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CHAPTER 1

Data Applications and
Why They Matter

In the last decade we’ve seen explosive growth in data, driven by
advances in wireless connectivity, compute capacity, and prolifera‐
tion of Internet of Things (IoT) devices. Data now drives significant
portions of our lives, from crowdsourced restaurant recommenda‐
tions to artificial intelligence systems identifying more effective
medical treatments. The same is true of business, which is becoming
increasingly data-driven in its quest to improve products, opera‐
tions, and sales. And there are no signs of this trend slowing down:
market intelligence firm IDC predicts the volume of data created
each year will top 160 ZB by 2025,1 a tenfold increase over the
amount of data created in 2017.

This enormous amount of data has spurred the growth of data
applications—applications that leverage data to create value for cus‐
tomers. Working with large amounts of data is a domain unto itself,
requiring investment in specialized platforms to gather, organize,
and surface that data. A robust and well-designed data platform will
ensure application developers can focus on what they do best—cre‐
ating new user experiences and platform features to help their cus‐
tomers—without having to spend significant effort building and
maintaining data systems.
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We created this report to help product teams, most of which are not
well versed in working with significant volumes of fast-changing
data, to understand, evaluate, and leverage modern data platforms
for building data applications. By offloading the work of data man‐
agement to a well-designed data platform, teams can focus on deliv‐
ering value to their customers without worrying about data
infrastructure concerns.

This first chapter provides an introduction to data applications and
some of the most common use cases. For each use case, you will
learn what features a data platform needs to best support data appli‐
cations of this type. This understanding of important data platform
features will prepare you for Chapter 2, where you will learn how to
evaluate modern data platforms, enabling you to confidently con‐
sider the merits of potential solutions. In Chapter 3 we’ll explore
design considerations for scalability, a critical requirement for meet‐
ing customer demand and enabling rapid growth. This chapter
includes examples to show you how to put these best practices into
action. Chapter 4 covers techniques for efficiently transforming raw
data within the context of a data application and includes real-world
examples. In addition to consuming data, teams building effective
data applications need to consider how to share data with customers
or partners, which you will learn about in Chapter 5. Finally, we will
conclude in Chapter 6 with key takeaways and suggestions for fur‐
ther reading.

Throughout this report we provide examples of how to build data
applications using Snowflake, a modern platform that enables data
application developers to realize the full potential of the cloud while
reducing costs and simplifying infrastructure.

The Snowflake Data Cloud is a global network where
thousands of organizations mobilize data with near-
unlimited scale, concurrency, and performance.2 Inside
the Data Cloud, organizations unite their siloed data,
easily discover and securely share governed data, and
execute diverse analytic workloads. Wherever data or
users live, Snowflake delivers a single, seamless experi‐
ence across multiple public clouds.

2 | Chapter 1: Data Applications and Why They Matter
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Data Applications Defined
Data applications are customer- or employee-facing applications
that process large volumes of complex and fast-changing data,
embedding analytics capabilities that allow users to harness their
data directly within the application. Data applications are typically
built by software companies that market their applications to other
businesses. As you learn about some of the most common use cases
of data applications in this chapter, you will get a sense of the
breadth of this landscape. Truly, we are living in a time when most
applications are becoming data applications.

Retail tracking systems, such as those used by grocery stores to track
shopping habits and incentivize shoppers, are data applications.
Real-time financial fraud detection, assembly line operation moni‐
toring, and machine learning systems improving security threat
detection are all data applications. Data applications embed tools,
including dashboards and data visualizations, that enable customers
to better understand and leverage their data. For example, an online
payments platform with an integrated dashboard enables businesses
to analyze seasonal trends and forecast inventory needs for the com‐
ing year.

As shown in Figure 1-1, data applications provide these services by
embedding data platforms to process a wide variety of datasets,
making this data actionable to customers and partners through a
user interface layer.

Figure 1-1. Data applications
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In the following sections we’ll review five of the most common use
cases of data applications. For each case we will highlight key data
platform considerations, which we will then cover in more detail in
Chapter 2.

Common Data Application Use Cases
The use cases we will cover are:

Customer 360
Applications in marketing or sales automation that require a
complete view of the customer relationship to be effective.
Examples include targeted email campaigns and generating
personalized offers using historical and real-time data.

IoT (Internet of Things)
Applications that use large volumes of time-series data from
IoT devices and sensors to make predictions or decisions in
near real time. Inventory management and utility monitoring
are examples of IoT data applications.

Application health and security
Applications for identification of potential security threats and
monitoring of application health through analysis of large vol‐
umes of current and historical data. Examples include analyz‐
ing logs to predict threats and real-time monitoring of
application infrastructure to prevent downtime.

Machine learning and data science
Applications focusing on the training and deployment of
machine learning models in order to build predictive applica‐
tions, such as recommendation engines based on purchase his‐
tory and clickstream data.

Embedded analytics
Data-intensive applications that deliver branded analysis and
visualizations, enabling users to leverage insights within the
context of the application.

Customer 360
From clickstreams telling the story of how a user engages digitally to
enriching customer information with third-party data sources, it is
now possible to get a holistic, 360-degree view of customers.
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Bringing together data on customers enables highly personalized,
targeted advertising and customer segmentation, leading to more
opportunities to cross-sell and upsell. Both through better under‐
standing of customers and by taking advantage of machine learning,
you can create compelling experiences to drive conversion.

The challenge with Customer 360 applications is dealing with the
massive amount and variety of data available. Basic data, including
contact and demographic information, can be purchased from
third-party sources. As this data tends to be stored in customer rela‐
tionship management (CRM) solutions, it is typically well struc‐
tured, available as an export at a point of time or via an API.
Interaction data shows how a customer interacts with digital con‐
tent. This can include tracking interaction with links in marketing
emails, counting the number of times a whitepaper is downloaded,
and using web analytics to understand the path users take through a
website. Interaction data is typically semi-structured and requires
more data processing to realize its value.

Realizing value from customer data involves bringing together the
various data types to run analysis and build machine learning mod‐
els. To support these endeavors a data platform needs not only to be
able to ingest all these different types of data but also to gain insights
from the available data through analysis and machine learning. We
will talk about data platform needs in this area in “Machine Learn‐
ing and Data Science” on page 6.

IoT
IoT data applications analyze large volumes of time-series data from
IoT devices, sometimes requiring near-real-time analytics. Enabled
by the confluence of widespread wireless connectivity and advances
in hardware miniaturization, IoT devices have proliferated across
multiple industries. From connected refrigerators to inventory man‐
agement devices and fleets of on-demand bicycle and scooter rent‐
als, the IoT has created an entirely new segment of data, with
spending in this sector estimated to have reached $742 billion in
2020.3

Data Applications Defined | 5
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A smart factory offers some good of IoT data applications.4 Real-
time sensor data can be transformed into insights for human or
autonomous decision making, enabling automated restocking when
inventory levels dip below a threshold and visualization of opera‐
tional status to monitor equipment health.

A theme in IoT applications is the need to both gather data and relay
that information to be consumed by larger systems. IoT devices use
sensors to gather data which is then published over a wireless con‐
nection. We have all experienced the patchy nature of wireless net‐
works, with dropped calls and unreliable internet connections.
These problems exist in IoT networks as well, resulting in some data
from IoT devices arriving out of chronological order. If an IoT data
application is monitoring the health of factory equipment it is
important to be able to reconstruct the timeline to detect and track
issues reliably.

In addition to supporting semi-structured data and the ability to
efficiently order time-series data, a data platform supporting IoT use
cases must be able to quickly scale up to service the enormous
amount of data produced by IoT devices. As IoT data is often con‐
sumed in aggregate, creation of aggregates directly from streaming
inputs is an important feature for data platforms as well.

Machine Learning and Data Science
It comes as no surprise that as the volume of data has grown rapidly,
so has the ability to leverage data science to make predictions. From
reducing factory downtime by predicting equipment failures before
they occur to preventing security breaches through rapid detection
of malicious actors, data science and machine learning have played a
significant role across many industries.5

As with the Customer 360 use case, data applications leveraging
machine learning require ingestion of large amounts of different
types of data, making support for data pipelines essential. Efficient
use of compute resources is also important, as generating predic‐
tions from a machine learning model can be extremely resource-
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intensive. The elasticity of cloud-first systems (discussed in
Chapter 2) can ensure that expensive compute resources are provi‐
sioned only when needed.

The development process for machine learning can benefit from sig‐
nificant amounts of data to construct and train models. A data plat‐
form with the ability to quickly and efficiently make copies of data
to support experimentation will increase the velocity of machine
learning development.

For data science and analysis, a data platform should support popu‐
lar languages such as SQL to provide direct access to underlying
data without the need for middleware to translate queries. External
libraries for data analysis and machine learning can greatly stream‐
line the process of building models, so support for leveraging third-
party packages is also important.

Application Health and Security
Application health and security data applications analyze large vol‐
umes of log data to identify potential security threats and monitor
application health. Many new businesses have been formed specifi‐
cally around the need to process and understand log data from these
sources. These businesses turn log data into insights for customers
through application health dashboards and security threat detection.
In the security domain, machine learning has improved malware
classification and network analysis.6

The ability to rapidly act on data is a critical feature of data applica‐
tions in this area. Thus, real-time, fast data ingestion is a key
requirement for data platforms supporting application health and
security applications. Delays in surfacing data for analysis represent
time lost for identifying and mitigating security issues. Often, triage
involves looking back to observe events that led up to a security
incident. Being able to time travel and observe data in a previous
state can help piece together what led to a security breach.

Much of the data related to application health and security comes
from log files. These can take up a significant amount of space,
especially if you want to be able to time travel to previous versions.

Data Applications Defined | 7
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The ability to cheaply store this data while enabling analysis is
another important data platform feature in this space.

The value of data applications in this space lies not only in enabling
rapid identification of issues, but also the ability to act on findings
when they occur. Integrating data applications with ticketing and
alerting systems will ensure customers are notified in a timely fash‐
ion, and further integration with third-party services will allow for
direct action to be taken. For example, if a data application monitor‐
ing cloud security identifies an issue with a compute instance, it
could terminate it and then send an alert to the team indicating that
the issue has already been taken care of.

