
NETEZZA TO SNOWFLAKE 
MIGRATION REFERENCE 
MANUAL

TECHNICAL 
GUIDE



3 INTRODUCTION

4 PREPARING FOR THE MIGRATION

4 Document the existing solution

5 Establish a migration approach

6 Capture the development and deployment 
processes

6 Prioritize data sets for migration

7 Identify the migration team

7 Define the migration deadlines and budget

7 Determine the migration outcomes

7 Additional resources and documentation

8 EXECUTING THE MIGRATION

8 Develop a test plan

8 Establish security

9 Create the databases

10 Create the virtual warehouses

10 Create the database objects

10 Sequences

10 Tables

10 Synonyms

10 Views

11 Materialized views

11 User defined functions

11 Stored procedures

11 Grant authorizations to the database objects

11 Load initial data sets

12 Keep data up-to-date

12 Considerations when migrating to Snowflake

13 Implement the test plan

14 Run Netezza and Snowflake in parallel

14 Redirect tools to Snowflake

14 Cut over to Snowflake

15 MIGRATION SUCCESS FACTORS

15 Identify and mitigate differences between 
Netezza and Snowflake

15 Resolve migration issues

15 Communicate migration benefits

16 Need help migrating?

17 APPENDICES

17 Appendix A - Netezza databases to exclude 
when migrating to Snowflake

18 Appendix B - Netezza data types conversion to 
Snowflake data types

19 Appendix C - Netezza CLI commands to 
Snowflake

19 Appendix D - Other known migration issues 
from Netezza to Snowflake

19 DATE vs. TO_DATE()

19 Date subtraction

19 SUBSTR (start pos < 1)

20 Netezza-specific syntax

20 Concurrency considerations

21 Appendix E - Comparing data from Netezza 
with Snowflake

21 Appendix F - Netezza to Snowflake privileges

22 Appendix G - Snowflake sizing based on 
Netezza metrics



This document provides the high-level methodology needed to prepare 
for and execute the migration of an existing Netezza system to Snowflake. 
This reference manual is not intended to be a comprehensive step-by-
step process for migration, but rather a snapshot to help with planning 
and project scoping. The appendices at the end of this document describe 
the differences between Netezza and Snowflake you should consider as 
part of the migration. 

The intended audiences of this document are solution architects, program 
managers, and Snowflake solution partners who need a clearly defined 
approach for migrating an existing Netezza system to Snowflake.

INTRODUCTION

3

T
E

C
H

N
IC

A
L 

G
U

ID
E



PREPARING 
FOR THE 
MIGRATION

DOCUMENT THE EXISTING SOLUTION

KEY OUTCOMES:

 List of Netezza databases and schemas to migrate

 List of Netezza database objects to migrate

  List of processes and tools that populate and  
pull data from Netezza

  List of security roles, users, and permissions

  List of Snowflake accounts that exist or need 
creating

  Frequency of security provisioning processes

  Documentation of the existing Netezza solution 
into an as-is architecture diagram

  Documentation of all third-party and language 
connectors required, including version and 
platform information

Begin preparing for the migration from Netezza to 
Snowflake by determining which Netezza databases 
and schemas within the Netezza system need migrating 
and which ones don’t. Then, identify and document 
the database objects within the Netezza databases 
that need migrating, including the size of the data, to 
establish the scope of the migration project. Plan to 
exclude from the migration Netezza specific databases 
such as the Query History database, the SYSTEM and 
MASTER_DB databases, and any others not needed in 
Snowflake. A full list of Netezza databases to exclude 
from the migration is in Appendix A.

Use the script nz_db_size to get a list of all databases 
and their compressed sizes. Before launching the 
migration, remove any obsolete tables identified. Avoid 
migrating unused objects unless you need them for audit 
or historical purposes.

