
TERADATA TO SNOWFLAKE
MIGRATION REFERENCE MANUAL

2 Introduction

3 Preparing for the migration

8 Executing the migration

13 Migration success factors

14 Need help migrating?

15 Appendix A—Teradata databases to exclude when migrating to Snowflake

16 Appendix B—Teradata data types conversion to Snowflake data types

18 Appendix C—Query to evaluate Teradata data type usage

19 Appendix D—Other known migration issues from Teradata to Snowflake

20 Appendix E—Comparing data from Teradata with Snowflake

21 About Snowflake

2

The purpose of this document is to

provide the high level methodology

needed to prepare for and execute

the migration of an existing Teradata
system to Snowflake. The appendices
at the end of this document provide

guidance relating to the differences
between Teradata and Snowflake
that you should consider as part of

the migration.

The intended audiences of this

document are solution architects,
program managers and Snowflake
solution partners that need a
clearly defined approach on how
to migrate an existing Teradata
system to Snowflake.

INTRODUCTION C
H

A
M

P
IO

N
 G

U
ID

E
S

3

PREPARING FOR
THE MIGRATION

Jumping right into a migration from Teradata to
Snowflake without proper preparation is not a
wise move. There are many components to
consider for such an endeavor. This section
gives you a checklist of information to gather
and decisions to make before you start the
actual migration.

DOCUMENT THE EXISTING SOLUTION

Key outcomes:

• List of Teradata databases to migrate

• List of Teradata database objects to migrate

• List of processes and tools that populate and pull

data from Teradata

• List of security roles, users and permissions

• List of Snowflake accounts that exist or
need creating

• Frequency of security provisioning processes

• Documentation of the existing Teradata solution
into an as-is architecture diagram

Begin preparing for your migration from Teradata to
Snowflake by determining which Teradata databases
within the Teradata system need migrating and which
ones don’t. Identify and document the Teradata

database objects within the Teradata databases
that need migrating, including the size of the data,
to establish the scope of the migration project. Plan
not to migrate Teradata specific databases, such as
DBC, TDWM, SYSLIB, TDStats, etc., since they aren’t
needed in Snowflake. A full
list of Teradata databases to exclude from the
migration are listed in Appendix A.

When you aren’t sure which databases and database
objects to migrate, and if DBQL has been enabled in
Teradata, you can query the data within the DBQL
tables to determine which databases and database
objects are being used. Avoid moving unused objects,
unless you need them for audit
or historical purposes.

Once you’ve identified the Teradata databases and
database objects that need migrating, the next
step is to evaluate each data source that populates
them to determine whether they come from
on-premise and/or a cloud-based sources. This will
help determine the methods available for loading the
data into Snowflake. Specifically, will you need to load
terabytes or even petabytes of on-premise data into
Snowflake? If so, you may require capabilities such as
AWS Snowball, Azure Data Box, or Google Transfer
Appliance to move the data as efficiently as possible.

In addition to evaluating the data sources that
populate Teradata, identify the processes and tools
that move data in and out of Teradata and document
them. Here are some examples:

C
H

A
M

P
IO

N
 G

U
ID

E
S

4

• ETL/ELT tools

• Scripting languages

• Reporting/visualization tools

• Data science processes

• Machine learning processes

Use this list to evaluate the level of Snowflake
support for the tools you currently use, and to
provide guidance on what migration approach would
best fit your needs.

Document the roles and users that currently
exist within the Teradata system, and the
granted permissions, to prepare for the security
implementation in Snowflake. Pay special attention
to sensitive data sets and how they’re secured
within Teradata. Also, determine how frequently
security provisioning processes run in order to
create similar security within Snowflake. In addition,
capture the Snowflake accounts already set up and
any Snowflake accounts needed for the migration,
since they will have an impact on the security
implementation.

If you do not have this information readily available,
Snowflake Professional Services and/or a Snowflake
solution partner can help capture this information.

ESTABLISH A MIGRATION APPROACH

Key outcomes:

• List of processes to migrate as-is

• List of processes that need reengineering

• List of processes that need fixing

• Draft of migration deliverables

• To-be architecture diagram

Once you’ve documented your existing Teradata
solution into an as-is architecture diagram, focus
next on your migration approach. It’s important
to carefully consider how much re-engineering
you want to undertake as part of the migration.
Organizations will fall somewhere between wanting
to migrate the existing solution as-is and completely
reworking the existing solution.

Snowflake generally recommends minimal
re-engineering for the first iteration unless your
current system is truly broken. When you decide
what you will re-engineer, remember that changes
to the existing data structures will have an impact
on downstream reporting/visualization tools.
Also, more re-engineering requires more
development and testing, which extends the
length of a migration project.