Embedded Analytics
Customers rely on data from the applications they use to drive busi‐
ness decisions. Embedded analytics refers to data applications that
provide data insights to customers from within the application.7 For
example, a point of sale application with embedded demand fore‐
casting provides additional value to customers beyond the primary
function of the application. Leveraging application data to provide
these additional services enables companies building data applica‐
tions to generate new revenue streams by selling these extended
services and thereby differentiate themselves from competitors.

Without embedded analytics, application users are limited in the
value they can get from their data. They may request exports of their
data, but this is inferior to an embedded experience due to the loss
of context when data is exported from an application. Application
users then must interact with multiple systems: the data application
and third-party business intelligence (BI) and visualization tools.
Customers must also contend with the additional cost and delay of
storing and processing exported data. Instead, a data platform that
supports embedding of third-party tools for data visualization and
exploration will enable users to stay within the data application. This
lets them work with fresh data and reduces overhead in supporting
exports from the data application.

8 | Chapter 1: Data Applications and Why They Matter
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Because customers access embedded analytics on demand, it is not
easy to predict usage. An elastic compute environment will ensure
that you can deliver on performance service-level agreements
(SLAs) during peak load, with the added benefit that you will not
pay for idle resources when load subsides. Data platforms that can
scale up and down automatically to meet variable demand patterns
will offload this burden from the data application team. You will
learn more about different approaches for scaling resources in
Chapter 3.

Data platforms that support embedded analytics applications need
support for standard SQL and the ability to isolate workloads. Sup‐
port for standard SQL will enable embedding of popular BI tools,
reducing demand on product teams to build these tools in-house.
The ability to isolate workloads from different customers is impor‐
tant to prevent performance degradation.

Summary
Data applications provide value by harnessing the incredible
amount and variety of data available to drive new and existing busi‐
ness opportunities. In this chapter we introduced data applications
and five major use cases where data applications are making a signif‐
icant impact: Customer 360, IoT, application health and security,
machine learning and data science, and embedded analytics.

With an understanding of the key requirements in each use case,
you are now ready to learn what to look for when evaluating data
platforms.

Summary | 9





CHAPTER 2

What to Look For in a
Modern Data Platform

In order to take advantage of the rapidly growing demand for data
applications, product teams need to invest in data platforms to
gather, analyze, and work with large amounts of data in near real or
real time. These platforms must support different data types and
structures, be able to interoperate with external tools and data sour‐
ces, and scale efficiently to manage the demands of customers
without wasting resources.

If your data platform does not support these capabilities, your engi‐
neering team will spend significant time developing and maintain‐
ing systems to service these needs, reducing the amount of resources
available for application development. In this chapter you will learn
what to look for in a modern data platform to ensure engineering
effort can remain focused on building your product. We will dive
into the use case–specific needs covered in “Application Health and
Security” on page 7, as well as other areas of importance for data
platform assessment. By the end of this chapter you will understand
what features to look for in a data platform for building data appli‐
cations and why they are important.

Benefits of Cloud Environments
It is difficult to meet the challenges of modern data applications with
legacy, on-premises data platforms. It takes significant time and
resources to bring an on-premises system online, requiring physical
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machines to be purchased, configured, and deployed. With cloud
environments you can bring an application online in minutes, and
adding additional capacity is just as quick.

In addition to speed, cloud environments outperform on-premises
solutions in scalability, cost, and maintenance. The virtually infinite
capacity and elasticity of the cloud allows resources to be scaled up
to meet demand for a much lower cost than expanding a data center
—and cloud environments can also easily scale down when loads
decrease, offering significant cost savings over the fixed capacity of
on-premises systems. Additionally, cloud environments manage
resources in a way that reduces the maintenance burden to a greater
or lesser extent (depending on whether you choose a cloud-first or
cloud-hosted solution, as described next).

Given the advantages and prevalence of cloud environments we will
focus our discussion on the trade-offs associated with different
cloud approaches, rather than covering the outdated on-premises
approach.

An important difference in cloud-based approaches is whether
they’re cloud-hosted or cloud-first. A cloud-hosted application
model is one where software designed for on-premises systems is
run in the cloud. In this case you leverage cloud computing instan‐
ces but assume responsibility for the software, operating system,
security, and some infrastructure, such as load balancing. This is
preferable to the on-premises model in that you don’t pay for main‐
taining physical hardware, but inferior to cloud-first as you are still
burdened with significant maintenance and limited in your ability to
take advantage of cloud features such as scalability and elasticity.

In a cloud-first application model software is built specifically to take
advantage of the benefits of the cloud, such as having access to virtu‐
ally infinite compute and storage and enjoying true elasticity. In this
scenario the provider of the software assumes the burden of ensur‐
ing the entire stack is operational and provides additional services to
automatically allocate resources as needed.

Cloud-First Versus Cloud-Hosted
Cloud-first environments maximize the benefits of the cloud, such
as offloading a significant portion of the maintenance burden when
building and operating data applications. Because the cloud-hosted
model brings an on-premises architecture to a cloud environment,

12 | Chapter 2: What to Look For in a Modern Data Platform



many of the shortcomings of on-premises systems exist in the
cloud-hosted model as well.

These shortcomings stem from a fundamental difference in cloud-
hosted and cloud-first solutions: which party takes responsibility for
managing cloud resources. In the cloud-hosted model this is the
responsibility of the developer, while in the cloud-first model it’s up
to the data platform. The following are some areas where this trade-
off is particularly important to consider for data applications.

Elasticity
Cloud-first environments manage resource scaling, whereas in
cloud-hosted systems resource allocation and scaling must be man‐
aged by developers. That is, in a cloud-hosted environment develop‐
ers need to design processes for adding or removing compute
resources as needed to service different workloads across tenants. In
a cloud-first environment these resources will be automatically allo‐
cated as needed, eliminating the need to design a separate process
and fully taking advantage of the elasticity of the cloud.

When modifying resource allocations it is necessary to rebalance
workloads, either to distribute them to take advantage of increased
capacity or to consolidate them onto a smaller set of resources.
Cloud-first environments can handle load balancing automatically,
even as the number of compute resources changes, whereas in the
cloud-hosted approach developers have to manually adjust the load
balancers or build and maintain software to automate the process.

Scaling workloads while not disrupting ongoing processes is a chal‐
lenging problem. In a cloud-hosted environment not only do you
have to provision instances in response to demand, but you have to
do so in a way that minimizes impact to users. For example, if a
machine learning workload consumes all the available resources and
needs more, you will not only need to provision additional nodes
but also manage redistributing your data and workloads to make use
of the additional nodes. Cloud-first environments handle this pro‐
cess for you, again saving significant complexity and cost by manag‐
ing processes you would have to design and operate yourself in a
cloud-hosted system.

Benefits of Cloud Environments | 13



Availability
Major cloud platforms have the ability to deploy compute instances
in geographical regions all over the world. This provides the benefits
of better latency for users around the globe, and a failsafe in the
event of a regional disruption. Due to the additional cost and com‐
plexity, most companies choose not to take on the task of a multi-
region deployment themselves, incurring the risks associated with a
single-region deployment. Data platforms that seamlessly support
multi-region operation greatly reduce these costs while providing
improved reliability.

In cloud-first environments availability across geographic regions
can be built in such a way that if one region is experiencing service
issues the platform seamlessly switches over to another region with
minimal disruption to users. This kind of fallback across zones is a
significant undertaking to design for a cloud-hosted environment,
requiring design and maintenance of systems to detect a regional
service issue and to migrate workloads to new resources.

Choice of Cloud Service Providers
One of the first questions you will be confronted with when devel‐
oping data applications is what cloud service provider to use. Ama‐
zon, Microsoft, and Google are the primary providers in this space,
and it can be hard to decide among them. Additionally, once you’ve
made a choice, it is difficult to change providers or interoperate with
customers using another provider without significant technical lift.

One approach is to build a data platform from scratch, using custom
code that can be ported across different providers. While cloud ser‐
vice vendors provide basic components such as cluster compute and
blob storage, there is significant work required to design, build, and
maintain a data platform that will meet the needs of modern data
applications. While it is possible to port the associated code for these
systems across providers, the burden of managing systems across
different providers remains. In addition, this approach greatly limits
the cloud services you can take advantage of, as code portability
requires using only the most basic cloud components.

Ideally a data platform would be cloud service provider–agnostic
and enable working across cloud providers. Besides reducing the
maintenance burden, this would also give you the advantage of
being able to fall back to another provider if one was experiencing
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an outage. In addition, not getting locked in to a single provider will
enable you to onboard new customers without concern for which
cloud service provider they use.

Support for Relational Databases
Relational databases are needed to support embedded BI tools, visu‐
alization workloads, and analytical users, but recently a lot of focus
in the big data arena has been on NoSQL databases. In this section
we will take a look at how relational databases serve data applica‐
tions, with some history along the way to understand the evolution
of relational and NoSQL databases.

To begin, it’s important to understand the role of semi-structured
data. Semi-structured data is data that does not conform to a rigid
schema. JSON is an example of semi-structured data, composed of
field/value pairs that enable representation of primitive values as
well as hierarchical information. The flexibility of semi-structured
data is important for representing machine-generated data, such as
data from IoT sensors and mobile devices, whose schema evolves
over time. As we discussed in “Application Health and Security” on
page 7, semi-structured data is an extensive source for data applica‐
tions, not just for IoT but for Customer 360 and other use cases as
well.

As the prevalence of semi-structured data skyrocketed over the last
decade, so did the need to process it. Fully supporting semi-
structured data requires both language support for representing the
data and query performance on par with that of structured systems
—features relational databases didn’t provide at the time. To fill this
gap, NoSQL databases emerged and rapidly gained popularity due to
their ability to handle fast writes for large amounts of semi-
structured data.

