (TPCH1.REGION)

F5 REGION_SEC... SECURITY) Update Now ‘

BB SUPPLIER (T...1 SUPPLIER)

Automatically Update
[New Custom SQL
© Data Source Alan Cive Kely EHDashboardl [8 0O}
& Nanioridge v [
Figure 24

WHITE PAPER

27

Tableau returns different result sets for each of the three RS_USER values:

Alan Clive Kelly

PP 4 s
-~e 6 e
y - ? »

Figure 25

To create access rules across multiple dimensions of the data (for example, to restrict access by region and product
brand), create multiple access rule tables and join them into the data schema.

Passing in the user context

To make the above model secure, enforce the restriction that a viewing user can see only the result set permitted for
their user context, specifically where the RS_USER field equals the viewer’s username, and pass this username from
Tableau into Snowflake. The procedure depends on whether you are creating a Tableau-only solution or something
that is generic and will work for any data tool.

COLUMN-LEVEL SECURITY SOLUTION FOR ANY DATA TOOL

To restrict access for users connecting via any tool, set up restrictions in Snowflake. The process depends on whether
each user has a unique Snowflake login or whether all queries are sent to Snowflake via a common login.

In addition to row-level security via secure views, Snowflake also offers . Dynamic Data
Masking is a Column-level Security feature that uses masking policies to selectively mask plain-text data in table and
view columns at query time.

At query runtime, the masking policy is applied to the column at every location where the column appears.
Depending on the masking policy conditions, the SQL execution context, and role hierarchy, Snowflake query
operators may see the plain-text value, a partially masked value, or a fully masked value.

For more details about how masking policies work, including the query runtime behavior, creating a policy, usage
with tables and views, and management approaches using masking policies, see:

SECURE USER DEFINED FUNCTIONS (SECURE UDFS)

Some of the internal optimizations for SQL UDFs require access to the underlying data in the base tables. This access
might allow data that is hidden from users of the UDF to be exposed indirectly through programmatic methods.

In addition, the SQL expression or JavaScript code used to create a UDF, also known as the UDF definition or text, is
visible to users in the following commands and interfaces:

e SHOW FUNCTIONS and SHOW USER FUNCTIONS commands
e GET_DDL utility function
e FUNCTIONS Information Schema view

e Query Profile (in the web interface)

WHITE PAPER

28

https://docs.snowflake.com/en/user-guide/security-column-ddm-intro.html
https://docs.snowflake.com/en/user-guide/security-column-intro.html
https://docs.snowflake.com/en/user-guide/security-column-intro.html

For security or privacy reasons, you might not wish to expose the underlying tables or algorithmic details for a UDF.
With secure UDFs, the definition and details are visible only to authorized users (i.e. users who are granted the role
that owns the UDF).

More information about Secure UDFs can be found

TABLEAU-ONLY SOLUTION

If you are building a Tableau-only solution, you can define the security logic in Tableau. This can be useful when the
viz author does not have permission to modify the database schema or add new objects (for example, views) which
would happen if you were consuming a data share from another account. It is also useful if the users in Tableau

(specifically, users accessing the viz via Tableau Server, as opposed to the author creating it in Tableau Desktop) do
not use individual logins for Snowflake.

Example

To enforce the restriction, create a data source filter in Tableau that restricts the result set to where the RS_USER

| Tableau - Role-based Security

o
= &< - Tableau-only solution Connection Fiters

© Lve Extract 1| Edit
Connections Add
seaustl.ap-so..computingcom
Seowdake

(FD1_ommiine : I ()| resion_securrry
L] [] Filter [Rs User]

Warehouse i
General wildcard [IETEITIM Top

DEMO_WH - d

None

Database By field:

DEMO_DB - Cust Account Balance 2| Sum
Schema | = cljo
TPCHL - Range of Values L

e @] = sonret in toad Srowalases (| Show icen s <] rows
o S — 5 -

® e e 4+
Cust Nation Oy formula:

F CUSTOMER(...CUSTOMER) UPPER([Rs User]) = UPPER(USERVAME ()Y
F8 FOO_VW (TPCH1.FOO_VW)
B8 LINEITEM (TPCH1.LINEITEM)
B8 NATION (TPGH1 NATION)
[ORDERS (TPCH1.0RDERS)
[PART (TPCHLPART)

£ PARTSUPP (T..1 PARTSUPP)
£8 REGION (TPCH1 REGION)
E5 REGION_SEC... SECURITY)
B SUPPLIER (T...1.SUPPLIER)

3 New Custom SQL Reset Cancel

Enter table name -

8. CustMarketSegm.. CustRegion Item Line

© Data Source Alan Cive Kelly [RestrictedViews Sheeta G B 0}

& Mantidricge v []

Figure 26

WHITE PAPER 29

https://docs.snowflake.com/en/sql-reference/udf-secure.html

field matches the Tableau function USERNAME() which returns the login of the current user:

The result shows only the data permitted for the viewing user (note that in the following screenshot there are no

e0® < Tableau - Role-based Security

¢ ->EABQ-T- @- e iE|2-0-38 W @ I snoue

Data Analytics *+ || Pages iii Columns Longitude (generated)
(% Tableau-only solution = Rows Latitude (generated)

Dimensions =0
« @ Customer e Filtered for ALAN
ave CustAddress
abc Cust Market Segment
Abe Cust Name
@ CustNation
Abc Cust Phone 3% Map -
ave Cust Region el o
v @ Order
abe Order Clerk
abe Order Comment i |
& OrderDate Detail | Tookip
% OrderD EN Custiation
ave Order Priority EN UPPER(USERN.. §
% Order Ship Priority
Abc Order Status. '

Color | | Size || Label

~ @ Order ltem
B3 Item Commit Date
Measures
v @ Customer
Cust Account Balance
~ @& Order
Item Discount
Item Extended Price
Item Line Number
Item Qty
Item Tax
Order Total Price
v @ Part
8 Data Source Fittered = Restricted Views B} H. [}

#

20marks 1 rowby 1 column & Aanblericge v =

Figure 27

worksheet-level filters as the filter is enforced on the data source):

The USERNAME() function is evaluated in Tableau and then pushed through to Snowflake as a literal, as you can see
in the resulting query:

SELECT ‘ALAN’ AS “Calculation_3881117741409583110",

“CustNation””N_NAME” AS “N_NAME"
FROM “TPCH1""NATION” “CustNation”

INNER JOIN “TPCH1"’REGION”" “CustRegion” ON (“CustNation”’N_REGIONKEY” =
“CustRegion””R_REGIONKEY")

INNER JOIN “TPCH1"’"REGION_SECURITY” “REGION_SECURITY” ON (“CustRegion””"R_REGIONKEY" =
“REGION_SECURITY”’RS_REGIONKEY”)
WHERE (UPPER(“REGION_SECURITY””RS_USER”) = ‘ALAN’)
GROUP BY 2

To enforce this filter and prevent a workbook author from editing or removing it, you should publish the data source

WHITE PAPER 30

to Tableau Server and create the workbook using the published data source.

SOLUTION FOR ANY DATA TOOL

To restrict access for users connecting via any tool, set up restrictions in Snowflake. The process depends on whether
each user has a unique Snowflake login or whether all queries are sent to Snowflake via a common login.

Example

Continuing the example above, rather than using a data source filter in Tableau, you can create a view in Snowflake:

create or replace secure view “TPCH1"’SECURE_REGION_VW” as
select R_REGIONKEY, R_NAME, R_COMMENT, RS_USER
from “TPCH1""REGION” “CustRegion”
inner join “TPCH1""REGION_SECURITY” “REGION_SECURITY”
on (“CustRegion””’R_REGIONKEY” = “REGION_SECURITY””RS_REGIONKEY")

This example uses the Snowflake variable CURRENT_USER, but you could use CURRENT_ROLE if your solution needed
to be more scalable. This requires each viewing user to be logged in to Snowflake with their own credentials. You can
enforce this when publishing the workbook to Tableau Server by setting the authentication type to Prompt user:

Manage Data Sources

Data Source Publish Type (3) Authentication

Ej Any data tool solution Embedded in workbook - Prompt user b
Prompt user
Embedded password

Embed All Passwords

Figure 28

If you use Embedded password, CURRENT_USER and CURRENT_ROLE will be the same for all user sessions, and
you need to pass in the viewing user name via an initial SQL block:

[B8 Initial SQL

SQL statements to be executed at connect time:
SET VIEWING_USER = [TableauServerUser];

_Insert

TableauApp
TableauServerUser

TableauServerUserFull
— TabloatVersion
WorkbookName

Figure 29

Learn more Cancel

WHITE PAPER

31

The view would then reference this variable:

create or replace secure view “TPCH1""SECURE_REGION_VW” as

select R_REGIONKEY, R_NAME, R_.COMMENT, RS_USER

from “TPCH1""REGION” “CustRegion”

inner join “TPCH1""REGION_SECURITY” “REGION_SECURITY”

on (“CustRegion”"R_REGIONKEY” = “REGION_SECURITY"’RS_REGIONKEY")
WHERE (UPPER(“REGION_SECURITY””RS_USER”) = UPPER($VIEWING_USER));

The final step to enforce the security rules specified in the SECURE_REGION_VW view is to enforce referential integrity
in the schema. Without this, if you don't use the SECURE_REGION_VW in your query, then join culling could drop this
table from the query and security would be bypassed.