C
H

A
M

P
IO

N
 G

U
ID

E
S

5

There may also be issues with your existing
implementation that must be resolved as part of
the migration, so you should include these in your
migration plan.

To avoid a single, big-bang, migration approach,
break the migration into incremental deliverables
that enable your organization to start making the
transition to Snowflake more quickly. This will also
provide value to your business sooner.

Use the as-is architecture diagram to create a to-
be architecture diagram for communicating the
migration approach and ensuring the approach
meets the requirements of the business.

CAPTURE THE DEVELOPMENT AND
DEPLOYMENT PROCESSES

Key outcomes:

• List of tools introduced with the migration

• List of tools deprecated after the migration

• List of development environments needed

for the migration

• List of deployment processes used for

the migration

Depending on your migration approach, you may
introduce new tools and/or deprecate old tools as
part of the migration. Since you documented your
existing tools and processes in an earlier step, this
is when you should document plans to introduce
new tools or deprecate old tools.

Your organization may want to change your
development or deployment processes as part of
the migration. Whether these processes change or
not, capture the development environments used
for the migration (e.g. Pre-Prod/Prod, Dev/QA/
Prod), and the deployment processes (e.g. source

5

control repository, method for deploying changes
from one environment to another) used for the
migration. This information is critical to how you will
implement development and deployment.

PRIORITIZE DATA SETS FOR MIGRATION

Key outcomes:

• List of data sets to migrate first

• Method for identifying process dependencies
for data sets

• Documentation of process dependencies
for data sets

To deliver value as soon as possible, this step
identifies which data sets you should migrate first.
The ideal candidates for starting the migration
provide value to the business with minimal migration
effort. Rather than starting with the most complex
data sets, begin with a simpler data set that
provides a quick win and establishes a foundation of
development and deployment processes from which
to build the rest of the migration.

When you have a prioritized list of data sets,
leverage it with the above principles in mind. If you
don’t have a prioritized list, identify those data sets
and engage Snowflake Professional Services and/
or a Snowflake solution partner, if necessary, to help
capture this information.

To prioritize data sets for migration, pay careful
attention to understanding the process dependencies
of the data sets. Document those dependencies. By
identifying dependencies through a solid process
before beginning the migration work, you will
experience fewer blockers during the migration.

C
H

A
M

P
IO

N
 G

U
ID

E
S

6

Ideally, you can create this dependency
documentation using an automated process that
iterates through the existing job schedules and
captures the data within Snowflake. This eliminates
having to depend on manual investigation. Using
an automated process pays dividends throughout
the migration project by updating dependency
documentation as changes take place. This is
important since the underlying systems are unlikely
to be static during the migration.

IDENTIFY THE MIGRATION TEAM

Key outcomes:

• List of migration team members and roles

• Contact information for all team members

To complete the migration, document the people
involved in the migration and the roles they will
play. The documentation should include each team
member’s name, contact information and role. Team
members may come from your team, Snowflake staff
and/or a Snowflake solution partner.

Some of the obvious roles required for a migration
are developer, quality assurance engineer, business
owner, project manager, program manager, scrum
master and communication.

When you engage Snowflake Professional Services
and/or a Snowflake solution partner for a migration,
they can fulfill multiple needs including solution
design, requirements gathering, documentation,
development, testing, delivery, and training. The

entire team works together to successfully complete
the migration and communicate the progress of the
migration to stakeholders.

DEFINE THE MIGRATION
DEADLINES AND BUDGET

Key outcomes:

• List of business expectations for the

migration deadline

• Documented migration plan and budget
required for the migration project

• Template of estimated costs to run Snowflake

The expectations for when you complete your
migration are an important planning input. In addition,
consider other information such as the budget,
availability of resources and amount of re-engineering
required. By gathering all of this information, you
can establish and communicate achievable deadlines,
even if the deadlines are different than what was
originally expected.

It’s also critically important to create a migration
plan, in order to understand the budget required
to complete the migration. Snowflake Professional
Services and/or a Snowflake solution partner can
help estimate the migration costs and migration
timeline for an end-to-end migration plan, as well as
provide code conversion services to help speed up
the migration and reduce the overall migration costs.
Compare the amount of migration work and the costs
associated with the migration to the available budget
to ensure you have sufficient resources to complete
the migration work.

C
H

A
M

P
IO

N
 G

U
ID

E
S

7

A key input into the budget considerations are the
Snowflake virtual warehouses (compute clusters)
required during and after the migration. A Snowflake
representative can provide a template, and work
with you to capture the virtual warehouses needed
to do the work (e.g. ETL/ELT, reporting/visualization,
etc.). The template calculates the number of minutes
a warehouse is expected to run each day, and the
number of days a warehouse is expected to run each
week. Once you complete the template, you will get
an estimated, annual cost.