Benefits of Relational Databases
Relational databases have since evolved to include support for semi-
structured data. While NoSQL variants continue to excel at high-
volume, fast writes of this kind of data, relational databases have an
advantage in their ability to express analytical queries. NoSQL data‐
bases rely on procedural languages to query data. This puts the bur‐
den of optimizing queries on the programmer. SQL is declarative,

Support for Relational Databases  | 15
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producing more concise code that is easier to write and maintain.
The task of transforming SQL to something that will run efficiently
is handled by optimizers, allowing users to focus on analysis without
having to worry about optimizing their code.

SQL also has the benefit of decades of development as the de facto
language for data analysis, boasting millions of users and a robust
ecosystem. As a result, data in relational databases can be quickly
leveraged by analytics professionals across a multitude of industries.

To work with data in NoSQL databases, you need to learn a first-
class programming language such as Java, or a boutique language
developed specifically for this purpose, such as Pig or Hive. While
Hive is declarative and SQL-like, using it requires a middleware
layer to translate queries to the underlying NoSQL engine. These
additional complications present a barrier to leveraging data stored
in these systems, limiting use to programmers.

Atomicity, consistency, isolation, and durability (ACID) transaction
guarantees are another significant benefit provided by relational
databases. When an update occurs in a NoSQL system it must prop‐
agate to other nodes, introducing lag. As a result, reads can return
stale data, resulting in incorrect modeling and analysis. ACID guar‐
antees in relational databases ensure that data is consistent, prevent‐
ing stale data from being returned from queries.

Finally, relational databases are still significantly more widely used
than NoSQL databases, making it highly likely that data applications
will need to interoperate with relational data sources.1 Given the way
relational platforms have evolved to better support big data needs
and their popularity, it is clear that relational data platforms that
support SQL are a critical component of modern data platforms.

Separation of Storage and Compute
Historically, database systems have tightly coupled compute and
storage to ensure fast transactions due to latencies in networking
and storage in legacy systems. In recent years networking and stor‐
age bandwidth has increased dramatically, eliminating these bottle‐
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necks.2 As a result, modern data platforms can take advantage of
separating compute and storage for improved reliability, scaling, and
cost. The elasticity of cloud-first environments enables compute and
storage to grow or shrink on demand, a benefit best realized by
keeping these systems decoupled.

Consider the reasons either of these resources might scale up. If
your data application has a sudden spike in demand, you want addi‐
tional compute capacity, but additional storage is not necessarily
needed. Likewise, as the data in your system grows, you primarily
want storage to scale, not compute, outside of the resources needed
for ingestion. In a system where these resources are coupled and
cannot scale independently you will incur additional cost for resour‐
ces you do not need.

To better understand these trade-offs, let’s look at some examples of
cloud data architectures. Figure 2-1(A) shows an example of a data
system with storage for the data and compute to access it tightly
coupled.

Figure 2-1. Coupled storage and compute: (A) single instance, (B)
scaled to meet additional demand

In Figure 2-1(B), additional instances have been provisioned to
meet an increase in compute demand. There isn’t a change in the
amount of storage needed, just a change in the number of users or
processes accessing the data. But because storage and compute are
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tightly coupled, expanding compute capacity also requires expand‐
ing storage capacity. This has a few undesirable side effects:

• The additional storage is unused, resulting in spending on
unnecessary resources.

• The data from the first storage instance must be replicated to
the new storage instances.

Replicating data to the additional storage instances can require sys‐
tem downtime to ensure data consistency. Every time additional
compute is required, the downtime for replication is incurred.

In comparison, Figure 2-2 shows how these needs could be handled
in a system where compute and storage are decoupled.

Figure 2-2. Decoupled storage and compute: (A) single instance, (B)
scaled to meet additional demand

With storage and compute decoupled, compute can grow as needed.
This eliminates spending on unused resources and the downtime
required for replication. In Chapter 3 you will learn how multiple
resources can access the same underlying data, realizing the advan‐
tages of decoupled storage and compute.

In addition to the cost and scaling benefits, separating storage from
compute protects you from data loss. In systems where storage and
compute are coupled, data can be lost as a result of compute
instance failure. Decoupling these systems will avoid this scenario—
instead of storing data on compute instances, you can store it in
durable, fast cloud storage.
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Data Sharing
Data sharing creates opportunities for data providers and consum‐
ers. For providers, sharing data can provide new sources of revenue
and opportunities to get feedback from users. For consumers, data
sharing enables enrichment of existing data to better inform busi‐
ness decisions and expand analysis capabilities.

Data application builders should look for data platforms that pro‐
vide the ability to share data easily and avoid creating copies of data.
Traditional methods of data sharing, such as file transfers, can be
costly and require additional overhead to manage. Creating copies
of data to share entails paying to store duplicate data, increasing
costs, and once data is copied out of the data producer’s system it is
no longer fresh, requiring systems to repeatedly copy and handle
new versions of the data to stay up to date. Sharing through data
copy also carries the overhead of building and maintaining systems
to incorporate copied data into the consumer’s system. We’ll discuss
data sharing in depth in Chapter 5, covering both traditional and
modern approaches.

Workload Isolation
There is an inherent contention for resources in data systems. These
systems have to support a variety of workloads, including data
ingestion, user queries, and analytical processes. When these pro‐
cesses share the same hardware they will compete for resources,
resulting in performance degradation. For example, if data ingestion
and user queries share the same hardware, a large data ingestion
event can monopolize compute resources, resulting in poor perfor‐
mance for user queries. This can be costly; contention for resources
can introduce reliability issues and difficulty in guaranteeing perfor‐
mance SLAs.

Workload isolation refers to separating computational processes to
reduce or eliminate resource contention. This is a critical compo‐
nent for data platforms supporting data applications, especially
because the challenges of resource contention expand in multi-
tenant environments. In data applications where a variety of work‐
loads are spread across hundreds of customers, it is important not
only to isolate ingestion and analytical workloads but to isolate dif‐
ferent customer workloads from one another as well.
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In addition to the performance benefits, workload isolation enables
you to provide different tiers of service, attracting both enterprise
and startup customers. For example, you might offer dedicated
resources to larger customers while providing a lower tier of service
for self-service customers that operates on a shared resource pool.
In this case workload isolation can enable low-cost options so start‐
ups can pilot your data application without having to make a signifi‐
cant investment, while also guaranteeing performance for enterprise
customers.

The ability to keep track of costs per tenant is another advantage of
workload isolation. In a system where resources are shared across
tenants it can be difficult to determine how to split costs among cus‐
tomers. With workload isolation providing the opportunity to dedi‐
cate resources on a per-customer basis, billing becomes more
straightforward. While you will still need to do the extra calculations
to split billing if you offer a shared resource tier, this is likely to rep‐
resent a smaller portion of overall costs compared to the dedicated
resources for enterprise customers.

Figure 2-3 shows an example of workload isolation in a data applica‐
tion with two enterprise customers, E1 and E2, and three self-service
customers, A, B, and C. The enterprise customers each have dedica‐
ted compute resources that are separate from those shared by the
other tenants. Customer E1 has a larger volume of data and addi‐
tional processing needs compared to E2, so extra resources have
been allocated for this customer. Customers A, B, and C are on a
shared service tier. These could be start-up customers with lower
SLAs that can trade the performance of dedicated compute for the
lower cost of sharing resources with other customers.

With workloads isolated as in Figure 2-3, customers E1 and E2 are
protected from surges in demand arising from workloads run by
other customers. It doesn’t matter how many compute resources A,
B, and C use; E1 and E2 each have their own dedicated resource
pool to draw from.
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Figure 2-3. Workload isolation in a multi-tenant environment

To get a sense of how different types of workloads are isolated, let’s
take a look at the workloads for tenant E1, as illustrated in
Figure 2-4.

The compute resources allocated to tenant E1 have been split across
three different workloads: a data ingestion process, a machine learn‐
ing model, and user queries. Because of workload isolation, these
processes have separate, dedicated resources, eliminating the issue of
workload contention.
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Figure 2-4. Different workloads for tenant E1

Additional Considerations
Reliability and extensibility are two additional areas to consider
when evaluating data platforms. With a SaaS business, when the
application goes down business grinds to a halt until service is
restored. It is therefore crucial to ensure your chosen data platform
has planned for potential reliability issues and provides mechanisms
to keep the system online should problems occur. Additionally, to
ensure evolving customer needs can be met, data platforms should
provide the ability to extend their capabilities by taking advantage of
third-party services and custom code.

Reliability
As with any technology, ensuring reliability is an important aspect
of data platforms. Reliability issues in the cloud can include com‐
pute instances terminating unexpectedly, data lost in transit over the
network, lack of availability of compute resources due to high
demand, or service provider outages. Modern data platforms must
be designed defensively for these issues to avoid unplanned down‐
times that result in revenue loss.
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Monitoring, alerting, and automatic repair are key defensive mecha‐
nisms to ensure reliable cloud systems. Cloud platforms provide
services for monitoring components and alerts based on these mon‐
itors that can be configured to identify system failures. When a
component fails, an alert can be dispatched to a third-party system
to notify the product team of the issue. While alerting is important,
a modern data platform should also enable automatic repair where
possible to reduce the need for manual intervention.

A disaster recovery plan spanning multiple geographic regions and,
ideally, multiple cloud providers reduces the likelihood of data loss
and the length of downtime in the event of an outage in one service
or region. Replication of data in different geographical regions will
also help prevent data loss.

Extensibility
Another important aspect of a modern data platform is the ability to
leverage third-party resources and custom code for working with
data. SQL is a powerful tool for analysis, but there are uses for which
other languages or tools may be better suited. In addition, there are
many third-party libraries offering packaged functionality that cus‐
tomers may want to use, such as for financial modeling and machine
learning. Sending a request to an external system to acquire addi‐
tional data or perform an analysis is another frequent need when
working with data. In this section we will look at a few ways cloud
platform functionality can be extended to meet these needs.

User-defined functions (UDFs)
A UDF is a function written in either SQL or a procedural language
such as Python, JavaScript, or Java. These functions are created by
programmers and registered with the data platform, which enables
the functions to be used by others. UDFs are called as part of a SQL
statement to produce a value or a relation given a set of inputs. An
example of a UDF is a function that calculates mortgage interest
given an interest rate, loan term, and amount. The UDF encapsu‐
lates this code so it won’t have to be rewritten every time the appli‐
cation needs to perform the calculation. UDFs also support
performing operations on tables, such as create, read, update, or
delete (CRUD).
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Stored procedures
Stored procedures are another vehicle for extending platform capa‐
bilities. These are SQL subroutines that are stored in relational data‐
bases, allowing them to be accessed by applications. Stored
procedures are particularly useful if you want to dynamically gener‐
ate SQL or if you need to perform CRUD operations.