If your data permits, you can create constraints between the tables in Snowflake (see Snowflake’s for
details) or you can simply uncheck Assume Referential Integrity in Tableau:

[XoN] “| Tableau - Role-based Security
#le>HBR-C- M- B IEIFE £-8-T X Bil- 07 o E ShowMe
Data Analytics % | Pages iii Columns Longitude (generated)

A = generated)
B Any data teol soluti Edit Data Source...
B Tableau-only solutit Refresh
View Data... Filtered for ALAN
Dimensions
i Rename...
Abc Item Ship Mode Duplicate
Abc Item Status Close
v & Part
abs PartBrand Extri;ct Data...
abc Part Container e
Extract
Abc Part Manufactu
abe PartName Edit Data Source Filters... 3
4 PartSize Replace Data Source... ¥ 3
Abc Part Type Assume Referential Integrity ,
~ @ Supplier E:ltteAF;.rupertles... >
Abc Supp Address et
Abc Supp Name Publish to Server...
Abz Supp Phone Add to Saved Data Sources...
abc RsUser Export Data to CSV...
Abo Messuro Names | properties. ..
Measures
v & Customer
4 Cust Account Balance
~ & Order

Item Discount

3 Item Extended Price
Item Line Number
#
#*

Item Qty
Item Tax
. & OpanSironthiag conibusors
4 Order Total Price
B Data Source Tableau-only B Restricted Views Anydatatocl Any data tool initial SQL | [} H. [}
20marks 1 rowby 1 column & ManEldridge ~ « HE []
Figure 30

WHITE PAPER 32

https://docs.snowflake.net/manuals/sql-reference/sql/create-table-constraint.html

USING CUSTOM AGGREGATIONS

Snowflake provides many custom aggregation functions outside the ANSI SQL specification. Some of these are

specific to working with semi-structured data, while others are useful for approximating results (such as cardinality,
similarity, and frequency) when you are working over very large data volumes. A full list of the available aggregation
functions is in the Snowflake online

To use these functions in Tableau, leverage the pass-through functions in

Example

Snowflake provides a custom aggregation function APPROX_COUNT_DISTINCT which uses
an approximation of the distinct cardinality of a field. To use this function, create a calculated field that leverages the
appropriate RAWSQL function. This example shows using the calculation in a Tableau viz:

| & = & &-
Data Analytics 3
G TPC-HSF1

Dimensions e

v @ Customer

Abe

Aby

Abe

Abe

Abe

Abe

Cust Address

Cust Market Segment
Cust Name

Cust Nation

Cust Phone

Cust Region

~ @ Order

Abe

Order Clerk

Order Comment
Order Date

Order ID

Order Pricrity
Order Ship Priority
Order Status

v @@ Order ltem
B9 Item Commit Date

Measures

> B Customer

> B Order

> @ Part

> @ Supplier
Approx CountD OrderiD
= Number of Records
Measure Values

O Data Source

Pages

Filters

Marks
Automatic -

w8

Color Size Text

(=)

o0
Detall | Tooltip

Measure Values

CNTD(Order ID)

ApproxCountD | [} £ U}

l4marks 7rowsby2columns SUM of Measure Values: 3,012,215

Tableau - Book1

The calculation is valid. Sheets Affectec

& Aantidridge

Figure 31

- T

Distinct count of Order ID
227,089
226,645
227,597
228,637
228,626
227,783
133,623

X

Dk ¢ [Fvwan]
il Cotumrs
i= Rows YEAR(Order Date)
Approx CountD
Year of
Order Date Approx CountD OrderID
1992 228,966
1993 228,189
1994 227,025
1995 231,654
1996 231,429
1997 229,082
1998 135,870
Approx CountD OrderlD B TPC-H SF1
RAWSQLAGG_INT ("APPROX_COUNT_DISTINCT(%1)", [Order IDI)

Tableau produces the following query in Snowflake (the pass-through function is highlighted):

SELECT COUNT(DISTINCT “Orders”’O_ORDERKEY”) AS “ctd:O_ORDERKEY:ok”,

DATE_PART(‘"YEAR’’Orders””O_ORDERDATE”) AS “yr:O_ORDERDATE:ok”
FROM “TPCH_SF1"’LINEITEM” “Lineltem”
INNER JOIN “TPCH_SF1""ORDERS” “Orders” ON (“Lineltem””L_ORDERKEY" =
“Orders””O_ORDERKEY”) GROUP BY 3

to return

WHITE PAPER 33

https://docs.snowflake.net/manuals/sql-reference/functions-aggregation.html
http://onlinehelp.tableau.com/current/pro/desktop/en-us/functions_functions_passthrough.html
https://docs.snowflake.net/manuals/user-guide/querying-approximate-cardinality.html

SCALING SNOWFLAKE WAREHOUSES

Snowflake supports two ways to scale warehouses:
e Scale up by resizing a warehouse

e Scale out by adding clusters to a warehouse (requires Snowflake Enterprise Edition or higher)

Resizing a warehouse to improve performance

Resizing a warehouse generally improves query performance, particularly for larger, more complex queries. It can also
help reduce the queuing that occurs if a warehouse does not have enough servers to process multiple concurrent
queries. (But warehouse resizing is not intended to handle concurrency issues; instead, use additional warehouses or
a multi-cluster warehouse if this feature is available for your account).

The number of servers required to process a query depends on the size and complexity of the query. For the most
part, query processing scales linearly with warehouse size, particularly for larger, more complex queries:

e The overall data size of the tables being queried has more impact than the number of rows.
o Filtering in a query using predicates and the number of joins and tables in the query also affects processing.
Snowflake supports resizing a warehouse at any time, even while it is running. However, note the following:

e Larger warehouses do not necessarily make a query run faster. For smaller, basic queries that are already
executing quickly, you may not see any significant improvement after resizing.

e Resizing a running warehouse does not impact queries that are already being processed by the warehouse; the
additional servers are only used for queued and new queries.

Decreasing the size of a running warehouse removes servers from the warehouse. When the servers are removed,
the cache associated with the servers is dropped, which can impact performance. Keep this in mind when choosing
whether to decrease the size of a running warehouse or keep it at the current size.

Example

To demonstrate the scale-up capability of Snowflake, the following dashboard was created against the TPCH_SF10
sample data schema and published to Tableau Server. Note that this dashboard was intentionally designed to ensure
multiple queries would be initiated in the underlying DBMS:

Report
Cust Region Cust Nation Part Manufacturer Item Return Flag Cust Market Segment
() ® (an) ® (A ® (AN @ (AN
AFRICA CHINA Manufacturer#l A AUTOMOBILE
AMERICA INDIA Manufacturer#2 N BUILDING
© ASIA INDONESIA Manufacturer#3 R FURNITURE
EUROPE JAPAN Manufacturer#4 HOUSEHOLD
MIDDLE EAST VIETNAM Manufacturer#5 MACHINERY
KPIs by Time
Order Date
January February March April May June July August September October November December
Supply Cost 2158M 201.0M 217.1mM 211.0M 2157M 211.8M 218.3M 187.9M 180.2M 186.9M 182.8M 186.8M
Item Discount 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
Item Qty 10,997,544 10,245,052 11,040,852 10,745744 11,034,304 10,791,892 11,112,004 9,562,260 9,183,396 9,562,688 9,321,424 9,505,796

Item Tax 17,146 16,143 17,399 16817 17,242 16,950 17,478 15,022 14,425 14978 14,663 14,934
Order Total Price 816837M 76367.0M 816902V 79,3650M 815352M 79787.4M 821220M 706887M 681426M 709261M 69577.6M 70.417.8M

Product List

Part Brand Supply Cost Item Discount ItemQty Item Tax Order Total Price
Brand#11 95.1M 5.0% 4,867,830 7618 36,023.8M
Brand#12 99.6M 5.0% 5,078,732 7,955 37,500.7M
Brandw13 96.2M 5.0% 4,904,368 7.662 36,272.6M
Brandn1d 96.2M 5.0% 4,936,668 7.718 36,529.9M
Brand#15 97.2M 5.0% 4,947,960 7737 36,642.8M
Brands2l 96.7M 5.0% 4,913,828 7.775 36,434.4M
Brandn2z 96.3M 5.0% 4913672 7.707 36,476.4M
Brandn23 94.9M 5.0% 4,829,988 7,590 35863.9M
Brands24 96.4M 5.0% 4,899,832 7,751 36,325.2M
Brands2s 94.0M 5.0% 4,802,108 7,506 35,575.5M
Brandu3l 96.2M 5.0% 4912712 7.681 36,333.8M
Brand#32 96.5M 5.0% 4918672 7,749 36,420.3M
Brand#33 97.9M 5.0% 4,981,104 7,797 36,983.6M
Brandu34 957M 5.0% 4,880,180 7.642 36127.2M
Brandu3s 99.5M 5.0% 5,053,480 7.981 37.641.8M
Brand#ial 97.3m 5.0% 4,952,832 7,776 36,659.8M
Brand#az 96.1M 5.0% 4,910,624 7713 36,407.9M
Brandsaz 955M 5.0% 4,864,012 7,650 36020.1M

Figure 32

WHITE PAPER 34

The data source for the workbook was also configured with an initial SQL statement to disable query result caching
within Snowflake. (Result caching, covered in the next section of this white paper, would make subsequent queries
extremely fast because the query results do not need to be recomputed and are read from cache in less than a
second.)

TabJolt was then installed on a Windows PC to act as a load generator, invoking the dashboard with a :refresh=y
parameter to prevent caching within Tableau Server. A series of tests ran the dashboard against different
Snowflake warehouse sizes from XS to XL. All tests were run for five minutes with a single simulated user using the
InteractVizLoadTest script. The results are as follows:

25

20K
20

1

15K o

Test Count

=
=
Response Time [mse«

. Average Request Time
B Num Completed Tests

SF10 XS SF10S SF10 M SF10L SF10 XL
Figure 33

As you can see, an increase in the size of the warehouse (from XS up to XL) results in decreased query times because
there are more compute resources available. The improvement levels off from L to XL sized warehouses as compute
resources are no longer a bottleneck.

You can also see in the first run of the query at each warehouse size (the orange dot in the following chart), data
must be read from the underlying S3 table storage into the warehouse cache. Subsequent runs for each warehouse
size can then read data entirely from the warehouse cache, resulting in improved performance.

First Request
46.2K W Faise
45K W True
40K
3
2 el
g
éw
0K 34.1K @
@
30K ®
l 276K
25.9K ' 26.0K
25K
SF10 XS SF10S SFiOM SF10L SF10 XL
Figure 34

WHITE PAPER

35

To achieve the best results, execute relatively homogeneous queries (for example, similar size, complexity, and data
sets) on the same warehouse. Executing queries of widely varying size or complexity on the same warehouse makes
it more difficult to analyze warehouse load, which can make it more difficult to select the best size to match the size,
composition, and number of queries in your workload.

Adding warehouses to improve concurrency

By default, a warehouse consists of a single cluster of servers that determine the total resources available for
executing queries. As queries are submitted to a warehouse, the warehouse allocates server resources to each query
and begins executing the queries. If resources are insufficient to execute all the queries submitted, Snowflake queues
the additional queries until the necessary resources become available.

But with multi-cluster warehouses, Snowflake supports allocating, either statically or dynamically, a larger pool of
resources to each warehouse. Multi-cluster warehouses enable you to scale warehouse resources to manage your
user and query concurrency needs as they change, such as during peak and off hours.