DETERMINE THE MIGRATION OUTCOMES

Key outcomes:

• List of high-level outcomes once the migration is
completed

• Documented plan for communicating the migration
project wins to stakeholders

The final step of preparing for your migration is
to capture the high-level outcomes the migration
achieved and the benefits provided to the business.
For example, turning off a Teradata system could be
one of your desired outcomes.

The documentation can also include benchmarks
that compare process execution on Teradata and
Snowflake. Once compiled, use this information to
communicate the wins of the migration project
to stakeholders.

C
H

A
M

P
IO

N
 G

U
ID

E
S

8

EXECUTING
THE MIGRATION

After gathering the information and decisions
needed to prepare for the migration, it’s time
to execute the migration. This section guides
you through the steps required to complete

the migration.
If you need assistance with any part of executing
the migration from Teradata to Snowflake, check with
your Snowflake representative for recommended
Snowflake Professional Services and/or Snowflake
solution partners.

ESTABLISH SECURITY

When first setting up a Snowflake account, you
can manually create users and roles to get up and
running. From there, make it a priority to move to
an automated process that creates users and assigns
them to roles and removes them when they are
no longer applicable. Depending on your security
auditing requirements, create processes to capture
role and user creation/deletion, and the
granting/revoking of users to/from roles.

Your existing Teradata system security can be a
good starting point for setting up security within
Snowflake. However, determine if there are Teradata
roles and users that are no longer needed or should
be implemented differently as part of your migration
to Snowflake.

Start by creating roles for at least the first data sets
you will migrate. Then create users to assign to those
roles, and assign the users to the roles based on their

migration work. With this setup complete, users will
be able to log into Snowflake and see the roles they
belong to in preparation for the next step of creating
databases and warehouses.

You can establish common roles for developer access
for non-production databases, read-only access,
read and write access, and administrative access. You
may require additional roles for restricting access to
sensitive data.

DEVELOP A TEST PLAN

Determine and execute the appropriate level
and scope of testing for each environment (e.g.
schedules are executed only in QA and Prod, and
data comparisons between Teradata and Snowflake
occur only for Prod, etc.). Automate testing as much
as possible, so it’s repeatable and provides results
for identifying any issues. Define, document and get
agreement on acceptance criteria for the tests.

C
H

A
M

P
IO

N
 G

U
ID

E
S

9

PREPARE SNOWFLAKE FOR LOADING

There are a couple of options for setting up your
Snowflake implementation, depending on the number
of Snowflake accounts you have. When you have one
Snowflake account, create a Snowflake database for
each Teradata environment that you need to migrate
(for example, Dev/QA/Prod), instead of creating a
Snowflake database for each Teradata database. In
addition, create schemas for each of the Teradata
databases you intend to migrate to Snowflake. The
diagram provides examples of migrating a Teradata
environment to a Snowflake database and Teradata
databases to Snowflake schema using a single
Snowflake account.

When you have multiple Snowflake accounts, you
have the option of creating the Snowflake databases
to match the Teradata databases or creating the
Snowflake schemas to match the Teradata databases.

This approach clearly identifies the environment and
uses schemas to contain the tables and views to
more easily point tools from Teradata to Snowflake.
Please be aware that since the Snowflake database
contains the environment in its name, you will need
to update any views that reference a database,
as the view is deployed from one environment to
another (e.g. deploying from QA to Prod).

After you create the databases and schemas in
Snowflake, you can execute the DDL for creating
the database objects in Snowflake.

TERADATA SYSTEM
(DEV/QA/PROD)

SNOWFLAKE DATABASE
(DEV/QA/PROD)

Sales

database

Product

database

HR

database

Sales

schema

Product

schema

HR

schema

C
H

A
M

P
IO

N
 G

U
ID

E
S

10

Create the virtual warehouses based on the
information captured during the migration
preparation. There should be separate virtual
warehouses for each function that the virtual
warehouses will support (for example, ETL/
ELT, reporting/visualization, etc.). The diagram
contains a reference architecture for using virtual
warehouses for different workloads.

You may require an AWS Snowball, Azure Data
Box, or Google Transfer Appliance if your Teradata
system is on-premises and you need to move
terabytes or petabytes of data.

You should base the initial sizing of the virtual
warehouses on the estimates done while
preparing for the migration. Then, adjust as
needed throughout the migration. Also, set
up resource monitors to track usage and take
appropriate action when limits are reached.