Successful data migration projects start with a 
well-designed plan. An effective plan accounts for 
the many components that need to be considered, 
paying particular attention to architecture 
and data preparation. This section gives you a 
checklist of information to gather and decisions 
to make before you start the actual migration.

4

T
E

C
H

N
IC

A
L 

G
U

ID
E



After you’ve identified the Netezza databases 
and database objects that need migrating, begin 
evaluating the data sources that populate them to 
determine whether they come from an on-premises 
or a cloud-based source. This will help determine the 
methods available for loading the data into Snowflake. 
Specifically, determine whether you need to load 
terabytes or petabytes of on-premises data into 
Snowflake. Depending on the data volume, you may 
require capabilities such as AWS Snowball or Azure 
Data Box to move the data as efficiently as possible.

In addition to evaluating the data sources that populate 
Netezza, document the processes and tools that 
move data into Netezza and pull data from Netezza 
(for example, ETL and ELT tools, scripting languages, 
reporting and visualization tools, data science processes, 
and machine learning processes). Also document which 
drivers (for example, ODBC, JDBC, and .NET) are 
required to connect to these tools and download the 
equivalent Snowflake drivers. Use this list to evaluate 
the level of Snowflake support for the tools currently in 
use, as well as to provide guidance on what migration 
approach would best serve your needs.

Document the groups and users that currently exist 
within the Netezza system, and the granted permissions, 
to prepare for the security implementation in Snowflake. 
Pay special attention to sensitive data sets and how 
they’re secured within Netezza. Also determine how 
frequently security provisioning processes run to 
create similar security within Snowflake. In addition, 
capture the Snowflake accounts already set up and any 
Snowflake accounts needed for the migration, because 
they will have an impact on the security implementation.

If you do not have this information readily available, 
a Snowflake solution partner can help capture this 
information.

ESTABLISH A MIGRATION APPROACH

KEY OUTCOMES:

 List of processes to migrate as is

 List of processes that need reengineering

 List of processes that need fixing

 Draft of migration deliverables

 To-be architecture diagram

After you’ve documented your existing Netezza solution 
into an as-is architecture diagram, focus on your 
migration approach. Consider how much reengineering 
you want to undertake as part of the migration. 
Organizations typically fall somewhere between 
wanting to take the existing solution as is or completely 
reworking the existing solution. Unless your system is 
broken, we generally recommend minimal reengineering 
for the first iteration. 

The more you migrate the existing solution as is, the 
more the databases and schemas in Snowflake will look 
like those in Netezza. This is especially important when 
pointing reporting and visualization tools from Netezza 
to Snowflake with minimal rework. The more rework 
done, the more development and testing required, which 
could lead to a longer migration project and higher risk.

Also include in your migration plan any issues with your 
existing implementation that need to be resolved.

Break the migration down into incremental deliverables. 
In addition to making the transition more manageable, 
an incremental approach enables your organization to 
start reaping the benefits of Snowflake sooner.

Use the as-is architecture diagram to create a to-be 
architecture diagram for communicating the migration 
approach and ensuring the approach meets the 
requirements of the business.

5

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://aws.amazon.com/snowball/
https://azure.microsoft.com/en-us/services/storage/databox/
https://azure.microsoft.com/en-us/services/storage/databox/


CAPTURE THE DEVELOPMENT AND DEPLOYMENT 
PROCESSES

KEY OUTCOMES:

 List of tools introduced with the migration

 List of tools deprecated after the migration

  List of development environments needed for  
the migration

  List of deployment processes used for  
the migration

Depending on your migration approach, you may 
introduce new tools or deprecate old tools as part of the 
migration. Since you documented your existing tools and 
processes in an earlier step, this is the where you should 
document plans to introduce new tools or deprecate  
old tools. 

Your organization may want to change your 
development or deployment processes as part of the 
migration. Regardless of whether these processes 
change, capture the development environments used 
for the migration (for example, Pre-Prod/Prod, Dev/
QA/Prod), and the deployment processes (for example, 
source control repository or method for deploying 
changes from one environment to another) used for the 
migration. This information is critical to how you will 
implement development and deployment.