When deciding whether to use multi-cluster warehouses and choosing the number of clusters to use per warehouse,
consider the following:

e Unless you have a specific requirement for running in maximized mode, multi-cluster warehouses should be
configured to run in auto-scale mode, which enables Snowflake to automatically start and stop clusters as
needed. A new cluster is started when queries are queuing for more than 30 seconds, and a cluster is stopped if it
has not run a query for 30 minutes.

e Set the minimum number of clusters to the default value of 1 to ensure that additional clusters are started only
as needed. However, if high availability is a concern, set the value higher than 1. This helps ensure warehouse
availability and continuity in the unlikely event that a cluster fails.

e Set the maximum value to be as large as possible, while being mindful of the warehouse size and corresponding
credit costs. For example, an XL warehouse (16 servers) with the maximum of 10 clusters will consume 160
credits in an hour if all 10 clusters run continuously for the hour.

Multi-cluster warehouses are a feature of Snowflake Enterprise Edition or higher.

Example

To demonstrate the scale-out capability of Snowflake, the same dashboard as above was used against the TPCH_SF1
sample data schema. It was published to Tableau Server, and then, using TabJolt, a series of test runs were performed,
running the above dashboard against different Snowflake warehouse configurations:

WAREHOUSE SIZE # WAREHOUSE CLUSTERS TOTAL # SERVERS

XS 1,2,3,4 1,2,3,4
S 1,2,3,4 2,4,6,8
M 1 4

WHITE PAPER

36

All tests were run for five minutes with 20 concurrent threads (simulated users) using the InteractVizLoadTest script,
and the total number of completed tests and average test response times were recorded. The results are as follows:

600

IS
=]
=]

Test Count

N
(=]
[=]

=)

30K

20K

-
o
A

Response Time [msec]

XS

s M

XS-1(20) XS-2(20) XS-3(20) XS-4(20)

S-1(20) S-2(20) S3(20) S-4(20) M-1(20)

Figure 35

As the size of the warehouse increased (scaling up in a single cluster from XS to S to M) the total number of tests
completed increased by 81% and the average test response time decreased by 44%. This is unsurprising as the
number of servers increased from one to two, then from two to four. Notice the following chart on the left:

400

B1%
300
3%

£
2 0%
< 200
&
K

100

0
0%

30K
) -25%
2
E
22k -44%
i
@
[}
=
[=]
Qa
&
3 10K

0K

XS-1(20) S-1(20) M-1(20)
Figure 36

600

56%
28%
400
5 0%
=
=]
Q
3
iy
200
0
0%
15K
= -22%
@
5
E -37T%
i 10K
@
@
&
o
a
0
@
X 5K
0K
XS-4(20) S-2(200 M-1(20)
Figure 37

However, the above chart on the right shows that with a constant number of servers, (four XS clusters, two S
clusters, or a single M cluster, each with four servers) the multi-cluster warehouse approach has significantly better
scalability characteristics with 55% more completed tests and an average response time improvement of 36%.

WHITE PAPER 37

Scale Across

While having the ability to scale warehouses up and out for Tableau usage provides numerous benefits, it's important
to remember that Snowflake allows you to create separate warehouses for each of your workloads. For example,

you may determine that a Small warehouse with a minimum of 1 cluster and maximum of 4 clusters is right for your
Tableau environment. In addition to the Tableau workload, it's very likely that data is being loaded into Snowflake
and transformed, data scientists are performing their tasks (data prep, feature engineering, etc), QA is performing its
tests, and so on. And all of these workloads could be running simultaneously.

The diversity of these workloads can easily be handled by Snowflake. Separate warehouses can be created for each
workload, and sized for the unique complexity and concurrency requirements of those workloads.

) Finance
2V Stitch
~D Datameer (& nformatica Logic .
. ++ .
Nrvouan = Gamscu /A 4y tableau
denodo’ talend 9‘":5"05“'. alteryx ETL/ELT Data protection Sales
& time travel
| -4} i L0202
- }
Wi 2 v Multi-cluster
R | ’ s
N | o
-
A > il
Snowpipe <>)
:~@(‘O_____>.-pp. _____ >~°&~o4____ Structured &
C_ZE:-: h*" =~,= ¥ semi-structured
=R T
—— ~
k% I S~ ~
s e
o~ ¢ A M @ python” @@
- R PYRAMID
EA' e databricks w Go

data
Test/Dev g‘ *g Dwa [Mooe @ & nede

Science

External

Figure 38

WHITE PAPER 38

CACHING

The combination of Tableau and Snowflake enables caching at multiple levels. The more effective you can make your
caching, the more efficient your environment will be. Queries and workbooks will return results faster and less load
will be applied to the server layers, leading to greater scalability.

Tableau caching

Tableau has caching in both Tableau Desktop and Tableau Server which can significantly reduce the amount of
rendering, calculation, and querying needed to display views to users. Caching can occur in three layers:

e The presentation layer (Tableau Server only)
e The analytics layer
e The data layer

For Tableau Server in particular, caching is critical for achieving concurrent user scalability.

PRESENTATION LAYER

Caching at the presentation layer is relevant for Tableau Server only. In Tableau Server, multiple end users view and
interact with views via a browser or mobile device. Depending on the capability of the browser and the complexity of
the view, rendering will be done either on the client or the server.

Client-side rendering in the browser

During client-side rendering, the client browser downloads a JavaScript, viz client, that can render a Tableau viz. It
then requests the initial data package, called the bootstrap response, for the view. The bootstrap response package
includes the view model, which includes the view layout and the data for the marks to be displayed. With this data,
the viz client can then draw the view locally in the client’s browser.

As the user explores the view, simple interactions (such as tooltips, highlighting, and selecting marks) are handled
locally by the viz client using the local data cache. This means no communication with the server is required, and
the result is a fast screen update. This also reduces the compute load on the server which helps with Tableau Server
scalability. Visit to learn more.

model

render, select, highlight,
tooltip, display

query, filter, calcs, analytics, partition, layout

updates

Figure 39

WHITE PAPER 39

https://help.tableau.com/current/server/en-us/browser_rendering.htm

Server-side rendering with tiles

Not all vizzes can be rendered client-side. More complex interactions (for example, changing a parameter or filter)
cannot be handled locally, so the update is sent to the server, and the new view model is sent to update the local
data cache.

In server-side rendering, the view is rendered as a set of static image tiles. These tiles are sent to the browser, and a
much simpler viz client assembles them into the final view. The viz client monitors the session for a user interaction
(such as hovering for a tooltip, selecting marks, highlighting, or interacting with filters), and if anything needs to be
drawn, it sends a request to the server for new tiles. No data is stored on the client, so all interactions require a
server round-trip.

tiles

query, filter, calcs, analytics, partition, layout,
render, select, highlight, tooltip

display

mouse events

Figure 40

To help with performance, the tile images are persisted on Tableau Server in the tile cache. If the same tile is
requested, it can be served from the cache instead of being re-rendered.

Note that the tile cache can be used only if the subsequent request is for the exact same view. This means requests
for the same view from different sized browser windows can result in different tiles being rendered. But if you set
your dashboards to fixed size instead of automatic, the view requests will always be the same size, irrespective of the
browser window dimensions, allowing a better hit rate for the tile cache.

More about view models and bootstrap responses

Tableau needs the view model to render a viz. The VizQL Server generates the model based on several factors
including the requesting user credentials and the size of the viewing window. It computes the view of the viz
(including things like the relevant header and axis layouts, label positions, legends, filters, and marks) and then sends
it to the renderer (either the browser for client-side rendering or the VizQL Server for server-side rendering).

The VizQL Server on Tableau Server maintains a copy of view models for each user session. This is initially the
default view of the viz, but it is updated to reflect user interactions with the view, including any highlights, filters,

or selections. A dashboard can reference one view model for each worksheet. It includes the results from local
calculations (such as table calculations, reference lines, forecasts, and clustering) and the visual layout (how many
rows and columns to display for small multiples and crosstabs, the number and interval of axis ticks and grid lines to
draw, the number and location of mark labels to be shown, and other elements).

Avoid generating view models, which can be computationally intensive. The initial bootstrap response is persisted on
Tableau Server by the Cache Server. When a request comes in for a view, if the bootstrap response already exists, it
can be served without recomputing and reserializing it.

Not all views can use the bootstrap response cache, though. If a view uses any relative date filters, user-specific
filters, or published data server connections, it will prevent the bootstrap response from being cached.

Like the tile cache, the bootstrap response is specific to the view size, so requests for the same view from browser
windows with different sizes will produce different bootstrap responses. To prevent this, set your dashboards to be
fixed size instead of automatic.

WHITE PAPER

40

Maintaining the view model means the VizQL doesn’t need to recompute the view state with every user interaction.
The models are created and cached in-memory by the VizQL Server, which shares results across user sessions where
possible. To ensure a visual model can be shared, do the following:

e Make sure the size of the viz display area is the same: Setting your dashboards to have a fixed size will allow
greater reuse and lower the workload on the server.

e Make sure the selections and filters match: To increase the likelihood that different sessions will match, avoid
publishing workbooks with Show Selections checked.

e Ensure the same credentials are used to connect to the data source: The model can be shared only across
sessions where users have the same credentials. Avoid prompting for credentials to connect to the data source.

e Avoid user filtering: If the workbook contains user filters or has calculations containing functions such as
USERNAME() or ISMEMBEROF(), the model is not shared with any other user sessions. Use these functions with
caution as they can significantly reduce the effectiveness of the model cache.

The session models are not persistent. By default, they expire after 30 minutes of inactivity to recycle memory on the
server. If your sessions expire before you are finished with a view, consider increasing the VizQL session timeout setting.

ANALYTICS LAYER

The analytics layer includes the data manipulations and calculations performed on the underlying data. To avoid
unnecessary computations and reduce queries, this layer uses an abstract query cache.

A user can generate many physical queries when interacting with a view. Rather than executing each query, Tableau
groups the queries into a batch and decompiles them to find optimizations. This could involve removing duplicate
queries, combining multiple similar queries into a single statement, or even eliminating queries where the results of
one can be derived from the results of another. Tableau checks this cache, indexed by the logical structure of the
query, before executing the native query.

Tableau does not cache the results of queries that:

e Return large result sets (which are too big for the cache)

e Execute quickly (when it is faster to run the query than check the cache)
e Have user filters

e Use relative date filters

Caching in this layer applies to both Tableau Desktop and Tableau Server; however, there are differences in the
caching mechanisms between the two tools.