As you create the databases, database objects
and virtual warehouses, assign the appropriate
security roles.

LOAD INITIAL DATA SETS

You may require an AWS Snowball or Azure Data
Box if your Teradata system is on-premise and you
need to move terabytes or petabytes of data. Add
an appropriate amount of time to the migration
schedule to provision these boxes, load them with
data, transport them to the cloud data center and
offload the data into the cloud servers.

You can load data into Snowflake after you’ve

ENVIRONMENT

DATABASES

S3/Azure
Staging

Virtual
warehouse
for loading

Virtual
warehouse for

transformations

Replication
& streaming

tools

Data
transformation

tools

Source systems
(cloud or
on-prem)

Staging
tables

Reporting
database(s)

(schemas, tables,
views, etc.)

Virtual
warehouse

for Data
Scientists

Virtual
warehouse
for Ad-hoc

Users

Virtual
warehouse(s)
for BI tools

Native
connector/

ODBC/
JDBC

Web UI

Native
connector/

ODBC/
JDBC

Analytics &
data science

user tools

Ad-hoc
SQL queries

Business
intelligence

tools

NO ETL

ETL

ELT

DATA FLOW

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-us/services/storage/databox/
https://azure.microsoft.com/en-us/services/storage/databox/

11

extracted the data from Teradata and moved the
data to the cloud. Use this data loading to test the
configuration of the databases and database objects,
and virtual warehouses, as well as the security you
have implemented.

There may be an opportunity to use cloning to move
data within Snowflake from one database to
another, depending on which Teradata environment
the data came from and which Snowflake database
you populate. Cloning in Snowflake doesn’t require
additional storage. Therefore, you avoid the
headache and cost of loading the same data multiple
times into different Snowflake databases.

Plan to extract data from Teradata and load it into
Snowflake more than once. Also, begin with a subset
of the data from Teradata, rather than trying to load
the entire contents of the Teradata system
at the beginning of the migration.

KEEP DATA UP TO DATE

You can implement the processes to keep the data
current after you load the historical data sets
from Teradata into Snowflake.

Set up the appropriate data loading schedules to
reflect the existing Teradata loading processes or
new processes to load into Snowflake. This is another
opportunity to evaluate whether changes to
the schedule would be beneficial and should be part
of the migration.

To ensure you populate data in the correct order,
create the appropriate schedules based on a clear
understanding of the process dependencies captured

as part of preparing for the migration.

Along with scheduling the processes to run, monitor
those processes so you can clearly understand and
communicate the state of the data (e.g. loading is
in progress, loading completed successfully, loading
failures occurred). Use the monitoring to verify
SLAs are being met within Snowflake, or to identify
process issues that need resolving.

IMPLEMENT THE TEST PLAN

Begin the Snowflake implementation with the initial
data sets loaded and processes running in order
to keep the data current. Once this happens, start
testing your Snowflake implementation. Be sure
to engage the team members identified during the

preparation for the migration and additional groups
to test their data sets and applications against
Snowflake. Engage these additional groups after you
complete initial testing and validate the data is ready
for further scrutiny.

Compare data between the Teradata and Snowflake
environments throughout the migration to provide
a high level of confidence it went as planned. If there

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://docs.snowflake.net/manuals/user-guide/data-load-overview.html

12

are data differences, investigate to determine the
cause and how to resolve the issue(s).

Part of your migration may include fixing processes
known to be incorrect in Teradata. Knowing this,
the test results may not match Snowflake, so use
methods to validate the data is correct in Snowflake.
Document and share any reasons why data won’t
match between Teradata and Snowflake with the
groups performing the testing, so they don’t spend
time researching previously identified issues.

Also, compare the performance of the processes
that load and consume data to ensure Snowflake is
performing as expected. Share these comparisons
with stakeholders to highlight the benefits of
migrating from Teradata to Snowflake.

RUN TERADATA AND
SNOWFLAKE IN PARALLEL

During the migration, you’ll have to run the Teradata
and Snowflake systems in parallel. We recommend
keeping this to a minimum but long enough to
validate you’ve completed the migration successfully
before shutting down Teradata.

While running them in parallel, consider how to best
run Teradata and Snowflake to compare data
and performance. For example, you may need to
create hashes as you extract data from Teradata
in order to compare data at the row level between
Teradata and Snowflake (This approach is explained
further in Appendix E). Perform these comparisons
in Snowflake to keep from negatively impacting your
Teradata system.

REDIRECT TOOLS TO SNOWFLAKE

Use the list of tools you gathered while preparing for
the migration, and the information on the level of
support each tool has for Snowflake. Then, update
the tool connections to redirect to Snowflake after
you’ve migrated a sufficient amount of data to
Snowflake for each tool.