External callouts
Third-party services offer an abundance of tools that can be lever‐
aged when working with data. For example, an application may
make a request to a geocoding API to convert an address to a lati‐
tude/longitude coordinate, or call out to a machine learning model
hosted outside of the data platform to generate a prediction.

Summary
In this chapter we highlighted essential elements of a modern data
platform that take advantage of advances in data systems and the
benefits of cloud services. Taken together, these elements reduce the
burden on product teams building data applications, improve the
customer experience, and streamline costs.

A modern data platform should include:

• A cloud-first environment that is cloud platform–agnostic
• Support for semi-structured and structured data
• ACID guarantees and SQL support
• Separation of storage and compute
• Data sharing without copying data
• Workload isolation
• Extensibility
• Robust disaster recovery and resiliency mechanisms

Advances in computing have enabled a revolution in the design of
data systems, significantly reducing barriers of cost and scalability.
With an understanding of how to evaluate modern data platforms,
in the next chapter we’ll move on to discussing how to take advan‐
tage of these platforms to build scalable data applications.
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CHAPTER 3

Building Scalable Data
Applications

Scalability is a requirement for successful data applications. A prod‐
uct that scales well can quickly onboard new customers, enable cus‐
tomers to run new workloads without impacting the performance of
others, and take advantage of the elasticity of the cloud to keep costs
in check. By thinking about scalability from the beginning you can
avoid bottlenecks and costly redesign efforts that can blunt product
growth.

In Chapter 2 you learned about important features of a modern data
platform. In this chapter you will learn how to best leverage those
features to design scalable data applications. We will begin with an
overview of the key design considerations for building data applica‐
tions that scale. The rest of the chapter will dive into best practices
and real-world examples to support these considerations. At the end
of this chapter you will understand how to make the best use of
Snowflake’s features for designing scalable data applications.

Design Considerations for Data Applications
As discussed in Chapter 2, support for multiple tenants is a founda‐
tional requirement for data applications. Underlying this require‐
ment are three components: storage, compute, and security. In this
section we will present design patterns and examples covering each
of these areas. Data application customers will be referred to as

25



1 https://docs.snowflake.com/en/user-guide/warehouses.html
2 https://docs.snowflake.com/en/user-guide/warehouses-multicluster.html

“tenants” and individual users associated with a customer will be
referred to as “users.”

This section will include examples using Snowflake’s virtual ware‐
houses—clusters of compute resources that provide resources such
as CPU, memory, and temporary storage to perform SQL opera‐
tions.1 We will also introduce Snowflake’s multi-cluster warehouses,
which offer the capabilities of virtual warehouses with a larger pool
of compute resources, including built-in load balancing.2

Design Patterns for Storage
Data applications need to ensure that customers can’t see each oth‐
er’s data, but the details of how this is accomplished depend on a
variety of factors that will vary by application. In this section we will
discuss different methods to isolate data between tenants and pro‐
cesses and provide recommendations on when to use each method.

Multi-tenant tables
Multi-tenant tables combine all tenants into a single set of database
objects. In this scenario, all tenants belong to the same table, with
row-level security applied to ensure isolation. This greatly reduces
the number of objects you have to maintain, which can make it eas‐
ier to support many more tenants without increasing your opera‐
tional burden.

Snowflake implements multi-tenant tables as illustrated in
Figure 3-1. Source data is exposed in a single table shared across all
tenants, with an application layer that ensures each tenant can only
access the data it has permission to access.
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Figure 3-1. Snowflake multi-tenant table

An important consideration for multi-tenant tables is ensuring per‐
formance does not degrade as the tables grow to significant size.
Without optimization, table growth will result in slower access times
for interacting with data. To address this issue, it is recommended
that you cluster data in multi-tenant tables based on the tenant ID
rather than by date. This table clustering scheme ensures that as
each tenant queries its slice of the data, Snowflake has to scan as few
files as possible, resulting in increased performance.

Object per tenant
In an object per tenant model, underlying database instances are
shared but database objects are allocated to separate tenants. For
example, tenants may have their own databases, schemas, and tables
but be commingled in a single database instance. Role-based access
control (RBAC) is used to isolate tenants to their respective objects.
While the overhead is lower than with an account per tenant model,
discussed next, this approach also can quickly become unwieldy to
manage as the customer base grows.

The object per tenant model is commonly used when the shape of
the data for each tenant is different. In cases where requirements
demand greater data separation than row-level security, object per
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tenant can be an effective choice. Figure 3-2 depicts how this option
is designed in Snowflake.

Figure 3-2. Snowflake object per tenant design pattern

Account per tenant
Another way to provide data isolation is to create a new database
instance for every tenant. This ensures complete separation between
tenants, which is important for applications with contractual or reg‐
ulatory requirements.

While this approach guarantees complete isolation, it comes with
higher overhead and maintenance costs due to additional adminis‐
trative objects to maintain for every instance. For example, for every
tenant you will need to maintain a separate database instance. As the
number of tenants increases, so will the number of resources need‐
ing to be upgraded, monitored, and debugged, leading to significant
maintenance and support costs. Therefore, consideration should be
given to the number of tenants you will need to support with this
method.

Snowflake makes the creation of instances simpler, because an
instance in Snowflake is just a logical Snowflake account which can
be created with a SQL statement. There is still some administrative
overhead with this approach, but not as much as with a physical
database instance. Figure 3-3 shows the Snowflake account per ten‐
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ant design pattern. In this case, each tenant has a dedicated database
instance associated with its account.

Figure 3-3. Snowflake account per tenant design pattern

Design Patterns for Compute
Suboptimal design for compute in multi-tenant environments can
lead to poor query performance, delays in ingesting new data, and
difficulties servicing the needs of different tiers of customers. In this
section we will discuss different methods for allocating compute
resources to meet performance requirements.

Compute scaling is discussed along two axes: vertical and horizon‐
tal. Vertical scaling refers to the ability to provide more powerful
resources to perform a task. If a customer runs a complex task, ver‐
tical scaling can improve the runtime. In cloud platforms, this
involves provisioning different types of compute instances with
more powerful specifications.

While vertical scaling can be used to make a task run faster, hori‐
zontal scaling can increase the number of tasks that can be run
simultaneously, such as when many users access the platform simul‐
taneously. Another example is a data ingestion process onboarding a
large dataset, where adding additional nodes by scaling out horizon‐
tally improves parallelization, resulting in faster data ingestion.
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Horizontal scaling is implemented by changing the number of com‐
pute instances available under a load balancer.

Overprovisioning
One approach to keeping up with compute demand is to provision
an excess of compute resources in anticipation of increased or vari‐
able demand. Having additional compute resources available means
you can quickly scale out capacity without having to wait for a new
instance to be provisioned.

Overprovisioning relies on the ability to predict demand, which can
be tricky. Consider the impact of COVID-19 resulting in sudden,
enormous demand for video conferencing. The impossibility of pre‐
dicting such an event could lead to disruption in services for
customers.

Additional drawbacks to overprovisioning include cost and load
balancing. If demand is lower than forecast, it’s costly to pay for idle
resources. If demand is higher than forecast, there is a poor cus‐
tomer experience as performance will degrade. Furthermore, when
scaling out capacity, existing jobs need to be reorganized to balance
the load across the additional resources. This can be challenging to
accomplish without impacting existing workloads.

Autoscaling
Instead of trying to predict demand, autoscaling will increase the
amount of compute available as demand rises and decrease it as
demand subsides. Snowflake’s multi-cluster, shared data architecture
manages this for you by autoscaling within a configurable number
of minimum and maximum clusters and automatically load balanc‐
ing as the number of users changes.

When it comes to scaling, consideration needs to be given to trade-
offs in cost, resource availability, and performance SLAs. With
multi-cluster warehouses you can choose to provide dedicated com‐
pute resources for tenants that need them, and for others a pool of
shared resources that can autoscale horizontally when more tenants
are on the system, enabling you to easily provide separate tiers of
service. For example, customers who pay more could each be given
their own more powerful warehouse, while lower-paying customers
could be pooled onto a smaller, cheaper warehouse that can auto‐
scale up to a maximum number of clusters when more customers
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are simultaneously using the application. In this case, balancing
loads across the scaled compute capacity must be managed as well.
Snowflake has built-in load balancing that handles this out of the
box with a simple configuration.

Workload isolation
As discussed in Chapter 2, workload isolation is important to ensure
good performance in multi-tenant data systems. Isolating workloads
also helps protect against runaway processes or bad actors. For
example, if a single compute instance were shared among several
tenants, a rogue process could disrupt all the tenants. With separate
instances, the instance with the rogue process could be shut down
without disrupting other workloads.

Different workloads have different compute needs, making work‐
load isolation attractive for separating synchronous workloads from
asynchronous ones, isolating simple workloads from more complex
workloads, and separating data processing tasks from analytical
tasks.

The virtual warehouse model provided by Snowflake achieves work‐
load isolation by enabling multiple compute instances to interact
with the same underlying dataset, as shown in Figure 3-4. Work‐
loads for ingestion, transformation, and different tenants operate
within separate compute environments, enabling resources to be
sized independently. This allows workloads to consume as many or
as few resources as required, while also ensuring the different work‐
loads don’t impact the performance of others. Tenants aren’t affected
by continuous data ingestion and transformation, and synchronous
and asynchronous workloads can be isolated.

Separate virtual warehouses can be provisioned for data processing
and analytical workloads to allow these processes to work in parallel
without impacting each other’s performance. All processes interact
with the same data, with guaranteed consistency provided by Snow‐
flake’s cloud services layer.3
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Figure 3-4. Workload and tenant isolation in Snowflake

However, with multiple compute instances comes the need to man‐
age access across tenants. Snowflake provides configurable compute
privileges, enabling data applications to determine which compute
instances customers have access to and the types of operations they
are allowed to perform. We’ll discuss this and other security consid‐
erations in the next section.