DATA LAYER

The data layer addresses the native connection between Tableau and the data sources. Caching at this level persists
the results of queries for reuse. It also determines the nature of the connection to the data source, whether you are
using live connections or the Tableau data engine (replaced with Hyper in Tableau 10.5 and later). It uses a native
query cache.

The native query cache is similar to the abstract query cache, but instead of being indexed by the logical query
structure, it is keyed by the actual query statement. Multiple abstract queries can resolve to the same native query.

WHITE PAPER

41

Tableau does not cache the results of queries that:

e Return large result sets (which are too big for the cache)

e Execute quickly (when it is faster to run the query than check the cache)
e Have user filters

e Use relative date filters

Visit Tableau Documentation on and after a
scheduled refresh to learn more.

Snowflake caching

Snowflake also has caching features, including persisting query results and caching table data at the warehouse level.

RESULT CACHING

Snowflake persists query results for 24 hours before purging them. A persisted result is available for reuse by another
query, as long as the user executing the query has the necessary access privileges and all of the following conditions
have been met:

e The new query syntactically matches the previously executed query.

e The table data contributing to the query result has not changed.

e The persisted result for the previous query is still available.

e Configuration options that affect how the result was produced have not changed.

e The query does not include functions that must be evaluated at execution time (such as CURRENT_TIMESTAMP)

Reusing cached results can substantially reduce query time because Snowflake bypasses query execution and,
instead, retrieves the result directly from the cache. Each time the persisted result for a query is reused, Snowflake
resets the 24-hour retention period, up to a maximum of 31 days from when the query was first executed. After 31
days, the result is purged, and the next time the query is submitted, a new result is returned and persisted.

Result reuse is controlled by the session parameter . By default, the parameter is enabled but
can be overridden at the account, user, and session level if desired.

Note that the result cache in Snowflake will contain very similar data as the native query cache in Tableau; however,
they operate independently.

WAREHOUSE CACHING

Each running warehouse maintains a cache of table data accessed during query processing. This enables improved
performance for subsequent queries if they are able to read from the cache instead of from the tables in the query.
The size of the cache is determined by the number of servers in the warehouse. The more servers in the warehouse,
the larger the cache.

This cache is dropped when the warehouse is suspended, which may result in slower initial performance for some
queries after the warehouse is resumed. As the resumed warehouse runs and processes more queries, the cache is
rebuilt, and queries that are able to take advantage of the cache will experience improved performance.

Keep this in mind when deciding whether to suspend a warehouse or leave it running. In other words, consider the
trade-off between saving credits by suspending a warehouse versus maintaining the cache of data from previous
queries to help with performance.

WHITE PAPER

42

https://help.tableau.com/current/server/en-us/config_cache.html
https://help.tableau.com/current/server/en-us/perf_workbook_scheduled_refresh.htm
https://docs.snowflake.net/manuals/sql-reference/parameters.html#label-use-cached-result

OTHER PERFORMANCE CONSIDERATIONS

Besides caching, you can use constraints and temp tables to improve performance, as described in this section.

Constraints

Constraints define integrity and consistency rules for data stored in tables. Snowflake provides support for
constraints as defined in the ANSI SQL standard, as well as some extensions for compatibility with other databases,
such as Oracle. Constraints are provided primarily for data modeling and support compatibility with other databases
and client tools.

To increase performance, define constraints between tables you intend to use in Tableau. Tableau uses constraints to
perform join culling (join elimination), which can improve the performance of generated queries. If you cannot define
constraints, be sure to set Assume Referential Integrity in the Tableau data source to allow the query generator to cull
unneeded joins.

Temp tables

Tableau users create temp tables in multiple situations (for example, with complex filters, actions, or sets). When
Tableau users are unable to create temporary tables, Tableau tries to use alternate query structures, but these can be
less efficient and, in extreme cases, can cause errors.

Example

The following visualization is a scatter plot showing Order Total Price vs. Supply Cost for each Customer Name in
the TPCH_SF1 sample data set. In this example, several of the points have been lassoed to create a set which is then

4| Tableau - Custom SQL Example

& EMESR - @ by -| 8 g~ T £ | Sandad ~| Bal- 57 & = ShowMe
Data Analytics < Ppages iii Columns SUM(Supply Cost)

6 TPC-HSF1 = Rows. SUM(Order Total Price)

{3 TPC-HSF1 Isolated SQL

{5 TPC-HSF1 Monolithics... Fiters : IN/OUT(Set 1)
 TPC-HSF1 ReadOnly ReadWrite mn

(& TPC-H SF1 ReadWrite 160M M out

5 TPC-HSF1 Temp Table ®

) TPC-HSF1 View Marks

Dimensions. @O - 29 Auomatic - 140Mm

~ @ Customer ¥l
abe Cust Address el
ave Cust Market Segment 120M
S Q88
ate CustName el el 2
Ate Cust Nation el foth. e
ave Cust Phone RH IN/OUT(Set.. @
100M
At Cust Region BN Custhame]
> B Order a
> B Orderitem H
> B Part § M
> B8 Supplier 5
abe Measure Names E
Measures L
~ @ Customer
Cust Account Balance
v @ Order som
Item Discount
Item Extended Price
4 Item Line Number il
ItemQty
ItemTax
4 Order Total Price
v @ Part om
Retail Price
~ @@ Supplier oK S0K 100K 150K 200K 250K 300K 350K
PartQty Supply Cost
Supp Account Balance
SupplyCost
4 Number of Records
4 Measure Values
Sets
@ Setl

Figure 41

WHITE PAPER

43

used on the color shelf to show IN/OUT: The USERNAME() function is evaluated in Tableau and then pushed through
At set creation, Tableau created a temp table in the background to hold the list of dimensions specified in the set (in
this case, the customer name):

CREATE LOCAL TEMPORARY TABLE “#Tableau_37_2_Filter” (
“X_C_NAME" VARCHAR(18) NOT NULL,
“X__Tableau_join_flag” BIGINT NOT NULL
) ON COMMIT PRESERVE ROWS

The temp table is then populated with the selected values:

INSERT INTO “#Tableau_37_2_Filter” (“X_C_NAME”, “X__Tableau_join_flag")
VALUES (2, ?)

Finally, the following query is then executed to generate the required result set:

SELECT “Customers”’C_NAME” AS “C_NAME”,
(CASE WHEN ((CASE WHEN (NOT (“Filter_1""X__Tableau_join_flag” IS NULL)) THEN 1 ELSE O
END) = 1) THEN 1 ELSE O END) AS “jo:Set 1:nk”,
SUM(“Orders””O_TOTALPRICE”) AS “sum:O_TOTALPRICE:ok”,
SUM(“PARTSUPP”’PS_SUPPLYCOST") AS “sum:PS_SUPPLYCOST:ok”
FROM “TPCH1"’LINEITEM” “Lineltem”
INNER JOIN “TPCH1"”ORDERS” “Orders” ON (“Lineltem”’L_ORDERKEY” = “Orders”’O_ORDERKEY")
INNER JOIN “TPCH1""CUSTOMER” “Customers” ON (“Orders”’O_CUSTKEY” =
“Customers”’C_CUSTKEY”")
INNER JOIN “TPCH1""PART” “Parts” ON (“Lineltem””L_PARTKEY” = “Parts””P_PARTKEY”)
INNER JOIN “TPCH1"”PARTSUPP” “PARTSUPP” ON (“Parts”’P_PARTKEY” =
“PARTSUPP””PS_PARTKEY”)
LEFT JOIN “#Tableau_37_2_Filter” “Filter_1" ON (“Customers””C_NAME" =
“Filter_1""X_C_NAME")
GROUPBY 1,
2

If a user does not have the right to create temp tables in the target database or schema, Tableau will create WHERE
IN clauses in the query to specify the set members:

SELECT “Customers”’C_NAME" AS “C_NAME"

FROM “TPCH_SF1""CUSTOMER” “Customers”

WHERE (“Customers””C_NAME”" IN (‘Customer#000000388’, ‘Customer#000000412’, ‘Customer#000000679’, ‘Customer#000001522’,
‘Customer#000001948’, ‘Customer#000001993’, ‘Customer#000002266’, ‘Customer#000002548’, ‘Customer#000003019’,
‘Customer#000003433’, ‘Customer#000003451’,

‘Customer#000149362’, ‘Customer#000149548’))

GROUPBY 1
ORDER BY 1 ASC

WHITE PAPER 44

However, this approach is subject to the limitations of the query parser, and you will encounter errors if you try to
create a set with more than 16,384 marks:

® 0 Tableau

An error occurred while communicating with data source 'TPC-H SF1
Y ReadOnly’.

SQL compilation error: error line 3 at position 31 maximum number of
expressions in a list exceeded, expected at most 16,384, got 40,483

Unable to properly calculate the domain for the field 'Set 1'. Displayed data
may be incorrect.

Co to Support

Copy “ Show Query Hide Details

Figure 42

If the data volumes are not massive, you can overcome this error by converting the data connection from a live
connection to an extracted connection.

WHITE PAPER 45

MEASURING PERFORMANCE

Both Tableau and Snowflake offer several mechanisms for analyzing performance.

In Tableau, you can use the following:

° (Tableau Server)

Snowflake offers several built-in performance analysis features, including:
¢ Information schema

e Query history

e Query profiles

In Tableau

Several tools, including open-source tools, are available to help you analyze query performance.