PRIORITIZE DATA SETS FOR MIGRATION

KEY OUTCOMES:

 List of data sets to migrate first

  Method for identifying process dependencies  
for data sets

  Documentation of process dependencies  
for data sets

To deliver value as soon as possible, identify which 
data sets you should migrate first. The ideal candidates 
provide value to the business with minimal migration 
effort. Rather than starting with the most complex data 
sets, begin with a simpler data set that provides a quick 
win and establishes a foundation for the development 
and deployment processes from which to build the rest 
of the migration.

After you’ve prioritized your list of data sets, leverage 
it with the above principles in mind. If you don’t have 
a prioritized list, identify those data sets and engage a 
Snowflake solution partner, if necessary, to help capture 
this information.

To prioritize data sets for migration, pay careful 
attention to the process dependencies of the data sets 
and document those dependencies. By having a solid 
process to identify dependencies before beginning the 
migration work, you will experience fewer obstacles 
during the migration.

Ideally, you can use an automated process that iterates 
through the existing job schedules and captures the 
data within Snowflake. This eliminates having to 
depend on manual work to identify and document 
changes. Creating an automated process provides 
value throughout the migration project by more easily 
identifying ongoing changes throughout the project 
since the underlying systems are unlikely to remain 
static during the migration.

6

T
E

C
H

N
IC

A
L 

G
U

ID
E



IDENTIFY THE MIGRATION TEAM

KEY OUTCOMES:

 List of migration team members and roles

 Contact information for all team members

Document the people involved in the migration, 
including each team member’s name, contact 
information, and role. Team members may come from 
your team, Snowflake staff, or a Snowflake solution 
partner. (A Snowflake solution partner can provide 
a variety of services, including solution design, 
requirements gathering, documentation, development, 
testing, delivery, and training.) 

 Some of the obvious roles required for a migration are 
developer, quality assurance engineer, business owner, 
project manager, program manager, scrum master, 
and coordinator. The entire team works together to 
successfully complete the migration and communicate 
the progress of the migration to stakeholders.

DEFINE THE MIGRATION DEADLINES AND BUDGET

KEY OUTCOMES:

  List of business expectations for the  
migration deadline

  Documented budget allocated for the  
migration project

 Template of estimated costs to run Snowflake 

Consider deadlines, budget, availability of resources, and 
amount of reengineering required for your migration. By 
gathering all of this information, you can establish and 
communicate achievable deadlines, even if the deadlines 
differ from what the business expects.

It’s common to set migration deadlines before evaluating 
the scope of the project. This is often done to determine 
whether the deadlines are achievable, especially if 
the business is trying to deprecate a system before a 
renewal date. In situations in which you can’t move the 
deadline and the migration requires more time than is 
available, work with your stakeholders to agree on a 
path forward.

It’s also critical to understand the budget allocated to 
complete the migration. Compare the amount of work 
and the costs associated with the migration to the 
available budget to ensure you have sufficient funds. 
Pausing in the middle of a migration, or stopping it 
altogether, is a bad outcome for everyone.

When considering the budget, be sure to consider 
the Snowflake virtual warehouses (compute cluster) 
required to support the migration and the continuing 
operation of the data warehouse. A Snowflake 
representative can provide a template and work with 
you to select the virtual warehouses needed to do the 
work (for example, ETL/ELT, reporting and visualization, 
etc.). The template calculates the number of minutes a 
warehouse is expected to run each day and the number 
of days a warehouse is expected to run each week. After 
you complete the template, you will get an estimated 
annual cost.

DETERMINE THE MIGRATION OUTCOMES

KEY OUTCOMES:

  List of high level outcomes after you complete  
the migration

  Documented plan for communicating the 
migration project wins to stakeholders

The final step of preparing for your migration is to 
capture the high-level outcomes and assumptions the 
migration has achieved and the benefits they provide 
the business. For example, turning off a Netezza system 
could be one of your desired outcomes.