Design Patterns for Security
With security breaches frequently in the news, you should expect
customers to have concerns about the security of their data. Security
features in a multi-tenant data platform should include guarantees
for regulatory and contractual security requirements, as well as
managing access to data and compute resources.

Access control
Within a multi-tenant system it is important to have some way of
granting and restricting access for different users. Access control
broadly refers to the mechanisms systems put in place to achieve
this goal. In this section we will talk about two types of access con‐
trol: role-based (RBAC) and discretionary (DAC).

It is useful to think of access management in terms of relationships
between users and objects in the system. In a data application,
objects include databases, tables, configuration controls, and com‐
pute resources. Relationships between users and objects are set by
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privileges generally falling into the categories of create, view, modify,
and delete. As it is typical for a user to have more than one of these
privileges, the grouping of multiple privileges into a role used to
control access is common. This is the RBAC model, shown in
Figure 3-5.

Figure 3-5. RBAC example in Snowflake

As depicted in Figure 3-5, Role 1 and Role 2 each encapsulate multi‐
ple privileges for interacting with the available assets, and each indi‐
vidual user may be assigned one or both roles.

In addition to typical access controls for database objects, Snowflake
includes warehouses and other entities in its set of securable objects,
or elements that can have access constraints applied to them.4 This
can save data application developers significant overhead when set‐
ting up permissions for tenants. The alternative is a patchwork of
permissions across different services, such as database grant permis‐
sions for relational components and specific cloud-based controls
for granting permission to interact with blob storage. Encapsulating
these lower-level permissions in this way streamlines permission
management and reduces the chances of omissions and mistakes.

In a multi-tenant system where data can be shared, it is helpful to
enable data creators to specify who should have access to their
objects. This is where DAC comes in, where object owners can grant
access to other users at their discretion. Snowflake combines these
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models, resulting in object owners providing access through roles
that are assigned to users.

One aspect to keep in mind when handling permissions is that it’s
best to minimize the spread of privileges to a given object across
several roles. Limiting access to a given object to a single role
reduces overhead if there is a need to modify that permission in the
future. A role hierarchy can then be used to create combinations of
privileges, as in the example depicted in Figure 3-6.

Figure 3-6. Role hierarchy and privilege inheritance

In the upper-left corner of Figure 3-6 you can see that the applica‐
tion database is organized with two different schemas: a schema of
base tables and a scheme of secure views. It’s good practice with the
multi-tenant table approach to isolate secure views into their own
schema, and this is also important for defining the role hierarchy.

You begin by creating the roles associated with the database schema
permissions, shown in the bottom row. Functional roles, shown in
the middle row, associate a user’s function with the appropriate data‐
base permissions. For example, the DEVELOPER_READ role includes
the BASE_SCHEMA_READ and VIEW_SCHEMA_READ roles.

Roles can be granted to other roles to create a hierarchy of inherited
privileges, as we saw with DEVELOPER_READ. Notice also that
BASE_SCHEMA_WRITE inherits BASE_SCHEMA_READ, further simplifying
the permissions hierarchy by including read access with write
access.

Because tenants should only have access to the secure views, the TEN
ANT_TEMPLATE role is only granted the VIEW_SCHEMA_READ role. The
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TENANT_ROLE inherits the permissions of TENANT_TEMPLATE and can
be assigned to system tenants. With this inheritance, any future
changes made to the TENANT_TEMPLATE role will automatically prop‐
agate to all tenants.

All functional roles are granted up the privilege chain to the
APP_OWNER and finally the SYSADMIN, to ensure the administrator
role has access to everything in the system.

Auditing
The ability to audit changes in access controls is critical for assessing
system vulnerabilities, tracking down the source of corrupt data,
and complying with regulations such as the European Union’s Gen‐
eral Data Protection Regulation (GDPR). In addition, many indus‐
tries require auditing capabilities to do business; for example, if you
hope to market your data application to healthcare or finance
organizations, this is a critical requirement in a data platform.
Snowflake meets this need with robust auditing of user permissions,
logins, and queries, which can be accessed through logs.

Access and authorization controls
Another important area of security is ensuring the connections
between the application tier and the underlying data platform are
secure. Considerations in this space include authentication, encryp‐
tion management, and secure network design.

To guarantee a secure connection between the application and the
Snowflake Data Cloud, you can use AWS5 or Azure PrivateLink.6

These services allow you to create direct, secure connections
between Snowflake and your application tier without exposure to
the public internet. Snowflake allows connections from any device
or IP by default, but you can limit access using allow and block lists.

Snowflake provides a variety of options for user authentication,
including OAuth, multifactor authentication (MFA), key pair
authentication and rotation, and single sign-on (SSO). Having these
services built in removes a significant burden from product teams,
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as providing support for even one of these methods is a substantial
engineering undertaking.

As an example, consider a data application using OAuth to generate
a secure token to access Snowflake. With OAuth, credentials do not
have to be shared or stored, eliminating the need to build secure cre‐
dential sharing and storage into your data application. Key pair
authentication is another option for authentication where user‐
name/password credentials do not need to be explicitly shared;
instead, a private key pair retrieved from a key vault can be used to
control access.

Summary
Ensuring your approach to storage, compute, and security will meet
the demands of the ever-changing data landscape is fundamental to
building successful data applications. In this chapter you learned
how to take advantage of the virtually infinite storage and compute
resources of cloud platforms to create scalable data applications. We
discussed different approaches to storage, including the multi-
tenant table, object per tenant, and account per tenant models. You
also learned about approaches to optimizing compute resources,
including using autoscaling to provision resources in response to
demand instead of attempting to predict demand. With an under‐
standing of the trade-offs and use cases for each approach, you can
make informed design decisions.

Taking advantage of the scalability of the cloud requires an approach
to security that will scale as well. With Snowflake, creating a role
hierarchy to manage permissions and coupling DAC and RBAC
result in robust and flexible access control while keeping permis‐
sions management manageable. To control access to Snowflake a
variety of secure user authentication modes are provided, as is sup‐
port for securely connecting with application tiers on Azure and
AWS.
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CHAPTER 4

Data Processing

Data applications provide value by processing large volumes of
quickly changing raw data to provide customers with actionable
insights and embedded analytical tools. There are many ways to
approach data processing, from third-party tools and services to
coding and deploying bespoke data pipelines. A modern data plat‐
form should support all of these options, giving you the power to
choose which best meets your needs. In this chapter you will learn
how to assess the trade-offs of different data processing methods,
providing the necessary understanding to make informed choices
about working with the tooling provided by data platforms.

We will start with an overview of design considerations for this
space, highlighting the elements you should consider when archi‐
tecting data processing pipelines as part of a data application. Then
we’ll cover best practices and look at some real-world examples of
implementing these practices with Snowflake’s Data Cloud.

Design Considerations
Data processing is a sizable task that needs to be done in a way that
is very low latency, low maintenance, and does not require manual
intervention. A data platform that can meet this challenge will
enable product teams to focus on application development instead
of managing ingestion processes, and will ensure that users get
insights as quickly as possible. The considerations presented in this
section will guide you as you consider how to approach data
processing.
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Raw Versus Conformed Data
Raw data is information stored in its original format. JSON stored as
a document is an example of raw data. As mentioned in Chapter 2,
relational systems can now store and query this kind of raw, semi-
structured data, so it is already in a format that is usable without
having to be transformed into a tabular structure. While it is possi‐
ble to query raw data, the queries are less performant than those run
against conformed data.

Conformed data is information that fits a specific schema, requiring
transformation of raw data. The motivation to conform data comes
from the performance improvements and interoperability advan‐
tages of tabular structures. Data that is organized is easier for query
engines to work with, resulting in better speed and performance
than that achieved by queries run against raw, semi-structured data.
In addition, many data analysis tools require structured, tabular
data.

The trade-offs of conforming data include time and cost. Translating
data from a raw state into a tabular structure requires data pipelines
to be developed and maintained. If the data source changes fre‐
quently, this will require recurring work to accommodate the new
schema. In addition, raw data can be acted on immediately, whereas
transforming raw data introduces the delay of data processing.

Understanding how data will be used will help guide the decision of
what to conform and what to leave in a raw state. For example, if
you launch a new feature for your application that requires a new
data source, you might initially choose to leave the data in its raw
state. Then, if the new feature proves popular, you could invest the
resources to conform the data for better performance.

Data Lakes and Data Warehouses
A key difference between how data warehouses and data lakes han‐
dle data is that data warehouses store only conformed data, whereas
data lakes contain data in its raw format. That is, a data warehouse
transforms all data to a set schema as it is written, while a data lake
performs the transformation on an as-needed basis, when the data is
read by users. Because data warehouses conform data during inges‐
tion, they can perform additional tasks on the data, such as valida‐
tion and metadata extraction. For example, JPEG and video files
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themselves would not undergo an ELT process (described in “ETL
Versus ELT” on page 41), but information about the content, source,
and date of creation could be important to capture.

In legacy data warehouses, data was limited to that which could con‐
form to a rigid schema, owing to the lack of support for unstruc‐
tured data. If data could not be made to conform to the data
warehouse schema, it couldn’t be used. This also meant users were
limited to the data that had been curated inside the data warehouse.
But with the large amount of variable structured data available
today, the industry has made moves to loosen these restrictions to
take advantage of the modern data landscape.

Data lakes are at the other extreme. A data lake can ingest data in
any form, and it can be tempting to take in data from a broad range
of sources without accounting for the complexity of the subsequent
transformation process. Because data is transformed when it is read,
different users can request different transformations of the same
data source, resulting in the need to maintain many different trans‐
formations for a single source. This complexity may not be well
understood from the outset, so attempts at creating a data lake can
result in a large store of data that isn’t usable, giving rise to the mon‐
iker “data swamp.”

Data warehouses trade the cost and complexity of transforming the
data on load with the benefits of conformed data. Data lakes trade
the complexity of managing transformation when the data is
accessed for the benefits of being able to quickly onboard new data
sources.