PERFORMANCE RECORDER

The first place you should look for performance information is the Performance Recording feature of Tableau
Desktop and Server. You enable this feature under the Help menu:

rver Window Help

2 |5 L Open Help F1 8 - TT Oﬁg
Get Support...
Check for Product Updates... 160,000
I Watch Training Videos
4
B 7P Vorkbooks 140,000
I Sample Gallery
I Choose Language + $120,000
[:
R Settings and Performance L2 Reset Ignored Messages
Manage Product Keys... Clear Saved Server Sign-ins
Abalit Tableat v Enable Automatic Product Updates
o~ & Enable Autosave
Enable Accelerated Graphics
Manage External Service Connection...
Set Dashboard Web View Security 4
7 Start Performance Recording
| Seianiis v
I

Figure 43

WHITE PAPER 46

https://help.tableau.com/current/pro/desktop/en-us/perf_record_create_desktop.htm
https://help.tableau.com/current/server/en-us/rmt-intro.htm
https://help.tableau.com/current/server/en-us/adminview_bucket.htm

Start performance recording, then open your workbook. Interact with it as if you were an end user, and when you feel
you have gathered enough data, go back to the Help menu and stop recording. Another Tableau Desktop window
opens to show the data captured:

Performance Summary

Show Events taking at least (in seconds)
Timeline

Workbook Dashboard Worksheet Event
Contoso Null Open Workbook
Opening Worksheets
Connecting to Data Sou.
Sheet 9 Executing Query

Contoso _Category Executing Query

Events Sorted by Time

Executing Query
Executing Query
Executing Query
Connecting to Data Sour.
Executing Query
Executing Query

Elapsed Time (s)

Query

SELECT [DimGeography).[RegionCountryName] AS [RegionCountryName],
SUM([FactSales].[SalesAmount]) AS [sum:SalesAmount:ok]

FROM [dbo].[FactSales] [FactSales]

INNER JOIN [dbo].[DimStore] [DimStore] ON ([FactSales].[StoreKey] = [DimStore].[StoreKey])

INNER JOIN [dbo].[DimGeography] [DimGeography] ON ([DimStore].[GeographyKey] = [DimGeography].[GeographyKey])
GROUP BY [DimGeography].[RegionCountryName]

Figure 44

You can now identify the actions in the workbook that take the most time. For example, in the above image, the
selected query takes 0.8 seconds to complete. Clicking on the bar shows the text of the query being executed. As
the output of the performance recorder is a Tableau Workbook, you can create additional views to explore this
information in other ways.

Use this information to identify which sections of a workbook to review, so you can focus on where you can get the
best improvement for the time you spend. For more information on interpreting these recordings, see the

DESKTOP LOGS

Log files can provide detailed information on what Tableau is doing. The default location for Desktop is
C:\Users\<username>\Documents\My Tableau Repository\Logs\log.txt in Windows and //Users/<username>/
Documents/My Tableau Repository for MacOS. This file contains a lot of information written as JSON encoded

text, but if you search for begin-query or end-query, you can find the query string being passed to the data source.
Looking at the end-query log record also shows the time the query took to run and the number of records that were
returned to Tableau:

{“ts":"2020-05-24T12:25:41.226""pid":6460,"tid":"1674"sev":"info""req":"-""sess":"-"”
site”:"-""user”:"-""k":"end—query”, “v":{“protocol”:"4308fb0" cols":4,"query”:"SELECT
[DimProductCategory].[ProductCategoryName] AS [none:ProductCategoryName:nk],\n
[DimProductSubcategory].[ProductSubcategoryName] AS [none:ProductSubcategoryName:nk],\n
SUM(CAST(([FactSales].[ReturnQuantity]) as BIGINT)) AS [sum:ReturnQuantity:ok],\n
SUM([FactSales].[SalesAmount]) AS [sum:SalesAmount:ok]\nFROM [dbo].[FactSales]
[FactSales]\n INNER JOIN [dbo].[DimProduct] [DimProduct] ON ([FactSales].[ProductKey] =
[DimProduct].[ProductKey])\n INNER JOIN [dbo].[DimProductSubcategory]
[DimProductSubcategory] ON ([DimProduct].[ProductSubcategoryKey] =
[DimProductSubcategory].[ProductSubcategoryKey])\n INNER JOIN [dbo].[DimProductCategory]
[DimProductCategory] ON ([DimProductSubcategory].[ProductCategoryKey] =
[DimProductCategory].[ProductCategoryKey])\nGROUP BY
[DimProductCategory].[ProductCategoryName],\n
[DimProductSubcategory].[ProductSubcategoryName]”'rows”:32,"elapsed”:0.951}}

WHITE PAPER

47

https://help.tableau.com/current/server/en-us/perf_record_interpret_server.htm

Since Tableau 10.1, Tableau supports JSON files as a data source, so you can also open the log files with Tableau for
easier analysis. You can analyze the time it takes for each event, what queries are being run, and how much data they

are returning:

ableau - Tc. Log Analysis - Query - o x
File Data Workshest Dashboard Story Analysis Map Format Sever Window Help
e >0 & G- bl -P M- B EIFE 2 EntreView v @]~ OJ | o £ ShowMe
Data Analytics ¢ | Pages iili Columns
B log_query = Rows end-query
g y:Data
Dimensions
Fitters, 12/03/2017 2:23:40PM
> B At Sheet 1 12/03/2017 3:33:49 PM
> @ Attributes (V) Ts ﬂ r SELECT SUM(1) AS [sum:Number of Records:ok]
> B Attributes (V.Group) FROM (((((((([Factsales]
> B Dependency-Compone INNER JOIN [DimChannel] ON [FactSales] [/1= [DimChannel].[c)
5 B¢ G INNER JOIN [DimCurrency] ON [FactSales].[CurrencyKey] = [DimCurrency].[CurrencyKey])
& i Marks INNER JOIN [DimDate] ON [FactSales].[DateKey] = [DimDate].[Datekey])
ad Sl = INNER JOIN [tJON [F roductKey] = t].[ProductKey])
Measures "2 Automatic INNER JOIN [yION [P yKey]=
> B Source Measures ST L yKey])
o INNER JOIN [§ tCategory] ON [yl.[ProductC: yKey] =
4 Colsperv Color || Size | Label
o) il L tCategory).[ProductC:]
. . INNER JOIN [DimStore] ON [FactSales].[Storekey] = [DimStore].[StoreKey])
4 Created-Elapsed perv betat ook INNER JOIN /] ON [DimStore] yKey] 1
4 Dependency-Count perv . [GeographyKey])
4 Dependency-Query pe. f Queny-Category J INNER JOIN [JonF romotionkey] < 1
4 Elapsed (V.Jobs) perjo... IS AGG(SUM(IEL [Promotionkey]
1 Elapsad(Vpery o G WHERE (IIF(1sNull{[DimProductCategory].
[ProductCategoryName]),NULL,CStr([DimProductCategory].[ProductCategoryName])) =
< Elapsed-Compute-Key.. SUM(Rows per. ‘Computers)
i DapsediCretapary = (D HAVING (COUNT(1) > 0)
4 Elapsed-Index per v v
4 Elapsed-insertpery perv
4+ Elapsed-Sum perv
4 Fresperv
4 Fusion-Count perv
4 Indexperv
4 Job-Count perv suiers O
4 Load-Percentperv s [12Mard 1
#_Mbrdaba Racooie nacic
© Data Source Sheet1 | & B 0

98marks 92 rows by 1 column

SUM(Rows perv): 4,642

& AanEldridge

Figure 45

Another useful tool for analyzing Tableau Desktop performance is the Tableau Log Viewer (TLV). This cross-platform
tool enables you to easily view, filter, and search the records from Tableau'’s log file. A powerful feature of TLV is
that it supports live monitoring of Tableau Desktop, so you can see in real time the log entries created by your

actions in Tableau.

File Recentfiles Livecapture Highlight F elp
tabprotosrv.bet X logutxt X
D Time Elapsed Key Value)
» 10/13/2016 - 18:52:24.114 open-log path: C:\Users\JohnDoe\Docurents\My Tableau Repository\..
» 10/13/2016 - 18:52:24.114 previous-log path: C:\Users\JohnDoe\Docurents\My Tableau Repository\..
10/13/2016 - 18:52:24.114 nsg Loghetail tag "LogicalQuerylL™ is on.
P 4 10/13/2016 - 18:52:24.114 startup-info cwd: C:\Pregram Files\Tableau\Tableau 10.0\bin; demain:
P 5 10/13/2016 - 18:52:24.124 memory-usage cormit: 347144192; free: 140737087109504; load-percent
» 10/13/2016 - 18:52:24.124 11 ILE: C: ; APPDATA: C:\Users\John.
v 10/13/2016 - 18:52:24.126 display-device index: 0; name: NVIDIA GeForce 9400M G ; edapter: Gefo.
index 0
name NVIDIA GeForce 3400M &
registry adapter: GeForce 9400M G; bios: ; chip-type: GeForce 9i..
10/13/2016 - 18:52:24.153 locale-info calendar: Gregorian (localized) calendar; country: Unit.
10/13/2016 - 18:52:24.153 locale-info calendar: Gregorian (localized) calendar; country: Unit.
10/13/2016 - 18:52:24.153 locale-info Gregorian (localized) calendar; country: Unit..
10/13/2016 - 18:52:24.154 nag Context Celling flxActCommonLibrarylInit{nullpt..
10/13/2016 - 18:52:24.306 neg Context flxActCommonlibraryInit{nullptz) call ..
10/13/2016 - 18:52:24.913 nsg licUsageReport: License reporting server config does no.
> 10/13/2016 - 18:52:24.313 no-appoption-over.. msg: All appop ” z
> 10/13/2016 - 18:52:24.314 set-collation collation: chg L [© 132 Key:lecalerinfo ”
59 10/13/2016 - 18:52:24.316 nsg Loaded connect
10/13/2016 - 18:52:24.316 mag Device Pixel B |calendar: Gregorian (localized) calendar
10/13/2016 - 18:52:24.564 msg Setting Client |0 United States
» 10/13/2016 - 18:52:24.612 commana-pra azgs: cabuizgd |CoU7TV-en: “;‘;;;:;f:;f;ocale
P ic% 10/13/2016 - 18:52:24.629 conmand-post args: tabui: asdiags: e Titw (inctiarcteed)
168 10/13/2016 - 18:52:25.403 nsg BEGIN GetlUniqy |, ge-en: English
10/13/2016 - 18:52:25.460 nsg DFT Scale Fact |1,
10/13/2016 - 18:52:25.586 conmand-pre args: tabdoc:q | e: M-D-Y
10/13/2016 - 18:52:25.587 conmand-post args: tabdoc:q | L format: dddd, MM d, yyyy
10/13/2016 - 18:52:25.901 begin-update-sheet sheet: Sheet 1 A, Mon=ton, Jan=Jan, /=/
10/13/2016 - 18:52:25.901 Dbegin-data-interp.
» 10/13/2016 - 18:52:25.902 0.000 end-data-interpre. elapsed: 0
4 10/13/2016 - 18:52:25.902 Dpegin-partition-i_
» 10/13/2016 - 18:52:25.902 0.000 compute-x-set-int_ elapsed: 0
P 126 10/13/2016 - 18:52:25.902 0.000 compute-y-set-int..
|
. |
Bwreptext (D) (@) nothing to visualze [Visuslze Query | Close
Figure 46
This tool is made available as-is by Tableau and can be downloaded from .