The documentation can also include benchmarks that 
compare process execution on Netezza and Snowflake. 
Use this information to communicate the wins of the 
migration project to stakeholders.

ADDITIONAL RESOURCES AND DOCUMENTATION

KEY OUTCOMES:

  Understanding Snowflake data warehouse service

To get familiar with Snowflake and start using 
Snowflake, read the Snowflake documentation.

7

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://docs.snowflake.net/manuals/index.html


EXECUTING  
THE  
MIGRATION

After gathering the information and decisions 
needed to prepare for the migration, it’s time to 
execute the migration. This section guides you 
through the steps required to complete  
the migration.

If you need assistance with any part of executing 
the migration from Netezza to Snowflake, 
check with your Snowflake representative for 
recommendations on tools or Snowflake  
solution partners.

DEVELOP A TEST PLAN

Determine and execute the appropriate level and scope 
of testing for each environment. For example, you might 
want to test schedules only in QA and production, or you 
might want to compare Netezza and Snowflake data only 
in production. Automate testing as much as possible, 
so it’s repeatable and provides results for evaluating 
any issues. Define, document, and get agreement on 
acceptance criteria for the tests.

ESTABLISH SECURITY

When first setting up a Snowflake account, you can 
manually create users and roles. But quickly move 
to an automated process that creates users, assigns 
them to roles, and removes them when they are no 
longer applicable. Depending on your security auditing 
requirements, create processes to create, delete, and 
modify users and roles.

8

T
E

C
H

N
IC

A
L 

G
U

ID
E



Your existing Netezza system security can be a good 
starting point for setting up security in Snowflake. 
Netezza does not implement a concept of roles, but 
uses a similar object type of groups. The difference is 
that roles can be nested within roles, but groups are a 
single level of hierarchy to hold a list of users. Assigning 
privileges to the Snowflake role is analogous to assigning 
privileges to the Netezza group. Determine whether 
any Netezza groups and users are no longer needed 
or should be implemented differently as part of your 
migration to Snowflake. 

Capture a list of Netezza groups that contain at least one 
user. For each group, create a Snowflake role. Within 
Netezza, groups are at the global system level. If the 
plan is to consolidate multiple Netezza systems into one 
Snowflake account, consider a group-naming standard 
to account for duplicates. For example, you can  assign 
a suffix to the group name to include the platform (i.e., 
DEV, TEST, QA, PROD).

--Run this on Netezza to create a file to feed 
into Snowflake
SELECT DISTINCT 'CREATE ROLE ' || groupname || 
'_<platform>' || ';' FROM _v_groupusers ORDER BY 
1;

Capture a list of Netezza users and create a 
corresponding Snowflake user for each one. You can 
assign passwords and other user parameters later.

--Run this on Netezza to create a file to feed 
into Snowflake
SELECT ‘CREATE USER IF NOT EXISTS ‘||username||’;’
FROM _v_user;

Capture the Netezza user to group mapping. Grant 
Snowflake roles to users.

--Run this on Netezza to create a file to feed 
into Snowflake
SELECT 'grant role ' || groupname || '_<platform>' 
|| ' to ' || username || ';' FROM _v_groupusers 
ORDER BY groupname, username;

Capture a list of all users not assigned to a group. In 
Netezza, you can assign privileges directly to a user 
rather than inherited from a group. This is often the case 
for Service IDs. Evaluate these to determine how to 
migrate them.

For this select statement it does not need  
the alias gu;

SELECT u.username FROM _v_user u WHERE u.username 
NOT IN (SELECT username FROM _V_groupusers);

CREATE THE DATABASES

Because data is isolated between environments (Dev/
Test, QA, Production), a Netezza system could have the 
same database name in both the test and production 
systems (i.e., SALES). Moving these to a single Snowflake 
account, in which the database name must be unique, 
means that one or both of these names would need to 
change. You have three options to consider:

• �Move�each�environment�to�its�own�Snowflake�
account, so the database names remain the 
same. This preserves the separation between 
non-production and production environments. 
However, you would need to manage different 
sets of user IDs, and you would lose the ability to 
clone a test database from production.