Redirecting tools to Snowflake usually involves
creating copies of the existing solution that connects
to Teradata within the tool and updating the solution
to connect to Snowflake instead. Compare the
output of the tools to ensure the results are the
same between Teradata and Snowflake. In addition,
evaluate the performance of the tool to verify it’s
performing as expected in Snowflake.

CUT OVER TO SNOWFLAKE

The cut over from Teradata to Snowflake can only
occur once you’ve migrated the initial data, enabled
processes to keep the data current, completed

testing that verifies you’ve successfully migrated
the data, and redirected the tools from
Teradata to Snowflake.

Make sure you’ve planned and communicated the
cut-over date in advance to your Teradata users.
They should have the ability to log into Snowflake
and run the tools they depend on which you’ve
redirected to Snowflake.

To complete the cut-over, turn off data processes
that populate Teradata. In addition, revoke access to
Teradata so users and tools no longer have access.

C
H

A
M

P
IO

N
 G

U
ID

E
S

13

Paying attention to certain success factors
will reduce your risks in order to successfully
complete the migration. This section provides
insight into how to increase the speed of

delivery of a successful migration from
Teradata to Snowflake.

IDENTIFY AND MITIGATE DIFFERENCES
BETWEEN TERADATA AND SNOWFLAKE

Use Appendix D at the end of this reference manual
to identify issues early in the migration process.

Present these issues to the business along
with available mitigation strategies. Then,
confirm that your proposed approach will meet
their requirements.

RESOLVE MIGRATION ISSUES

There will inevitably be issues that occur during and
after the migration. Establish processes to document
and escalate migration issues so you can resolve
them as quickly as possible.

The escalation process needs to document each
issue, who is responsible for working on the issue,
who is responsible for communicating the progress
on the issue, and a list of contacts from your

business, from Snowflake, and from any other parties
involved in resolving the issue. Be sure everyone
involved has access to, and knows how to, log a
support ticket in the Snowflake Community. Likewise,
they should know how to ask questions and find
resources in the Snowflake Community and on
Stack Overflow.

With the list of issues documented, establish a
regular cadence for reviewing the issues and getting
an updated status on resolving each issue.

You may also identify issues during the migration that
don’t need resolving during the migration. Document
and prioritize them, so you can work on them
post-migration.

COMMUNICATE MIGRATION BENEFITS

Use the high-level outcomes captured while
preparing for the migration to document the actual,
corresponding benefits that occurred. Publish these
results to stakeholders, so they clearly understand
the benefits of the migration.

MIGRATION
SUCCESS FACTORS C

H
A

M
P

IO
N

 G
U

ID
E

S

https://community.snowflake.com/s/
https://community.snowflake.com/s/

14

Snowflake is available to accelerate
your migration; structure and optimize
your planning and implementation
activities; and apply customer best
practices to meet your technology
and business objectives. Snowflake’s
Professional Services Team deploys

a powerful combination of data
architecture expertise and advanced
technical knowledge of the platform
to deliver high performing data

strategies, proof of concepts and
migration projects.

NEED HELP
MIGRATING?

Our global and regional solution partners also have
extensive experience performing proof of concepts
and platform migrations. They offer services ranging
from high-level architectural recommendations to
manual code conversions. A number of Snowflake
partners have also built tools to automate and
accelerate the migration process.

Whether your organization is fully staffed for a
platform migration or you need additional expertise,
Snowflake Professional Services and/or our solution
partners have the skills and tools to accelerate your
journey to cloud-built data analytics, so you can reap
the full benefits of Snowflake quickly. To find out
more, please contact the Snowflake sales team or
visit the Snowflake’s Community.

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://www.snowflake.net/partners/solutions-partners/
https://community.snowflake.com/s/

15

• DBC

• Crashdumps

• dbcmngr

• External_AP

• EXTUSER

• LockLogShredder

• QCD

• SQLJ

• Sys_Calendar

• SysAdmin

• SYSBAR

• SYSJDBC

• SYSLIB

• SYSSPATIAL

• SystemFE

• SYSUDTLIB

• SYSUIF

• TD_SERVER_DB

• TD_SYSFNLIB

• TD_SYSGPL

• TD_SYSXML

• TDPUSER

• TDQCD

• TDStats

• tdwm

APPENDIX A: TERADATA DATABASES TO
EXCLUDE WHEN MIGRATING TO SNOWFLAKE

The following list of databases are needed for Teradata only and shouldn’t be migrated to Snowflake:

C
H

A
M

P
IO

N
 G

U
ID

E
S

16

APPENDIX B: CONVERTING TERADATA DATA TYPES
TO SNOWFLAKE DATA TYPES

Teradata

Column Type
Teradata Data Type Snowflake Data Type

++ TD_ANYTYPE TD_ANYTYPE data type isn't supported in Snowflake.