WHITE PAPER

48

https://github.com/tableau/tableau-log-viewer

Additionally, you could load the JSON logs into Snowflake and take advantage of the VARIANT data type to help with
your analysis. Loading the Tableau JSON logs to Snowflake allows quick and easy access to a variety of Snowflake
analytical functions on JSON as well as full SQL support through object dot notation and nested array flattening.

select * from stg_Logs where log_json:k::string = ‘qp-batch-summary’ or log_json:k::string = ‘end-query’;

SERVER LOGS

On Tableau Server, the logs are in C:\ProgramData\Tableau\Tableau Server\data\tabsvc\<service name>\Logs. In
most cases, you should focus on the VizQL Server log files. If you do not have console access to the Tableau Server
machine, you can download a ZIP archive of the log files from the Tableau Server status page:

Log Files
Date generated Size Status
18 Jun 2017 2:08 pm 39.2MB Snapshot ready to download.
Download Snapshot
Figure 47

Just like the Tableau Desktop log files, these are JSON-formatted text files, so you can open them in Tableau
Desktop or read them in their raw form. However, because the information about user sessions and actions is
spread across multiple files (corresponding to the various services of Tableau Server), you may prefer to use a
powerful tool called Logshark to analyze server logs. Logshark is a command-line utility that you can run against
Tableau logs to generate a set of workbooks that provide insights into system performance, content usage, and
error investigation. You can use Logshark to visualize, investigate, and solve issues with Tableau.

Granular View Load Statistics
This s a granular view of ncividual view and workuook loads, basecOn tne Apache fogs. Use the fime fier or select a Workbook 0 il down
‘Workbook Timestamp Status Code Family
an - AM O D LU

Top Workbooks Loaded View Load Health

Request times for all view bootstrap requests. Clusters of high request imes may indicate an underprovisioned server or heaith issue.
Workbook

e
T _ =
w00
Fiten Warketing Campton - B
Winchein Expendiuees 5
(2018 Q1)
e v vine [

100
srse s [°

-
— 2.G B T O coamaos oo - o -ofbgss -
—
Workbook Loads by Hou
L e I Use this to identify peak usage periods. Astatus code of 4xx or 5xx on view load md\catemaﬁ'euw probably encountered an error.
s e J vy
3 Standard Deviati T
—— P —
Bucket + Shoplifting &
5 A "
N SR B f ,,___.._f = s = e
o1 IIIIII III I II III I I |
. :
0 10 20 30 40 Status Code Family
‘Gount of Workbook Loads = W2 o [ES
Figure 48
You can find out more about Logshark , and you can download it from GitHub.

Additionally, you could load the JSON logs into Snowflake and take advantage of the VARIANT data type to help
with your analysis.

WHITE PAPER

49

https://www.tableau.com/about/blog/2016/11/introducing-logshark-analyze-your-tableau-server-log-files-tableau-62025
http://bit.ly/2rQS0qn

SERVER PERFORMANCE VIEWS

Tableau Server comes with several views to help administrators monitor activity on Tableau Server. The views
are located in the Analysis table on the server’'s Maintenance page. They can provide valuable information on the
performance of individual workbooks, helping you focus your attention on those that are performing poorly:

H#itableau AllSites @ | Sites Users Schedules Tasks Status Settings

Server Status » Performance of Views

& Undo [& Revert [Refresh [Pause [Download T, Full Screen
~ | € oy Specific User | Actions by Recent Users = Background Task Delays = Background Tasks for Extracts | Background Tasks for Non Extr... = Stats for Load Times | Performance of Views | Statsf >

Time Range Site
Lest 7 days Ao (Multiple values) -
" View Load Time
What are the overall Load times for Views? =
M 3-5seconds
100% 5-10seconds
<3seconds
L 8% >10seconds
H
2 &0%
5
g a0%
&
20%
0%
3Jan 4Jan §Jan 6Jan 7 Jan 8Jan
What are the number of sessions? What are the individual views?
3K View Name
BadReportsF10/Report [
. TabMon/WhatsGoingOn [N
2 - GoodReportsF1/Dashboard |
& BadReportSF1/Report [N
s tabbed_admin_views/Tra.. [N
2 McBradtimpowerUp/Pow.. [
E
S o«
2
00 100 200 300 400 500 600
oK] || Load Time (seconds) =
3Jan 4Jan 5Jan 6Jan 7Jan 8 Jan

Figure 49

More information on these views can be found

Additionally, you can create custom administrative views by connecting to the PostgreSQL database that makes up
part of the Tableau repository. Instructions can be found

RESOURCE MONITORING TOOL

The Resource Monitoring Tool is a tool that you can use to monitor the health and performance of your Tableau
Server. It gathers data from your Tableau Server and provides a comprehensive look at the health of Tableau Server.
Using this tool, you can identify what is causing slow load times, extract failures, and other critical issues. More
information about the Resource Monitoring Tool can be found in

WHITE PAPER

50

https://help.tableau.com/current/server/en-us/adminview.htm
https://help.tableau.com/current/server/en-us/adminview_postgres.htm
https://help.tableau.com/current/server/en-us/rmt-intro.htm

TABJOLT

Use TabJolt to determine if platform capacity is causing issues. TabJolt is particularly useful for testing Snowflake
multi-cluster warehouse scenarios when you want to simulate a load generated by multiple users.

TabJolt is a “point-and-run” load and performance testing tool specifically designed to work easily with Tableau
Server. Unlike traditional load-testing tools, TabJolt can automatically simulate loads on your Tableau Server
without script development or maintenance. Because TabJolt is compatible with Tableau’s presentation model, it
can automatically load visualizations and interpret possible interactions during test execution.

This enables you to just point TabJolt to one or more workbooks on your server and automatically load and execute
interactions on the Tableau views. TabJolt also collects key metrics including average response time, throughput,
and 95th percentile response time. In addition, it captures Windows performance metrics for correlation.

Of course, even with TabJolt, you should understand Tableau Server’s architecture. Treating Tableau Server
as a black box for load testing is not recommended, and it will likely yield results that aren’t in line with your
expectations.

You can find more information on TabJolt

In Snowflake

Snowflake has several built-in features that enable you to monitor performance of the queries generated by
Tableau and to link them back to specific workbooks, data connections, and users.

THE SNOWFLAKE DATABASE

SNOWEFLAKE is a system-defined, read-only shared database, provided by Snowflake. The database is automatically
imported into each account from a share named ACCOUNT_USAGE. The SNOWFLAKE database is an example of
Snowflake utilizing Secure Data Sharing to provide object metadata and other usage metrics for your account.

SNOWFLAKE INFORMATION SCHEMA

The Snowflake Information Schema (Data Dictionary) is a set of system-defined views and functions that provide
extensive information about the objects created in your account. The Snowflake Information Schema is based on the
SQL-92 ANSI Standard Information Schema, but also includes views and functions that are specific to Snowflake.

DIFFERENCES BETWEEN ACCOUNT USAGE AND INFORMATION SCHEMA

The account usage views and the corresponding views (or table functions) in the Information Schema utilize
identical structures and naming conventions, but with some key differences, as described in this section:

Difference Account Usage Information Schema
Includes dropped objects Yes No
Latency of data From 45 minutes to 3 hours (varies by None
view)
Retention of historical data 1 Year From 7 days to 6 months (varies by

view/table function)

Figure 50

A Tableau dashboard that leverages the account usage data to provide insights about your Snowflake account can
be found . Please also review the

WHITE PAPER

51

https://github.com/tableau/tabjolt/releases
https://www.tableau.com/about/blog/2019/5/monitor-understand-snowflake-account-usage
https://docs.snowflake.com/en/sql-reference/account-usage.html

SNOWFLAKE QUERY HISTORY

Within the Information Schema is a set of tables and table functions that can be used to retrieve information on
queries that have been run during the past seven days.

If you have AccountAdmin access to the Snowflake account usage data, you can view the full account-level query
history for the last 12 months. This can be a useful tool for analyzing overall query volume and performance. For
more information, see the Snowflake

The query history can provide detailed information on the profile execution timing and profile of queries, which

you can use to determine if your warehouse sizes are appropriate. You can see information on the start time, end
time, query duration, number of rows returned, and the data volume scanned. You can also see the amount of time
queries spent queued versus executing, which is useful information when you are considering adding multi-cluster
scaling to your warehouses.

You can access this information through the query_history table functions in Tableau:

3;5":5 o 651078 13,749 - 0.0068 A - s M Marcn1s, 2020648 M '

= Query a1 78 Scanned Total Querie Bytespilledtolocal o citeqtosLO

i, Tota! T8 Scarnes otal Queries iheg Bytes Spilledt0 BLOB 0 —
sanuary February warch Ao vay sune sty ugus Septamber octobe Noverber December

SQT by Elapsed & Bytes - click o filter SQID Over Time -pick

0.00GB
00):1:37.626
create or replace table programs as select * from citibike_reset_v2 publicprograms;

Queryid Total Elaps.

Total Elapsed Time (ms)

Slicer Query

SQT Number & Elapsed- dickto filter Queries by Start Time (Grouped by Hour)

QueryText

Number of Queries

Number of Queries Avg. Total Elapsed Time (ms) Hour of Start Time [August 2015]

Figure 51

WHITE PAPER 52

https://docs.snowflake.com/en/sql-reference/account-usage/query_history.html

In addition, you can access the query history for an account from the Snowflake web interface:

/ 5k SQL Worksheet

< C | @ Secure | ht it

Display queries that meet all of the following criteria:

Status

|| Include client-generated statements

Stalus | Query ID

4bcadabi-..

SRR SR UR R TES - RY IR

12760652-...

b7a14c00-...

©6642062-...

eaeeeldi...

6b18ad6C-...

90462ac7-F...

63500857-....

C1988040-...

120413d9-...

90e30252-...

3678cefc-S...

cl4adf6e3...

073ecd08-...

02e5dcal-b...