•  Use�schema�names�to�partition�the�database�
by environment. For instance, using the 
<database>.<schema> convention, you would 
have SALES.TEST, SALES.QA, SALES.PROD.  

•  Rename�the�non-production�databases�to�unique�
names: SALES_TEST, SALES_QA, while leaving 
production the same: SALES.

Use the third option, unless you have a good reason to 
use one of the first two.

9

T
E

C
H

N
IC

A
L 

G
U

ID
E



CREATE THE VIRTUAL WAREHOUSES

Create one virtual warehouse (compute cluster) for 
each environment (e.g., Dev/QA/Prod) and function 
or combinations of functions (e.g., ETL/ELT, reporting/
visualization, etc.). A simple rule of thumb is to align each 
virtual warehouse to each Netezza resource group.

The following is example SQL to capture a list of 
resource groups:

SELECT groupname FROM _v_group WHERE 
grorsgpercent > 0;
create or replace warehouse <groupname_platform> 
  with warehouse_size = <based on sizing 
estimates>
       min_cluster_count = 1
       max_cluster_count = 3;

See the Netezza to Snowflake sizing directions  
in Appendix G. 

Consider this as a starting topology. Adjust as necessary 
based on information captured during your migration 
preparation and any performance behavior you 
observed during the migration.  

Set up resource monitors to track usage and take 
appropriate action when thresholds and limits are 
reached. Preferably, establish one resource monitor per 
virtual warehouse to measure whether initial definitions 
are accurate.

CREATE THE DATABASE OBJECTS

After creating the appropriate databases in Snowflake, 
create the database objects. To capture the data 
definition language (DDL) from your Netezza system, 
use the nz_ddl_* scripts from the Netezza Software 
Support Toolkit (/nz/support/bin) for each Netezza 
database you will migrate. 

Sequences

The following script will produce output containing DDL 
to create all sequences within the specified database on 
Snowflake.  

/nz/support/bin/nz_ddl_sequence <database>

The starting value for the sequence will be the next 
value assigned at the time of this run.

Tables

This script will produce output containing DDL to create 
all tables within the specified database on Snowflake. 
 
/nz/support/bin/nz_ddl_table <database>

You’ll also need to evaluate the Netezza DDL for 
compatibility. The main change will be to remove the 
DISTRIBUTE ON clause for all database tables, since 
Snowflake does not use table distributions. You 
can change the Netezza ORGANIZE ON clause to the 
Snowflake CLUSTER BY clause since the desired outcome 
(reducing the amount of data read to satisfy a query) 
is the same for both systems. Note that Snowflake 
will automate the clustering of data via the Clustering 
Service, so there will be no need to script this re-
clustering via GROOM or any other commands. 

NOTE: When creating DDL objects, avoid creating tables 
with undefined VARCHAR lengths. Snowflake by default 
uses the MAX field length (16 MB). When fetching from 
these fields using ODBC or other connectors, Snowflake 
will allocate 16 MB during the fetch, which could create 
performance degradation depending on the size of the 
result set.

Synonyms

This script will produce output containing DDL to create 
all synonyms within the specified database on Snowflake.

/nz/support/bin/nz_ddl_synonym <database>

Snowflake does not offer the object synonym. You can 
use views in the place of synonyms.

Views

This script will produce output containing DDL to create 
all views within the specified database that can be 
replayed on Snowflake.  