Schema Evolution
Changes in the structure of data sources are an inevitability, and
data pipelines must be built to address this reality. These changes are
most often additive: additional columns available for a structured
data source, or new fields in a JSON input.

For conformed data, adherence to a rigid schema makes supporting
input data structure changes a heavy lift. Not only do data pipelines
and table schemas need to be modified, but there is also a need to
handle schema versioning. When data is accessed in its raw format,
the issue of schema evolution is significantly reduced.
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Far less often, changes can also be destructive, eliminating columns
or splitting a single data source into multiple sources. Any such
alterations in data sources require downstream schemas to be upda‐
ted to accommodate the new data format. Such changes require
careful planning and rollout regardless of schematization because
they affect existing data and consumers of that data.

Other Trade-offs
When setting up a data pipeline for data applications, architects
need to consider trade-offs among latency, data completeness, and
cost.

With virtually infinite availability of compute resources, cloud data
platforms can scale out to quickly complete data processing and
analysis tasks. But this performance doesn’t come for free: addi‐
tional, more powerful (and more expensive) compute resources are
required. Architects need to consider how to manage this, poten‐
tially creating different service tiers to offer latency/cost trade-offs to
a wide variety of customers.

Another way to improve latency is by conforming data to enable
faster analytical performance. In the cloud, compute resources are
more expensive than storage, so it may be a worthwhile trade-off to
spend the compute resources to conform the data.

A similar issue arises when considering how often to run data pipe‐
lines. For example, running a pipeline every five minutes will pro‐
vide fresher data than running the pipeline once a day, but
depending on the data application use case, it may not be worth the
additional compute expense.

Data retention is another important consideration, as the amount of
data retained will impact cloud storage costs. Retaining historical
data is important in data applications supporting machine learning
for model building and testing, and some use cases, such as health‐
care or government services, may have strict requirements for keep‐
ing historical data.

Another aspect of data completeness relates to how the data is pro‐
cessed. In some cases, applications may want to retain the original
data alongside transformed versions, such as for auditing purposes.
As we’ve discussed previously, it may not be necessary to conform
all fields in a dataset, depending on what is of interest to data users,
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so there is opportunity to save on costs here while sacrificing
completeness.

Best Practices for Data Processing
In this section we will present best practices for designing data pro‐
cessing pipelines when building data applications, highlighting how
to take advantage of modern data platforms to build them.

ETL Versus ELT
Extract, transform, and load (ETL) is the process by which legacy
data warehouses ingest and transform data. Data is first extracted
from its source, then transformed to conform to the data warehouse
schema and finally loaded into tables where it is accessible to end
users. The conformed data enables performant queries and use of
analytical tools requiring structured data.

ETL systems require an investment in development, maintenance,
and compute resources to service the underlying data pipelines that
perform this process. With many different data sources this can
become a significant overhead and often requires staff dedicated to
creating and maintaining these systems.

A modern approach to data processing is to move the transforma‐
tion step to the end, as in data lakes. An extract, load, and transform
(ELT) process loads raw data from the source without transforming
it, preserving the original format. This not only removes the need to
transform all source data, with the associated compute and mainte‐
nance costs, but also prevents information loss when converting
data from its raw format to a conformed structure. Transformation
can then be performed selectively: for example, if a conformed
structure is needed to improve query performance or for data visu‐
alization tools. In addition, transforming only a subset of the extrac‐
ted data reduces potential points of failure compared to ETL systems
that transform all extracted data.

ELT represents a shift in boundaries in a data warehouse, enabling
additional use cases over ETL systems. In legacy ETL systems, data
is only loaded after it is transformed, limiting applications to the
conformed version of the data. With ELT, applications can access
either raw or transformed versions of the data. For example, explor‐
atory data analysis on raw data is a first step in designing machine
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learning solutions. This provides important insights around poten‐
tial data issues and their downstream impacts that are not available
in ETL systems.

The flexible nature of ELT provides opportunities for performant
queries on conformed data alongside less performant raw data quer‐
ies, enabling a choice in trading off performance for compute
expense. In the next section we will discuss how to assess what sub‐
set of data to conform.

Schematization
Underlying the trade-offs of ETL versus ELT systems is a difference
in when the raw data is schematized. Schema on read is the para‐
digm of ELT systems, where raw data can be queried in its native
format. The schema is applied only when the data is accessed, hence
“on read.” Schema on write is the ETL paradigm, where the schema
is applied when data is written into the data platform.

The schema-on-read approach offers significantly more flexibility.
Because the raw format is always available, it is possible to create a
number of derived, conformed versions to meet different business
needs while only conforming the subset of data that is of interest.

Snowflake’s VARIANT data type enables schema on read, allowing
semi-structured data to be acted on without the delays of transform‐
ing data.1 This not only gets data quickly into use, but also provides
an opportunity to determine what fields customers are using to
identify data that should be conformed.

Schema on read is also preferred by data vendors as it reduces the
burden of handling changes in a data source. For example, if a data
vendor adds additional fields, a schema-on-write system would need
to modify the transformation step to handle these additional col‐
umns. In contrast, schema-on-read systems would immediately
make this new data available.
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Loading Data
Loading is the process by which data is moved from a data source
into the data platform, typically into a temporary staging table
where it can be further processed. To support different types of data
sources, the Snowflake Data Cloud provides two options for loading
data: bulk loading and continuous loading.2 Deciding which process
is appropriate will depend on the type of data you need to load and
the frequency at which the application requires it.

Serverless Versus serverful
The bulk copy approach is a serverful process—that is, one that
requires deployment of dedicated compute resources to run the
copy job. This is in contrast to Snowflake’s ingestion service, now
known as Snowpipe, which is a serverless process. In serverless pro‐
cesses, the compute resources are managed by the platform, not the
data application. Serverless processes run immediately, whereas
serverful processes incur delays waiting for compute resources to
come online.

Keeping an eye on costs is important when leveraging serverless
processes. It can be tempting to hand over all your jobs to a server‐
less process, letting the data platform figure out what resources are
needed to run the job, but in some cases this can be costly. It is
important to understand the workloads that rely on serverless pro‐
cesses, experimenting with running a few jobs and assessing the cost
and performance trade-offs compared with a serverful approach.

Batch Versus Streaming
The frequency at which a data pipeline runs will depend on the
needs of the data application, considering the trade-off of fresher
data for the increased cost of running pipelines more frequently.
Underlying data pipeline scheduling is the continuum of batch to
stream processing.

Batch processes operate on bulk data, processing a chunk of data on
a scheduled basis, such as loading historical transaction data once a
day. Streaming processes operate continuously on as little as one
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event at a time, or at an interval, processing micro-batches of events.
Processing clickstream data in real time, as each event is being gen‐
erated from the source, is an example of stream processing. You can
think of stream processing as batch processing with a batch size of 1
(or, in the case of a micro-batch, a small number).

Batch processing
Batch processing is best suited for ingesting large amounts of data
from sources that update on a regular schedule and to which the
application does not require access in (near) real time. For example,
transaction data that is loaded once a day as an input to a marketing
recommendation application is well suited for batch processing.

With this approach, batches of data are copied from a data source
into the data platform. In Snowflake this is accomplished using a
COPY statement in SQL, issued from a virtual warehouse that devel‐
opers must set up and size appropriately to service the job. This job
can be run manually or set up to run on a schedule.

With the copy process, architects need to consider the trade-off of
frequency and cost. How often data should be loaded will depend on
both how often the data source publishes new data and how soon
after this users need this information. More frequent copies will
result in users having access to fresh data more regularly, but at the
higher cost of more compute resources to schedule the copy jobs.

Appropriately sizing the virtual warehouse to service the copy pro‐
cess is another consideration. Understanding the amount of data in
each batch is important to ensure sufficient compute resources are
allocated.

Stream processing
Snowflake provides two methods for handling stream processing.
For working with data in the cloud, continuous loading with Snow‐
pipe is an alternative method to COPY.3 Snowpipe processes data in
micro-batches to surface new data quickly after it becomes available.
This enables near-real-time access to data, such as would be
required for IoT applications or making real-time recommendations
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based on clickstream data. Unlike with COPY, Snowpipe manages the
compute resources for you, autoscaling as needed.

Change Data Capture
Detecting and responding to changes in source data is a key opera‐
tion of a data platform. Rather than reingesting an entire data
source when a change is detected, it is desirable to apply only the
changes that occurred—that is, the delta between when the infor‐
mation was previously captured and its current state. Change data
capture (CDC) aids in this process by tracking the data manipula‐
tion language (DML) changes made to a table (i.e., updates, deletes,
inserts).

When processing data from streaming sources such as Apache
Kafka,4 Snowflake Streams and Tasks detect data changes and per‐
form transformation on new and updated data. Snowflake STREAM
objects provide CDC for underlying tables, enabling stream con‐
sumers to take action based on the changes that occurred since the
consumer last queried the stream. For example, a STREAM object
monitoring a staging table will reflect updates to the table as it
receives new data from the source.

Streams can be used as an input to TASK objects—scheduled jobs
that can be used to automate data processing steps with SQL state‐
ments or stored procedures—and Tasks can be chained, enabling
the creation of multistep data pipelines.5
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To understand the batch-to-streaming continuum, consider the
architecture in Figure 4-1.

Figure 4-1. Snowflake streaming architecture

Producer applications generate continuous data that is surfaced by
streaming services. Depending on data application needs, Snowflake
ingests data either directly from the streaming service, processing it
in near real time, or via batches published to cloud storage by
streaming services.

For example, clickstream events would be ingested directly to enable
action to be taken in near real time, such as choosing an ad to dis‐
play within the application based on customer behavior. In this case
data freshness is imperative, making the cost of processing the data
continuously worthwhile. Snowflake Streams and Tasks process the
data, surfacing it for use by the data application.