A1 ARRAY ARRAY

AN ARRAY ARRAY

AT TIME TIME

BF BYTE BINARY

BO BLOB BLOB data type isn't directly supported but can be replaced with BINARY (limited to 8MB).

BV VARBYTE BINARY

CF CHAR VARCHAR

CO CLOB CLOB data type isn't directly supported but can be replaced with VARCHAR (limited to 16MB).

CV VARCHAR VARCHAR

D DECIMAL NUMBER

DA DATE DATE

DH INTERVAL DAY TO HOUR INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

DM INTERVAL DAY TO MINUTE INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

DS INTERVAL DAY TO SECOND INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

DT DATASET DATASET data type isn't supported in Snowflake.

DY INTERVAL DAY INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

F FLOAT FLOAT

HM INTERVAL HOUR TO MINUTE INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

HR INTERVAL HOUR INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

HS INTERVAL HOUR TO SECOND INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

I1 BYTEINT NUMBER

I2 SMALLINT NUMBER

I8 BIGINT NUMBER

I INTEGER NUMBER

JN JSON VARIANT

LF CHAR This data type is in DBC only and can't be converted to Snowflake.

LV VARCHAR This data type is in DBC only and can't be converted to Snowflake.

C
H

A
M

P
IO

N
 G

U
ID

E
S

17

APPENDIX B: CONVERTING TERADATA DATA TYPES
TO SNOWFLAKE DATA TYPES (CONT’D)

Teradata

Column Type
Teradata Data Type Snowflake Data Type

MI INTERVAL MINUTE INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

MO INTERVAL MONTH INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

MS INTERVAL MINUTE TO SECOND INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

N NUMBER NUMBER

PD PERIOD(DATE) Can be converted to VARCHAR or split into 2 separate dates.

PM PERIOD(TIMESTAMP WITH TIME

ZONE)

Can be converted to VARCHAR or split into 2 separate timestamps (TIMESTAMP_TZ).

PS PERIOD(TIMESTAMP) Can be converted to VARCHAR or split into 2 separate timestamps (TIMESTAMP_NTZ).

PT PERIOD(TIME) Can be converted to VARCHAR or split into 2 separate times.

PZ PERIOD(TIME WITH TIME ZONE) Can be converted to VARCHAR or split into 2 separate times but WITH TIME ZONE isn't supported for TIME.

SC INTERVAL SECOND INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

SZ TIMESTAMP WITH TIME ZONE TIMESTAMP_TZ

TS TIMESTAMP TIMESTAMP_NTZ

TZ TIME WITH TIME ZONE TIME WITH TIME ZONE isn't supported because TIME is stored using "wall clock" time only without a time zone offset.

UF CHAR This data type is in DBC only and can't be converted to Snowflake.

UT UDT UDT data type isn't supported in Snowflake.

UV VARCHAR This data type is in DBC only and can't be converted to Snowflake.

XM XML VARIANT

YM INTERVAL YEAR TO MONTH INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

YR INTERVAL YEAR INTERVAL data types aren't supported in Snowflake but date calculations can be done with the date comparison functions (e.g. DATEDIFF and DATEADD).

C
H

A
M

P
IO

N
 G

U
ID

E
S

18

APPENDIX C: QUERY TO EVALUATE
TERADATA DATA TYPE USAGE

The query below provides counts for each Teradata data type in use on the system. You can update the WHERE clause of the query to include the specific list of databases
migrated from Teradata to Snowflake. Use the results of this query, along with the list of Teradata and Snowflake data types, to identify the prevalence of data types that
may pose challenges during the migration.