/nz/support/bin/nz_ddl_view <database>

NOTE: This will consist of the view definition as 
modified and stored by Netezza. It will not be the 
original SQL used for the initial CREATE VIEW 
statement. Ordinarily, this would not present a 
problem. But there are times where the modified 
version of the view does not replay as expected. For 
example, the nz_ddl_view output may cast literal string 
values to VARCHAR without a length, which defaults 
to 16 MB in Snowflake.  This should be changed to 
include the actual max length of the string.

10

T
E

C
H

N
IC

A
L 

G
U

ID
E



Materialized Views

The following script will produce output containing 
DDL to create all materialized views within the specified 
database on Snowflake.  

/nz/support/bin/nz_ddl_mview <database>

Netezza materialized views, though rarely used (in favor 
of ORGANIZE BY capabilities), provided physical copies 
of the table data, which had the following purposes:

•  Enable a different sort order to better exploit 
zone maps for a certain query set.

•  Provide a subset of columns as a way to minimize 
disk I/O (Netezza is row organized).

Snowflake Materialized Views can support the same 
use cases as those used for Netezza. Like Netezza, they 
support operations on a single table, but unlike Netezza, 
they also support certain aggregations within the 
materialized view. Also, these views are automatically 
maintained via the materialized view service, so you do 
not need to manually refresh the views. See Working 
with Materialized Views for more info on this feature. 

User Defined Functions

The following script will produce output containing DDL 
to create all user-defined functions within the specified 
database on Snowflake.  

/nz/support/bin/nz_ddl_function <database>

This will provide the DDL required to register the UDF 
but it will not include the C++ source code, which you 
can rewrite using JavaScript or SQL.

Stored Procedures

The following script will produce output containing 
DDL to create all stored procedures within the specified 
database.  

/nz/support/bin/nz_ddl_procedure <database>

Convert these stored procedures to use Snowflake's 
JavaScript stored procedure language. See Working 
with Stored Procedures and Stored Procedures API  
for more details. 

GRANT AUTHORIZATIONS TO THE  
DATABASE OBJECTS 

After you’ve created the database objects and virtual 
warehouses, assign the appropriate privileges to the 
various roles. In Netezza, you can grant SELECT or other 
privileges to all tables and views at the database level, 
which all current and future tables and views within 
that database will inherit. In Snowflake, bulk granting 
(GRANT SELECT ON ALL TABLES) will address all 
existing tables and views within a database but will not 
account for future tables and views. For future tables 
and views, use a separate statement to grant future 
privileges (GRANT SELECT ON FUTURE TABLES).  See 
Configuring Access Control for more information.

Build a file to contain Netezza grant statements for 
each group. You’ll have to update this to account for 
Snowflake comparable privileges and to eliminate 
privileges no longer necessary (for example, there is no 
GROOM privilege in Snowflake). See Appendix F for a 
Netezza-to-Snowflake privilege mapping.

/nz/support/bin/nz_my_grants <groupname>

LOAD INITIAL DATA SETS

To load data into Snowflake, you must stage the data in 
a cloud storage service such as AWS S3 or Azure Blob 
Storage. First, identify a method for moving the Netezza 
data and any other data intended for Snowflake to 
cloud storage. Take into account the amount of data and 
expected network transit time, including any potential 
firewall or security issues. 

You may require an AWS Snowball or Azure Data Box if 
you need to move terabytes or petabytes of data. Add 
an appropriate amount of time to the migration schedule 
to provision these boxes, load them with data, transport 
them to the cloud data center, and offload the data into 
the cloud servers.

However you choose to move your data, you will need to 
extract the data for each table to one or more delimited 
flat files in text format using either external tables to get 
single files, or NZ_UNLOAD or NZ_BACKUP to create 
several files in parallel. With any option, generating 
compressed output files will save both storage space and 
will reduce network transfer time.  You can then upload 
these files using the Snowflake PUT command into an 
Amazon S3 or Azure Blob Storage staging bucket, either 
internal or external, or use standard AWS or Microsoft 
tools for this data movement. We recommend these 
files be between 100 MB and 1 GB to take advantage of 
Snowflake’s parallel bulk loading.