On the other hand, application transaction data used to update ad
recommendation machine learning models is not needed in near
real time and instead can be collected in batches in cloud storage
and processed less frequently, such as once a day, by Snowpipe
Auto-ingest. The results of the auto-ingest are handed off to Streams
and Tasks to run the data pipelines on the bulk data source.
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Summary
In this chapter you learned how data pipelines are critical to the suc‐
cess of data applications, which provide value through the ability to
deliver fresh insights. From structured, historical data sourced from
transaction systems to semi-structured data from devices and appli‐
cations, data applications must be capable of processing a wide vari‐
ety of data types.

Scalable, performant data processing leverages both conformed and
raw data, selectively conforming data for performance and tool sup‐
port and using raw data to evaluate new application features, deter‐
mining if the cost and latency of conforming the data is worthwhile.

A hybrid approach combining the performance of conformed data
warehouse tables and the raw data support of data lakes enables data
processing systems to be tailored to customer needs while minimiz‐
ing cost and maintenance overhead. Additionally, providing cus‐
tomers with access to raw data enables new use cases, such as
machine learning, and ensures information is not lost as a result of
transformation.

To realize these benefits ELT is the preferred approach for most data
applications, enabling those applications to deliver fresh insights
from both conformed and raw data. ELT systems offer significant
flexibility and scalability gains over legacy ETL approaches by being
more resilient to changes in data sources and supporting raw data.

When designing data processing systems it is important to consider
the batch-to-streaming continuum. Streaming approaches process
data in near real time, which is critical for applications such as
responding to clickstream data with relevant ad recommendations.
Batch approaches trade-off data freshness for lower costs, which is
appropriate for cases where data can be consumed less frequently
(such as incorporating historical transaction data). In this chapter
you learned how Snowflake enables data processing for batch and
streaming use cases through COPY, Streams and Tasks, and
Snowpipe.
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CHAPTER 5

Data Sharing

As we saw in Chapter 2, data sharing is an important requirement
for data applications. In this chapter we will take a deep dive into
this subject and how this impacts data applications.

We’ll start with a discussion of different approaches to sharing data,
then move on to design considerations in data applications. Next,
you will learn about Snowflake’s architecture, which eliminates the
storage costs and overhead of traditional approaches.

In addition to sharing data among different parties, the ability to
discover data is also an important element of data applications. For
data consumers, this means knowing what data is available and how
to get it. For data providers it means ensuring potential customers
know about their offerings. You will learn how Snowflake Data Mar‐
ketplace solves the data discovery problem, building a global data
network to drive the data economy.

To provide an example of how data sharing in the Snowflake Data
Cloud benefits data application builders, we will conclude with an
overview of how Snowflake partner Braze leverages data sharing to
drive their business.

Data Sharing Approaches
In this section we will discuss two different approaches for data
sharing: sharing by creating copies of the data and sharing refer‐
ences to the data.
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Sharing by Copy
The legacy approach to data sharing is to create copies of data to dis‐
tribute to consumers, as illustrated in Figure 5-1.

Figure 5-1. Sharing through data copy

Data providers export a copy of the data, which is transferred to the
consumer. This transfer can take place over the web, using special‐
ized file transfer software, or, in some cases, by mail (sending a disk
to the consumer). Data providers and consumers share the burden
of ensuring that data is copied securely and regulatory policies are
followed.

With large amounts of data, this process can incur significant delays
owing to the complexity and the time required to transfer large
datasets. And once data is received, consumers must create and
manage data ingestion processes to incorporate the copied data into
their systems.

In our age of constantly changing data, providing a point-in-time
data export results in the need to acquire new, updated copies as the
data changes. Data consumers may ask for these exports frequently,
putting a significant burden on data providers to maintain export
systems and respond to requests.

Storage costs associated with data copy are also a significant draw‐
back. With large data it is very costly to have to pay for storage. Fur‐
thermore, multiple versions of the data may need to be retained,
multiplying this cost several times.

Another aspect of dealing with point-in-time data copies is the need
to maintain version information. What version of data is presently
in the consumer’s system? When was it last refreshed? These details
can fall by the wayside, leading to ambiguity as to data freshness.
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This laborious process often results in data consumers working with
stale data, not only because the data may already be stale upon
export but because of the expense in time and money of importing a
new version.

Sharing by Reference
A modern approach to data sharing, shown in Figure 5-2, replaces
copying data with referencing data. Without the cost and overhead of
copying data, the velocity increases dramatically, enabling data to be
shared immediately.

Figure 5-2. Data sharing in a modern data platform

As opposed to moving data between providers and consumers, in
this scenario data remains fixed. Instead of managing a copy process
and multiple versions of data, the data platform manages live data
access in a transactionally consistent manner. Live data access
requires providing transactional consistency to ensure consumers
have a current view of the data at all times.1 To make this seamless
for data providers and consumers, a data platform should ensure
transactional consistency of the data is guaranteed outside of the
provider’s system boundaries.
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Design Considerations
The more barriers there are to data sharing, the less likely it is to
occur, reducing opportunities for both data providers and consum‐
ers. Building on what you’ve learned about data copy versus data
sharing, in this section we will take a deeper look into the underly‐
ing mechanisms of data sharing to further help you assess the
trade-offs.

Sharing Data with Users
In the modern age of quickly changing data, providing near-real-
time, secure access to data is critical to providing value through data
sharing. Similarly, it’s necessary to be able to quickly revoke access
to data, both to ensure appropriate business use and to comply with
regulatory requirements.

In the data copy model, you lose control over data once it has been
exported. Consider a scenario where you need to revoke access to
data that has been shared to comply with regulatory requirements,
such as the GDPR. In a data copy model you don’t have control over
the files that have been exported, so your only recourse is to trust
the data consumers will delete the data when requested.

As well as region-specific laws about data transfer and access, in
data copy systems there is the additional overhead of setting up
global file transfer systems. With a worldwide customer base, you
need to consider how data transport systems will be set up (region-
specific FTP endpoints, centralized hub-and-spoke models). Fur‐
thermore, if you provide software for managing data transfer, you
must also provide worldwide deployment and support.

Other important considerations when sharing data with users are
cost and complexity. In the data copy model users must figure out
what subset of data they need from providers, requiring investment
in data pipelines just to perform this evaluation. And as we have dis‐
cussed, data evolves over time, leading to inevitable changes requir‐
ing data pipelines to be reworked. Finally, there is the expense of
storing large data files to consider. In the data copy model, large files
must be transferred and stored, incurring additional expense.
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Getting Feedback from Users
To create revenue from data sharing, a provider needs to understand
what part of their dataset has value for different user groups. Feed‐
back from data consumers is needed to determine this, but it’s diffi‐
cult to obtain. One option is to survey customers on data use, but
this relies on creating a survey that meaningfully captures the infor‐
mation you need, and on customers to voluntarily respond.

Data Sharing in Snowflake
There is significant overhead and cost involved in developing, main‐
taining, and deploying the infrastructure for sharing copies of data.
Data application builders shouldn’t have to spend time managing
this process. In this section, we will present Snowflake’s low-friction
approach to data sharing that eliminates many of the headaches of
the data copy model.

With data applications built on the Snowflake Data Cloud, consum‐
ers and providers access the same copy of data. Because of Snow‐
flake’s multi-cluster, shared-data architecture, data is fully decoupled
from compute, enabling data to be accessed across tenants. Custom‐
ers can easily explore the data to determine what they need by exe‐
cuting SQL queries against shared tables.

With Snowflake Secure Data Sharing, there are no copies of data,
eliminating the cost and complexities of data copy systems. There
are no file transfers to manage or additional software needed, and
there’s no additional storage to pay for to host data copies. The main
cost to consumers is the compute resources used when accessing the
shared data.

Data access is controlled by Snowflake’s services layer and metadata
store, enabling access to be granted or revoked immediately and
providing near-real-time access to data.

Figure 5-3 shows an example of using Snowflake’s data sharing
architecture.
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Figure 5-3. Snowflake data sharing example, adapted from Snowflake
documentation2

As shown here, data providers can identify objects to share with
read-only access. For example, in db2 all objects in schema_c are
shared, but only some objects in schema_d are shared. As new data
in the shared objects become available on the provider side it is
immediately accessible to the consumer, eliminating the issue of
stale data with data copy systems. If the provider no longer wants to
share data with a consumer, they can immediately revoke access.
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In addition, Snowflake’s cloud-first environment provides support
for multi-cloud, cross-region data sharing. Because Snowflake man‐
ages handling data access across cloud providers, data application
developers simply need to grant access to datasets without worrying
about the underlying details. This enables Snowflake customers to
have data replicas colocated with customers worldwide, ensuring
reliable, low-latency data access.

Snowflake Data Marketplace
With low-friction, cloud-first data sharing, the Snowflake Data
Cloud has a unique opportunity to transform data discovery. For
data consumers, traditional data discovery involves searching for
providers that might have the data of interest. For example, a con‐
sumer seeking demographic data would have to search for and eval‐
uate third-party data providers, investing time and money in
researching providers and ingesting sample datasets. For providers,
the problem is one of being discovered—how do you make sure
prospective consumers know about your datasets? And once you’ve
connected with prospective customers, you must deal with the over‐
head of managing custom exports for each one.

Snowflake Data Marketplace brings together data providers and
consumers, providing live, ready-to-query dataset access.3 Consum‐
ers can instantly integrate data from providers on the marketplace
with their own, realizing value as soon as the providers grant access.

In addition, Snowflake customers can share their data with a Snow‐
flake Data Marketplace partner, who will enrich it and provide the
resulting dataset back to the customer. Snowflake customers can use
these services to expand their data processing capabilities without
having to build these systems themselves.

As mentioned earlier, understanding how data is being used is
important for data providers to provide more value to users. Snow‐
flake offers this information through data sharing usage views, data‐
base views that provide information on queries consumers have run
on the data and telemetry information such as inventory tracking.4
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For data providers, Snowflake Data Marketplace provides an oppor‐
tunity to generate new revenue streams from data sharing. For
example, Braze provides customer engagement benchmarks that
enable ad tech companies to compare their marketing engagement
data to this dataset and identify areas of improvement, or to run
what-if projections.5

Snowflake Secure Data Sharing in Action:
Braze
Snowflake partner Braze, a comprehensive customer engagement
platform, provides a real-world example of how to leverage the
Snowflake Data Cloud to make the most of data sharing in the cus‐
tomer 360 domain.6

Braze provides sophisticated tools for brands to orchestrate and
deliver cross-channel campaigns. With live views of customer data
and in-the-moment campaign optimization, the ability to quickly
manage large volumes of data is paramount to the Braze experience.