SELECT

ColumnType,
CASE

WHEN ColumnType = ‘++’ THEN ‘TD_ANYTYPE’
 WHEN ColumnType = ‘A1’ THEN ‘ARRAY’
 WHEN ColumnType = ‘AN’ THEN ‘ARRAY’
 WHEN ColumnType = ‘AT’ THEN ‘TIME’
 WHEN ColumnType = ‘BF’ THEN ‘BYTE’
 WHEN ColumnType = ‘BO’ THEN ‘BLOB’
 WHEN ColumnType = ‘BV’ THEN ‘VARBYTE’
 WHEN ColumnType = ‘CF’ THEN ‘CHAR’
 WHEN ColumnType = ‘CO’ THEN ‘CLOB’
 WHEN ColumnType = ‘CV’ THEN ‘VARCHAR’
 WHEN ColumnType = ‘D’ THEN ‘DECIMAL’
 WHEN ColumnType = ‘DA’ THEN ‘DATE’
 WHEN ColumnType = ‘DH’ THEN ‘INTERVAL DAY TO HOUR’
 WHEN ColumnType = ‘DM’ THEN ‘INTERVAL DAY TO MINUTE’
 WHEN ColumnType = ‘DS’ THEN ‘INTERVAL DAY TO SECOND’
 WHEN ColumnType = ‘DT’ THEN ‘DATASET’
 WHEN ColumnType = ‘DY’ THEN ‘INTERVAL DAY’
 WHEN ColumnType = ‘F’ THEN ‘FLOAT’
 WHEN ColumnType = ‘HM’ THEN ‘INTERVAL HOUR TO MINUTE’
 WHEN ColumnType = ‘HR’ THEN ‘INTERVAL HOUR’
 WHEN ColumnType = ‘HS’ THEN ‘INTERVAL HOUR TO SECOND’
 WHEN ColumnType = ‘I1’ THEN ‘BYTEINT’
 WHEN ColumnType = ‘I2’ THEN ‘SMALLINT’
 WHEN ColumnType = ‘I8’ THEN ‘BIGINT’
 WHEN ColumnType = ‘I’ THEN ‘INTEGER’
 WHEN ColumnType = ‘JN’ THEN ‘JSON’
 WHEN ColumnType = ‘MI’ THEN ‘INTERVAL MINUTE’
 WHEN ColumnType = ‘MO’ THEN ‘INTERVAL MONTH’
 WHEN ColumnType = ‘MS’ THEN ‘INTERVAL MINUTE TO SECOND’
 WHEN ColumnType = ‘N’ THEN ‘NUMBER’
 WHEN ColumnType = ‘PD’ THEN ‘PERIOD(DATE)’

 WHEN ColumnType = ‘PM’ THEN ‘PERIOD(TIMESTAMP WITH TIME ZONE)’
 WHEN ColumnType = ‘PS’ THEN ‘PERIOD(TIMESTAMP)’
 WHEN ColumnType = ‘PT’ THEN ‘PERIOD(TIME)’
 WHEN ColumnType = ‘PZ’ THEN ‘PERIOD(TIME WITH TIME ZONE)’
 WHEN ColumnType = ‘SC’ THEN ‘INTERVAL SECOND’
 WHEN ColumnType = ‘SZ’ THEN ‘TIMESTAMP WITH TIME ZONE’
 WHEN ColumnType = ‘TS’ THEN ‘TIMESTAMP’
 WHEN ColumnType = ‘TZ’ THEN ‘TIME WITH TIME ZONE’
 WHEN ColumnType = ‘UT’ THEN ‘UDT’
 WHEN ColumnType = ‘XM’ THEN ‘XML’
 WHEN ColumnType = ‘YM’ THEN ‘INTERVAL YEAR TO MONTH’
 WHEN ColumnType = ‘YR’ THEN ‘INTERVAL YEAR’
END AS Data_Type,
COUNT(*) AS Data_Type_Count

FROM DBC.ColumnsV
WHERE DatabaseName NOT IN (‘DBC’, ‘Crashdumps’, ‘dbcmngr’, ‘External_AP’,
‘EXTUSER’, ‘LockLogShredder’, ‘QCD’, ‘SQLJ’, ‘Sys_Calendar’, ‘SysAdmin’, ‘SYSBAR’,
‘SYSJDBC’, ‘SYSLIB’, ‘SYSSPATIAL’, ‘SystemFE’, ‘SYSUDTLIB’, ‘SYSUIF’, ‘TD_SERVER_
DB’, ‘TD_SYSFNLIB’, ‘TD_SYSGPL’, ‘TD_SYSXML’, ‘TDPUSER’, ‘TDQCD’, ‘TDStats’,
‘tdwm’)
GROUP BY 1,2
ORDER BY 1;

C
H

A
M

P
IO

N
 G

U
ID

E
S

19

CASE SENSITIVITY

Teradata is case insensitive by default. While
Teradata supports data being stored as
CASESPECIFIC, data in Teradata is commonly
stored without being case specific. Since Snowflake
is case sensitive (e.g. ‘Glass’, ‘GLASS’, and ‘glass’
are 3 different values), during the migration, give
attention to checking for comparison issues in
queries. One simple solution to this issue is to use
UPPER on both sides of a comparison (e.g. WHERE
UPPER(COLUMNNAME)=UPPER(COLUMNNAME)),
if the desired result is for any differences in case to
be ignored.