11

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://docs.snowflake.net/manuals/user-guide/views-materialized.html
https://docs.snowflake.net/manuals/user-guide/views-materialized.html
https://docs.snowflake.net/manuals/LIMITEDACCESS/stored-procedures-usage.html
https://docs.snowflake.net/manuals/LIMITEDACCESS/stored-procedures-usage.html
https://docs.snowflake.net/manuals/LIMITEDACCESS/stored-procedures-api.html
https://docs.snowflake.net/manuals/user-guide/security-access-control-configure.html


You can load data into Snowflake after you’ve extracted 
the data from Netezza and moved to the cloud. Use this 
data loading to test the configuration of the databases, 
database objects, and virtual warehouses, as well as the 
security that you have implemented. You can learn more 
about loading data in the Snowflake documentation.  

You may be able to use cloning to move data within 
Snowflake from one database to another, depending 
on which Netezza environment the data came from 
and which Snowflake database you populate. This will 
require fewer resources than loading the same data 
multiple times into different Snowflake databases.

Plan to extract data from Netezza into Snowflake more 
than once. Sometimes issues arise during extraction. 
Also the ETL and ELT processes may not be ready to 
update the data when you load the initial data sets. You 
should begin with a subset of the data from Netezza, 
rather than trying to load the entire contents of the 
Netezza system at the beginning of the migration.

In addition, you might not extract or load the data in 
the same order that it exists in Netezza. Therefore, 
analyze large tables to ensure they are clustered 
properly in Snowflake. If not, reorder them by the 
appropriate clustering columns (usually a date and 
timestamp and possibly one or more other columns). 
You can accomplish this either through a CTAS or 
INSERT with an ORDER BY, or through the Snowflake 
CLUSTER BY command.

KEEP DATA UP TO DATE

You can implement processes to keep the data current 
after you load the historical data sets from Netezza, so 
that a complete history is available in Snowflake.

Set up the appropriate data loading schedules to reflect 
the existing Netezza loading processes or new processes 
to load Snowflake. This is another opportunity to 
evaluate whether changes to the schedule would benefit 
the migration.

To ensure that data is populated in the correct order, 
create the appropriate schedules based on a clear 
understanding of the process dependencies captured as 
part of preparing for the migration.

Along with scheduling the processes to run, monitor 
those processes so you understand and communicate 
the state of the data loading: in progress, completed 
successfully, and any failures that you need to address. 
Use the monitoring to compare execution results to 
verify your meeting SLAs within Snowflake or identify 
performance and process issues.

REMOVE OR IMPLEMENT ADMISTRATION TASKS

Snowflake handles many routine Netezza maintenance 
processes automatically as a service. Therefore, remove 
them from any scripts. They include:

• GENERATE STATISTICS
• GROOM
• All processes related to backup and restore

•  All processes related to monitoring and alerting 
for hardware or other infrastructure issues

•  Weekly or monthly maintenance (nz_manual_
vacuum, nzstop/nzstart)

•  Dual feel ETL or nz_migrate jobs in support of 
load balancing or disaster recovery

The few Snowflake administrative tasks to consider 
implementing as part of the migration include:

•  Reclustering of very large tables if cluster ratio/
depth leads to query slowdown

• Cloning to periodically refresh test data 

•  Cloning to provide for data backups greater  
than 90 days old

Because ETL and other data loading processes can run 
on their own isolated compute cluster, you may also 
choose to remove restrictions on when these processes 
can run, as well as any restrictions on user access while 
these processes are running.

In addition, because storage space is not an issue 
in Snowflake, you may choose to remove or change 
processes that purge older data. For example, instead 
of purging data older than six months, you may choose 
to keep data for three years or choose to eliminate the 
purge processes completely.