Braze identifies the following as being key wins of data sharing in
Snowflake:7

• Instant, secure, governed access to data
• Reduced time to insights by eliminating ETL and data copy
• Breaking down data silos
• No charge to consumers to store shared data

Braze integrates Snowflake Secure Data Sharing into its platform,
providing customers with the ability to leverage their data within
the application. Recall from “Application Health and Security” on
page 7 that a challenge in Customer 360 use cases is creating insights
from many different datasets. With Snowflake Secure Data Sharing,
Braze customers can join their Braze message engagement and
behavior data with all their other Snowflake data to create a holistic
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view of their users. With a single source of truth, Braze customers
can create richer insights without the overhead of ETL processes or
the cost of storing data copies.

Integrating the Snowflake Data Cloud also helps Braze attract pro‐
spective customers through Braze Benchmarks, an interactive tool
enabling Braze companies to compare their metrics against the
Braze customer engagement benchmarks available in Snowflake
Data Marketplace.8

Summary
Data sharing provides both data application builders and their cus‐
tomers with opportunities for growth. To best realize these opportu‐
nities, a data platform should provide the following:

• Secure data transport and access
• The ability to share data across geographic regions
• A feedback loop between providers and consumers
• Timely access to data while keeping costs and maintenance bur‐

den in check

Snowflake Secure Data Sharing leverages the advantages of cloud-
first systems by providing secure, read-only access to data through
access controls, eliminating the risk, cost, and maintenance over‐
head of data copy systems.

Building on this seamless data sharing experience, Snowflake Data
Marketplace improves data sharing by greatly reducing the issue of
data discovery. It provides opportunities for data applications to get
feedback from users, data processing providers to sell access to their
products, and data providers to connect with consumers, democra‐
tizing access to the global data economy.
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CHAPTER 6

Summary and Further Reading

Data applications are uniquely positioned to drive customer success
and create new sources of revenue by taking advantage of modern
data platforms. After decades of being held back by legacy technol‐
ogy, business needs are now in the driver’s seat, providing fertile
ground for innovation.

Data applications make data actionable through processing large
volumes of complex, fast-changing data and providing customers
with analytics capabilities to harness their data directly within the
application. These applications need to handle all types of data and
be flexible enough to accommodate changes in data sources while
surfacing new data as quickly as possible to customers in a scalable
compute environment.

Traditional data platforms lack the flexibility of modern, cloud-first
approaches, making it difficult to use them to build successful data
applications. In this report you’ve learned what to look for in a
modern data platform to offload the data management burden from
product teams so they can focus on building applications. Key com‐
ponents of these platforms include:

Cloud-first architecture
Cloud-first data platforms maximize the advantages of modern
technology, providing near-infinite storage and compute
resources to support multiple tenants and workloads, and elas‐
ticity that guarantees SLAs in times of peak demand and keeps
costs low when demand is low.

59



Separation of storage and compute
Decoupling storage and compute maximizes the benefits of the
cloud, enabling these resources to scale independently of one
another.

Autoscaling
A platform that will scale resources to match demand and han‐
dle load balancing will offload significant burden from data
application teams in managing compute resources across
tenants.

Workload isolation
Ensuring customer workloads will not impact one another is
critical in a multi-tenant environment. In addition, workload
isolation enables the different processes within a tenant’s envi‐
ronment to not compete for resources. This allows data pipe‐
lines to run while providing application services, such as real-
time ad recommendations, without performance degradation
for either.

Support for standard SQL
The wide user base and mature ecosystem of SQL makes this a
necessary feature for data platforms. SQL enables users to focus
on expressing analytical queries while handing off optimization
to the underlying engine.

Native support for semi-structured data
Semi-structured data is a significant data source for modern
data applications, including data from IoT, mobile, and web
devices. The ability to store and query semi-structured data
enables data applications to quickly pilot new features based on
new datasets, without incurring the cost of developing, main‐
taining, and paying for resources to conform the data before it
can be used.

Schema-on-read support
Applying schema on read enables data applications to simplify
data pipelines and shorten time to insight, even as the schema
changes.

Data sharing by reference
The benefits of immediate access and elimination of storage
costs make live data sharing a must for modern data platforms.
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For near-real-time applications live data sharing is essential,
making traditional data copy approaches a nonstarter.

Throughout this report we’ve provided real-world examples using
the Snowflake Data Cloud, a modern platform powering hundreds
of data applications, purpose-built to optimally leverage modern
data technology.

From here we recommend the following resources for more infor‐
mation about the topics covered in this report:

Snowflake virtual warehouses
• Virtual Warehouses

Building data applications
• The Product Manager’s Guide to Building Data Apps on a

Cloud Data Platform

Data pipelines in Snowflake
• Change Tracking Using Table Streams
• Introduction to Snowpipe
• Introduction to Data Pipelines

Security in Snowflake
• Managing Security in Snowflake

Data sharing
• Introduction to Secure Data Sharing

Data marketplaces
• What Is a Data Marketplace?

Summary and Further Reading | 61

https://docs.snowflake.com/en/user-guide/warehouses.html
https://www.snowflake.com/resource/the-product-managers-guide-to-building-data-apps-on-a-cloud-data-platform
https://www.snowflake.com/resource/the-product-managers-guide-to-building-data-apps-on-a-cloud-data-platform
https://docs.snowflake.com/en/user-guide/streams.html
https://docs.snowflake.com/en/user-guide/data-load-snowpipe-intro.html
https://docs.snowflake.com/en/user-guide/data-pipelines-intro.html
https://docs.snowflake.com/en/user-guide-admin-security.html
https://docs.snowflake.com/en/user-guide/data-sharing-intro.html
https://www.snowflake.com/guides/what-data-marketplace


About the Authors
William Waddington is a distinguished engineer at Snowflake,
where he has worked since 2015. During that time he has focused on
the service components of the system, including service stability and
overall system performance.

Prior to joining Snowflake, William was an architect at Oracle Cor‐
poration, where he worked in the RDBMS group particularly focus‐
ing on SQL execution and parallel and distributed SQL execution.
William holds a Master of Science degree in Computer Science from
Stanford University and a Bachelor of Science degree in Computer
Engineering from Carnegie Mellon University.

Kevin McGinley is currently a technical director on the Customer
Acceleration Team (SnowCAT) at Snowflake, focusing on taking
customers to the next level using Snowflake’s most strategic and
bleeding-edge features, especially when building data applications.

Before joining Snowflake, Kevin developed data warehouses and
business intelligence systems for Fortune 500 companies dating back
to the mid-1990s. He has spoken at popular conferences, hosted a
data-centric podcast, authored a vlog, and written many blog posts,
and was also recognized in the Oracle space with the ACE Director
distinction.

Pui Kei Johnston Chu is a senior engineering manager at Snow‐
flake, where he leads the data sharing and data exchange team. His
mission is to build the data economy for Snowflake’s customers,
making it secure for providers to distribute and monetize their data,
and easy for consumers to discover and use it.

Before joining Snowflake, Johnston held engineering roles at Domo,
Goldman Sachs, and Microsoft. He is a Hong Kong native, grew up
in Toronto, Canada, and now lives with his family in San Mateo, CA.

Gjorgji Georgievski is an engineering manager at Snowflake,
responsible for building data ingestion and pipeline technologies
with low latency and high throughput characteristics. His goal is to
give customers of the Snowflake Data Cloud the ability to compose
and use comprehensive data processing pipelines for complex
transformations.



Prior to joining Snowflake, Gjorgji was a principal engineering
manager at Microsoft, working on query optimization and query
execution for SQL Server and Azure SQL DB. He is a native Mace‐
donian and lives with his family in Seattle, WA.

Dinesh Kulkarni is a principal product manager at Snowflake driv‐
ing data ingestion and data pipelines. His goal is to continuously
simplify and extend ways to get insights from data with efficient and
effective data pipelines.

Before Snowflake, Dinesh was a PM for Google Cloud, where he
launched Google Cloud Machine Learning—the first service to
make hosted TensorFlow available to all with graphics processing
units and Tensor Processing Units. Prior to Google, he worked at
Microsoft as a PM for SQL Server, C#, and Azure App Services.
Dinesh holds a Ph.D. in computer science and engineering from the
University of Notre Dame, Indiana, and a Bachelor of Technology
from IIT Bombay.


	Cover
	Snowflake
	Copyright
	Table of Contents
	Chapter 1. Data Applications and Why They Matter
	Data Applications Defined
	Customer 360
	IoT
	Machine Learning and Data Science
	Application Health and Security
	Embedded Analytics

	Summary

	Chapter 2. What to Look For in a Modern Data Platform
	Benefits of Cloud Environments
	Cloud-First Versus Cloud-Hosted
	Choice of Cloud Service Providers

	Support for Relational Databases 
	Benefits of Relational Databases
	Separation of Storage and Compute
	Data Sharing
	Workload Isolation
	Additional Considerations
	Reliability
	Extensibility

	Summary

	Chapter 3. Building Scalable Data Applications
	Design Considerations for Data Applications
	Design Patterns for Storage 
	Design Patterns for Compute
	Design Patterns for Security

	Summary

	Chapter 4. Data Processing
	Design Considerations
	Raw Versus Conformed Data
	Data Lakes and Data Warehouses
	Schema Evolution
	Other Trade-offs

	Best Practices for Data Processing
	ETL Versus ELT
	Schematization
	Loading Data
	Serverless Versus serverful
	Batch Versus Streaming

	Summary

	Chapter 5. Data Sharing
	Data Sharing Approaches
	Sharing by Copy
	Sharing by Reference

	Design Considerations
	Sharing Data with Users
	Getting Feedback from Users

	Data Sharing in Snowflake
	Snowflake Data Marketplace
	Snowflake Secure Data Sharing in Action: Braze
	Summary

	Chapter 6. Summary and Further Reading
	About the Authors