ENFORCEMENT OF PRIMARY KEYS
AND FOREIGN KEYS

Teradata enforces Primary Keys and Foreign Key
constraints. While Snowflake supports the syntax
to define Primary Keys and Foreign Keys, they
aren’t enforced within Snowflake. This means you’ll
need to re-engineer load processes that depend on
constraints to prevent duplicate entries and orphaned
records from being entered into the data warehouse.

DATE VS. TO_DATE()

Teradata has the capability to put DATE in front of
a string in order to treat it as a date value (e.g. DATE
‘2018-12-31’). In Snowflake, the syntax is TO_DATE()
(e.g. TO_DATE(‘2018-12-31’)). It isn’t necessary to use
DATE or TO_DATE() in many situations, since both
Teradata and Snowflake can interpret the date values

stored in a string. When migrating SQL from Teradata
to Snowflake, it may be more desirable to replace
DATE with TO_DATE() rather than dropping DATE
altogether.rather than dropping DATE altogether.

TERADATA PERIOD DATA TYPE

Snowflake doesn’t support the PERIOD data type, so
when migrating from Teradata to Snowflake, PERIOD
columns will need to be split into two separate date
or timestamp columns or changed to a VARCHAR.
The load process for those columns will need to
account for this change.

UPDATING DATA THROUGH A VIEW

Teradata allows inserts, updates and deletes to be
executed against a view, which will then update the
underlying table. In Snowflake, inserts, updates and
deletes must be executed against a table and can’t be
executed against a view. Again, load processes may
need to be re-engineered to account for this.

UPDATE SYNTAX

Teradata allows the FROM in an UPDATE statement
to come before the SET statement. In Snowflake, the
UPDATE syntax requires that the FROM comes after
the SET statement.

DELETE ALL SYNTAX

Teradata supports adding ALL to the end of a
DELETE statement. In Snowflake, adding ALL to
the end of a DELETE statement isn’t supported and
needs to be removed.

TERADATA-SPECIFIC SYNTAX

Teradata has SQL syntax for creating tables (DDL)
that isn’t used in Snowflake:

• SET/MULTISET
• FALLBACK
• PRIMARY INDEX
• PARTITION BY
• COMPRESS
• FORMAT

• INDEXES

TERADATA HAS SQL SYNTAX WITH VIEWS

(DDL) THAT ISN’T USED IN SNOWFLAKE:

• LOCKING ROW FOR ACCESS

• SEL (must be spelled out as SELECT)

• DEL (must be spelled out as DELETE)

Also REPLACE VIEW syntax in Teradata should
be updated to CREATE OR REPLACE VIEW
in Snowflake.

 

APPENDIX D: OTHER KNOWN MIGRATION
ISSUES FROM TERADATA TO SNOWFLAKE C

H
A

M
P

IO
N

 G
U

ID
E

S

20

Use row counts and sums of numeric data to
validate data matches between Teradata and
Snowflake. Another way to confirm you’ve
successfully loaded all data into Snowflake is to
get unique values from columns in Teradata and
compare those unique values with Snowflake.

For use cases where you require more in-depth
validation, add an MD5 hash to the data extracted
from Teradata. Construct this MD5 hash using
columns that won’t change when the data is loaded
into Snowflake (e.g. Include key columns and
attributes in the hash. But exclude insert and update
dates/timestamps that can change based on when
the data is loaded into Snowflake). As you load data

into Snowflake, generate another MD5 hash across
the same set of columns, so you can compare it
with the MD5 hash from Teradata. This allows
you to compare the contents of the row on the
MD5 hash from Teradata with the MD5 hash
from Snowflake, rather than comparing each
column individually.

APPENDIX E: COMPARING DATA
FROM TERADATA WITH SNOWFLAKE C

H
A

M
P

IO
N

 G
U

ID
E

S

ABOUT SNOWFLAKE

© 2019 Snowflake, Inc. All rights reserved. snowflake.com #YourDataNoLimits

Snowflake Cloud Data Platform shatters the barriers that prevent organizations from unleashing the true
value from their data. Thousands of customers deploy Snowflake to advance their businesses beyond

what was once possible by deriving all the insights from all their data by all their business users. Snowflake
equips organizations with a single, integrated platform that offers the only data warehouse built for

any cloud; instant, secure, and governed access to their entire network of data; and a core architecture
to enable many other types of data workloads, including a single platform for developing modern data

applications. Snowflake: Data without limits. Find out more at snowflake.com.

https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing/
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/Snowflake-Computing-709171695819345/
https://twitter.com/SnowflakeDB
http://snowflake.com