Figure 52

X \D Alan
2 iconsole#/monitoring/queries w o oo
Apps Snowflake [Demos FJSAML [TBlog [Services [Partners News Personal [Interesting [Archive Google Apps
) fesis] > @ ?) Alan Eldridge
Databases Warehouses Workshest Hishory. \H:Ip YRR
Last refroshed at 12:2032 PM [| Autorefresh | &,
v | is [elect query status 7‘ eo®
SQL Text User Warshouse | Clust... Size Start Time End Time Total Duration Byles Scanned | Rows
SELECT“Litelem""L... AELDRIDGE | DEMO_WH | 1 Medium 12854834 PM 11218 548:35 PM I3 5s R 3
SELECT"Pars'’P_M.. AELDRIDGE | DEMOWH 1 Medium 1RN8 54834 PM 12118 54837 PM | RS [RG] 5
SELECT"Liteftem’L... AELDRIDGE | DEMO_WH | 1 Medium 1218 5:4833PM 172118 5:48:37 PM | [445 s ove 3
SELECT“Litclem’L... AELDRIDGE | DEMO_WH | 1 Medium 121854832 PM 1218 5:4837 PM | 4.5 s eve 3
SELECT"Lielem" L... ~AELDRIDGE ~ DEMO_WH 1 Medium 1218 54833PM 11218 548:37PM 4 65 s eme 3
SELECT "Liteitem" AELDRIDGE ~ DEMOWH 1 Medium 1211854830 PM 17211854837 PM | [Quesing Time: 205 [H239M8 3
SELECT*Pans'”P_B... AELDRIDGE | DEMOWH | 1 Medium 121854831 PM 12118 5:48:37 PM | | 585 M (25
SELECT “CusiNation”... ~AELDRIDGE | DEMO_WH | 1 Medium 121854836 PM 112118 54837 P |579ms 177.58 5
SELECT*Pars"”P_B... AELDRIDGE | DEMO_WH | 1 Medium 12/185:4831 PM 1211854837 PM [7S e |25
SELECT*Pans'”P_M.. AELDRIDGE | DEMOWH | 1 Medium 1218 548A3PM 12118 5:48:37 PM | 398 s e 5
SELECT AVG('Litelte... ~AELDRIDGE | DEMOWH | 1 Medium 1RN854828PM 1211854837 PN EMMENS<s EEEEESS VB |12
SELECT*Parts""P_M... AELDRIDGE | DEMOWH | 1 Medium 12M854833PM 1211854837 PM [5s [R 5
SELECT AVG("Litelte... AELDRIDGE DEMO_WH 1 Medium 1/218 5:48:28 PM 1/2/18 5:48:37 PM _ 83s _55,7ME \‘2
SELECT*Pans'’P_B... AELDRIDGE | DEMOWH | 1 Medium 1218 5:48:32PM 172118 5:48:37 PM | 505 M (25
SELECT AVG('Litelte... ~AELDRIDGE | DEMO_WH | 1 Medium 1RM854828PM 1211854836 PM | ENEENG's NS5 MB |12

This page displays all queries executed in the last 14 days, including queries executed by you and other users. This
view shows query duration broken down by queueing, compilation, and execution. It is also useful for identifying
queries that are resolved through the result cache.

ssroicne [N H e
History Last refreshed at 2:16:14 PM Auto refresh | ¢,
E Hide Filters =
Display queries that meet all of the following criteria: Clear fitters
Status v | is |Select query status v O®
Include client-generated statements
Status Query ID SQL Text User Warehouse Clust... Size Start Time End Time Total Duration Bytes Scanned Rows
o | 3d0d6d09-.. | SELECT "Customers'’C_M... | AELDRIDGE | DEMO_WH 12126117 6:55:32... 12128/17 6:5533... 247ms
o | 1cSeSebb-.. | SELECT'Litehem''L_RET.. = AELDRIDGE DEMO_WH 1212817 6:5530... 122817 6:55:80... 216ms
o ca6SSaad-.. | SELECTAVG(Liteem'<L_.. AELDRIDGE DEMO_WH 122817 6:54557... 12028017 6:54:57... 546ms.
4 2d148939-... USE DATABASE "SNOWFL... AELDRIDGE DEMO_WH 12/28/17 6:54:56... 12/28/17 6:54:56... 53ms
o | fefen6309... | USE WAREHOUSE DEMO.. | AELDRIDGE 12128117 6:54:86... 12128/17 6:54:56... 29ms lcachelhif
¥4 eab82ef8-e... SELECT "Parts""P_BRAND... AELDRIDGE DEMO_WH 12/28/17 6:54:55... 12/28/17 6:54:56... ?ﬁms
| 9a06¢97d-.. | SELECT'Parts’""P_MFGR'.. AELDRIDGE DEMO_WH 12128/17 6:54:55... 12128/17 6:54:56... | 390ms
o b7eda2ch-.. | SELECT’Liteem'’L RET.. = AELDRIDGE DEMO_WH 122817 6:5455... 122817 6:54:56... | 324ms
o | @653d7ib-.. | SELECT "Customers'"C_M... AELDRIDGE DEMO_WH 12128117 6:54:55... 12128017 6:54:56... | 170ms
/| 4c303808-... | SELECT "CusiNation"”N_N.. =AELDRIDGE | DEMO_WH 1212817 6:54:55... 12/28/17 6:54:55... | 134ms
| 20263487... | SELECT*CustRegion'’R_.. AELDRIDGE DEMO_WH 122817 6:5455... 12/28/17 6:54:55... | 104ms
¥4 416a1352-1... SELECT AVG("Liteltem*"L ... AELDRIDGE DEMO_WH 1 X-Small 12/28/17 6:54:08... 12/28/17 6:54:10... m
« | b6Badbos-. | SELECT"Pans''P_BRAND.. AELDRIDGE DEMOWH |1 X-Smail 12128117 65408 12128/17 6:54:10... [|2.08 55.4M8 25
d73b6aca-.. | SELECT'Pars"*P_MFGR'.. AELDRIDGE DEMO_WH 1 X-Small 122617 6:5408... 12287 654:10... [|1.55 a72M8 5
o | 95a56ldfb.. | SELECT'CustRegion'R_.. AELDRIDGE DEMOWH |1 X-Small 12128117 6:54:08... 1212817 6:54:10... [|1.45 209M8 5
o | 971de0S6t... | SELECT CusiNation””N_N.. =AELDRIDGE | DEMO_WH 1 x-Smail 1212817 6:5408... 1202817 6:54:09... [|1.25 23.9M8 5
| eco7bS3ed.. | SELECT"Customers'"C_M.. AELDRIDGE DEMOWH |1 X-Smail 12128117 6:54.08... 12128017 6:5409... | 115 239M8 5
4 074ccd91-... | SELECT "Parts""P_MFGR"... =AELDRIDGE DEMO_WH 12/28/17 6:53:50... 12/28/17 6:53:59... 537ms “ *
o | c8S2caco. | SELECT'Litete'L_RET.. AELDRIDGE DEMO_WH 122817 6:5350... 12/28/17 6:53:59... 484ms.
Figure 53

WHITE PAPER

53

By clicking on the hyperlink in the Query ID column, you can drill through to more detailed statistics for the
selected query:

9% snowflake L i s Q) ? Alan Sldngge

A Databases. Warehouses Worksheet History Help

History > 12/23/17 5:36:14 PM for 2558 Last refrsshed at 1:55:04 PM () Auforefresh | ¢, |

Details Profile

SQL Text
Success
AELDRIDGE

5 DEMO_WH

o 1212317 5:36:14 PM
"Orders”."0_ORDERKEY")

12/23/17 5:36:40 PM 5", "P_PARTKEY")
= "PARTSUPP"."PS_PARTKEY")
2555 GROUP BY

5.9GB

12

3f08bfes-id11-4f63-9017-c80e59b2al27

Select SQL L

Query Result

The resutts for this query have expired.

Figure 54

This is also where you can access the query profile.

SNOWFLAKE QUERY PROFILE

Query Profile is a powerful tool for understanding the mechanics of queries. Implemented as a page in the
Snowflake web interface, it provides a graphical tree view and detailed execution statistics for the major

components of the processing plan for a query. It is designed to help troubleshoot issues in SQL query expressions

that commonly cause performance bottlenecks.

To access Query Profile:
1. Go to the Worksheet or History page in the Snowflake web interface.
2. Click on Query ID for a completed query.
3. In the query details, click the Profile tab.

WHITE PAPER

54

s e x ll Q 2 B ~ ? JWEYBURNE_SFC
Databases Shares DataMarketplace Warehouses Worksheets (History) Account PreviewApp Partner Connect Help it

History > 1:31:27 PM for 787ms Last refreshed 1:51:31PM

Profile Overview Finished
3 of 7 nodes

Resuit (7] o% egate i sss% | Total Execution Time (426ms)

Details Profile

Projection (5] 6.5%

Join 6] 22%
. 33%

Aggregate (1] 58.7% Total Statistics

0
100,00 %

961M8
10000 %

Network
Bytes sent over the network 2184 M8

Join [6] 2.2%

Pruning
Partitions scanned 12

Partitions total 12
150k 15M

Filter [3) 0% Projection 5] 6.5%

180K 15M

TableScan (2] 0% TableScan [4] 0%

Figure 55

To help you analyze query performance, the Details panel provides two classes of profiling information, execution
time and statistics.

EXECUTION TIME

Execution time provides information about where the time was spent during the processing of a query. It is broken
down into the following categories:

e Processing: time spent on data processing by the CPU

e Local Disk IO: time when the processing was blocked by local disk access

¢ Remote Disk 10: time when the processing was blocked by remote disk access

e Network Communication: time when the processing was waiting for the network data transfer

¢ Synchronization: time spent on various synchronization activities between participating processes

e Initialization: time spent setting up the query processing

Statistics

A major source of information provided in the Details panel consists of various statistics that can help you identify
common problems that occur during queries.

“Exploding” joins

Two common mistakes users make is joining tables without providing a join condition (resulting in a “Cartesian
Product”) and getting the join condition incorrect (resulting in records from one table matching multiple records
from another table). For such queries, the join operator produces significantly (often by orders of magnitude) more
tuples than it consumes.

You can observe this by looking at the number of records produced by a join operator or noticing that the join
operation consumes a lot of time.

WHITE PAPER

55

The following example shows input in the hundreds of records but output in the hundreds of thousands:

select ttl.cl, tt1.c2

from tt1

join tt2 on tt1.c1 = tt2.c1
and tt1.c2 = tt2.c2;

Result [5] 0%
TT1.C1,TT1.C2

235.8k
Join [4] 0%

(TT2.C1 = TT1.C1) AND (TT2.C2 = TT1.C2)

772 816

TableScan [1] 0% JoinFilter [3] 0%
SCDB.PUBLIC.TT2 Original join id:4

Figure 56

The recommended action for this problem is to review the join conditions defined in the Tableau Connect dialog
box and correct any omissions.

Queries too large to fit in memory

For some operations (for example, duplicate elimination for a huge), the amount of memory available might not be
sufficient to hold intermediate results. As a result, the query processing engine will start spilling the data to a local
disk. If the local disk space is insufficient, the spilled data is then saved to remote disks.

This spilling can have a profound effect on query performance, especially if data is spilled to a remote disk. To
alleviate this, you should use a larger warehouse (effectively increasing the available memory and local disk space
for the operation) or process data in smaller batches.

Inefficient pruning

Snowflake collects rich statistics on data. Query filters dictate which parts of a table it reads. However, effective
filtering requires the data storage order to be correlated with the query filter attributes.

To determine the efficiency of pruning, compare the number of partitions scanned to the total number of partitions
in the TableScan operators. If the former is a small fraction of the latter, pruning is efficient. If not, the pruning did
not have an effect.

Of course, pruning can help only for queries that filter out a significant amount of data. If the pruning statistics do
not show data reduction, but a Filter operator above TableScan filters out several records, this might signal that a
different data organization might be needed.

WHITE PAPER

56

Clustering

If the query profile shows inefficient pruning related, and it's believed that this is related to the ordering of data,
one option to consider is clustering. Snowflake supports designating one or more table columns/expressions as a
clustering key for the table.

Using a clustering key to co-locate similar rows enables several benefits for very large tables, including:

¢ Improved scan efficiency in queries by skipping data that does not match filtering predicates.

e Better column compression than in tables with no clustering. This is especially true when other columns are
strongly correlated with the columns that comprise the clustering key.

o After a key has been defined on a table, no additional administration is required, unless you choose to drop
or modify the key. All future maintenance on the rows in the table (to ensure optimal clustering) is performed
automatically by Snowflake (see the guide on).

Although clustering can substantially improve the performance and reduce the cost of some queries, the compute
resources used to perform clustering consume credits. As such, you should cluster only when queries will benefit
substantially from the clustering.

Linking performance data between Tableau and Snowflake

One of the challenges users face when examining performance is connecting queries run in Snowflake with the
workbooks and user sessions in Tableau that generated them. One useful way to do this is to set the QUERY_TAG
session variable using an initial SQL statement.

Example

The following statement uses an initial SQL block to set the QUERY_TAG session variable:

ALTER SESSION SET QUERY_TAG = [WorkbookName][TableauApp][TableauServerUser];

The resulting value is then available from the Query History table function and can be used to attribute queries to
specific workbooks and users:

Query Times

Query Tag
Book1 - Tableau
Desktop - Alan

Good Report SF1-
Tableau Server - Alan

START_TIME
8/1/201811:03:41 AM
8/1/201811:04:01 AM
8/1/2018 11:04:42 AM
8/1/2018 11:04:54 AM
8/1/201811:04:57 AM
8/1/2018 11:05:09 AM
8/1/2018 11:06:58 AM
8/1/2018 11:06:58 AM
/1/2018 11:07:04 AM
8/1/201811:07:17 AM
8/1/201811:07:18 AM
8/1/201811:07:31 AM
8/1/201811:20:17 AM
8/1/201811:20:18 AM
8/1/201811:20:18 AM
8/1/2018 11:20:22 AM

QUERY_ID

7aB54ad6-d6ce-4488-9b3..
54f636fa-3a18-4feb-8ef2-..
fc43139f-3acd-4835-935a..
b4ceSeld-a425-4ce5-a92..

De2ebach-5ff5-442d-9f46..

150242da-10ee-4537-a2a

bb931836-d9d3-482f-b36..
9527¢3af-35a6-49e2-ale..

1403dfb1-ce36-dada-b07

313eB42f-ecbe-4596-9fde..
652d29dc-b3c7-4fad-b39..
6b3996eb-0ced-4b73-921..

cabb5d9e-32ba-422e-ab0.

120cd613-c234-448d-808..
f3a4263f-652b-4574-afff-..

40c0f3ea-0b03-4522-820

Figure 57

Q

200

400

600

800 1000 1200
EXECUTION_TIME

1400

1600

1800

WHITE PAPER

57

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering.html

Example

With the previous example, you still need access to Query History in Snowflake to get more details. However,
using the same initial SQL for every data source you create, you can insert the session ID to an audit table, then
use the audit table to create a Tableau dashboard. The dashboard gives an overview of SQL Statements that were
executed in Snowflake and many other key metrics such as execution time, bytes scanned, partitions scanned,
compilation time, credits used, warehouse size, and other key metrics.

Follow these steps:

1. Create a Tableau audit table in Snowflake.

CREATE OR REPLACE TABLE TABLEAU_AUDIT
(QID integer, exectime timestamp,

APP string,tabserver string,workbookname string, version string);

2. In the initial SQL of the data source, use the following SQL statement to insert the unique session
identifier and the Tableau parameters listed.

c>aoe 5- TRIPS+ (PUBLIC) Conmect Fiers

Connections
Gemo130 snow. omputingcom
— TRIPS ()] Procraws
Warehouse

ANALYTICS_WH % ()] smmons

Database

TABLEAU_DEMO

Schema o o Initial SQL
PUBLIC
SQL statements to be executed at connect time:

Table 2 Bl B Sort fekds | Data source order INSERT 1nto “TABLEAU_DENO"."PUBLIC" . “TABLEAU_AUOTT" Showaliases || Show hidden fields rows|
@ PROGRAMS SELECT (

[STATIONS #

£ TABLEAU_AUDIT i
- Program id (Progr.. = Program Name
= RS

B3 WEATHER VCON, CURRENT_TIMESTAP, (Tableauspp, [

_user (CURRENT_USER))
Station Longitude Station Comment Tripduration Starttime

BB WEATHER V
I3 New Custom SQL
3 New Union

Learn more

1 Initial SQL...

Automatically Update

Figure 58

Initial SQL used in the above screenshot:

INSERT into “TABLEAU_DEMO”’PUBLIC"’TABLEAU_AUDIT”

SELECT (
select max(session_id)

from table(information_schema.query_history_by_user(CURRENT_USER))
)as

VCON,CURRENT_TIMESTAMP,[TableauApp],[TableauServerUser],[WorkbookName],[TableauVersion] ;

3. Create the Tableau dashboard by combining the audit table with SNOWFLAKE.ACCOUNT _USAGE.
QUERY_HISTORY.

Select * from SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY SF
INNER JOIN TABLEAU_DEMO.PUBLIC.TABLEAU_AUDIT T on F.SESSION_ID = T.QID
where SFQUERY_TEXT like ‘SELECT%’

WHITE PAPER 58

The following sample showcases query text, partitions scanned, and what the warehouse was used for.
This is just a sample. You can filter results by workbook names, usernames, warehouse size, and many
other metrics.

ene Tableau - Book2

€S> Eaa-C [o I AT AR ¢ S Z - T £ |Standard v Eil- T of = ShowMe
Data Analytics ¢ | Ppages il Columns SUM(PARTITIONS_T.. I SUM(PARTITIONS_S..

£ Custom SQL Query (PUB... = Rows WAREHOUSE_NAME WAREHOUSE_TYPE WAREHOUSE_SIZE QUERY_TEXT
Dimensions moo|-

ilters

Abe INBOUND_DATA_TRAN Sheet 1

462 {UTEOUND-DATATRL — WAREHOUSE_.. WAREHOU.. WAREHOU.. QUERY_TEXT

A OUTBOUND_DATA_TR... WAREHOUSE_SIZE - N " -

e QD SELECT "TRIPS” "BIRTH_YEAR" AS "BIRTH_YEAR",

<

“TRIPS"."GENDER" AS "GENDER",
Abc QUERY_ID e “TRIPS"."PROGRAM_ID" AS "PROGRAM_ID",
A QUERY_TAG ANALYTICS_WH STANDARD Large “PROGRAMS"."PROGRAM_NAME" AS
Abe QUERY_TEXT ~ Al {1 “PROGRAM_NAME",
"TRIPS"."USERTYPE" AS "USERTYPE",
A QUERY_TYPE 0ol Automatic - SUM("TRIPS"."BIKEID") AS "sum:BIKEID:ok",..

Ave RELEASE_VERSION

A ROLE_NAMC 22 & m 0 200 400 600 8000 200 400 600 800
abe SCHEMA_NAME Color Size Label

SESSION_ID o%o Q

£ START_TIME Detail | Tooltip

Apc TABSERVER

v USER_NAME

PARTITIONS_TOTAL PARTITIONS_SCANNED

b VERSION

v SUM(PARTIT.. ol
ane WARFHOUISF NAMF
Measures v SUM(PARTIT... ol

DATABASE_ID

4 EXECUTION_TIME

EXTERNAL_FUNCTION...
4 EXTERNAL_FUNCTION...
4 EXTERNAL_FUNCTION.
EXTERNAL_FUNCTION...
EXTERNAL_FUNCTION.
INBOUND_DATA_TRAN...
LIST_EXTERNAL_FI...
OUTBOUND_DATA_TR...
4 PARTITIONS_SCANNED

#

#

B Data Source sheetl @ B U}

2marks 1 rowby2 columns SUM(PARTITIONS_SCANNED): 8210]

Figure 59

Using an audit table will retain the history as long as you need.

CONCLUSION

Tableau and Snowflake’s platform combine to enable you to analyze massive amounts of data.
Using best practices for connecting, caching, and performance monitoring enables faster
queries, and taking advantage of features like Snowflake Time Travel and Secure Data Sharing
empower you to become even more data-driven.

For more information about any of the features described in this white paper, consult the

or

WHITE PAPER 59

https://www.tableau.com/support
https://docs.snowflake.com/en/

ABOUT SNOWFLAKE

Snowflake shatters barriers that prevent organizations from unleashing the true value from their data.
Thousands of customers around the world mobilize their data in ways previously unimaginable with
Snowflake’s cloud data platform—a solution for data warehousing, data lakes, data engineering, data

science, data application development, and data exchange. Snowflake provides the near-unlimited
scale, concurrency, and performance our customers in a variety of industries want, while delivering

a single data experience that spans multiple clouds and geographies. Our cloud data platform is also

the engine that drives the Data Cloud—the global ecosystem where thousands of organizations have

seamless and governed access to explore, share, and unlock the potential of data. Learn how you can
mobilize your data at snowflake.com

db @
X snowflake

v in o f

© 2021 Snowflake. All rights reserved.

http://snowflake.com
https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/Snowflake-Computing-709171695819345/