12

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://docs.snowflake.net/manuals/user-guide/data-load-overview.html


Transient data, such as intermediate or stage tables, 
should not consume storage for the purpose of time 
travel or fail safe. Consider declaring these types of 
tables as temporary if they are needed only within a 
particular session, or transient if they need to be 
globally visible.

IMPLEMENT THE TEST PLAN

Begin the Snowflake implementation with the initial 
data sets loaded and processes running so the data 
remains current. Then, start testing your Snowflake 
implementation. Be sure to engage the identified team 
members and additional groups to test their data sets 
and applications against Snowflake. Engage these 
additional groups after you complete initial testing, 
confirming that the data is ready for further scrutiny.

Compare data between the Netezza and Snowflake 
environments throughout the migration to confirm its 
successful progress. If differences exist, investigate to 
determine the cause and how to resolve the issue.

If your migration includes fixing incorrect Netezza 
processes, you can expect differences between Netezza 
and Snowflake. When this happens, use other methods 
to check whether the data is correct in Snowflake. 
Document and share any reasons why data may not 
match between Netezza and Snowflake with groups 
performing the testing, so they don’t spend time 
researching previously identified issues.

 Also, compare the performance of the processes that 
load and consume data to ensure Snowflake performs as 
expected. Capture and measure a sample workload from 
the Netezza environment that sufficiently represents 
the various processes such as ETL or analytics from key 
applications. Ideally, reproduce workloads using existing 
processes. If that option isn’t available and you have to 
capture SQL, run the following query against the active 
query history database.

create temporary table QH as
select npsid, npsinstanceid, opid, 0 as 
sequenceid, query as querytext
from “$v_hist_successful_queries”
where substr(upper(querytext),1,5) in (‘SELEC’, 
‘WITH ‘, ‘UPDAT’, ‘INSER’, ‘DELET’, ‘CREAT’, ‘TRUNC’, 
‘DROP ‘, ‘ALTER’)
  and submittime between ‘2018-07-01 08:00:00’ 
and ‘2018-07-01 17:00:00’
  and dbname in (‘SALES’, ‘MARKETING’)
;
 
select querytext from
( select npsid, npsinstanceid, opid, sequenceid, 
querytext from QH
    union all
  select npsid, npsinstanceid, opid, sequenceid, 
querytext
  from “$hist_query_overflow_3”
  where (npsid, npsinstanceid, opid) in (select 
npsid, npsinstanceid, opid from QH)
    union all
  select npsid, npsinstanceid, opid, 999999 as 
sequenceid, ‘;’ from QH
) sub
order by npsid, npsinstanceid, opid, sequenceid
;

• Choose a representative data range

•  Choose the appropriate databases for each 
sample set

•  Determine the correct version of the Query 
History database (version number is a suffix to the 
history tables)

Use nzsql with these specified flags to produce 
replayable SQL, where HISTDB is the active Query 
History database.

nzsql HISTDB -t -A -R ‘’ -f file_with_above_SQL  >  
fully_qualified_output_filename

Measure and compare these on Snowflake and look for 
areas to address and performance gains to highlight. 
Share these comparisons with stakeholders to generate 
confidence for the migration.

13

T
E

C
H

N
IC

A
L 

G
U

ID
E



RUN NETEZZA AND SNOWFLAKE IN PARALLEL

During the migration, run the Netezza and Snowflake 
systems in parallel just long enough to confirm a 
successful migration before shutting  
down Netezza.

While running them in parallel, consider how to best 
run Netezza and Snowflake to compare data and 
performance. For example, you may need to create 
hashes as you extract data from Netezza in order 
to compare data at the row level between Netezza 
and Snowflake. This approach is explained further in 
Appendix E. Perform these comparisons in Snowflake 
by provisioning resources without negatively impacting 
your Netezza system.

REDIRECT TOOLS TO SNOWFLAKE

Review the list of tools you gathered while preparing 
for the migration and the information on the level of 
support each tool has for Snowflake. Then, after you’ve 
migrated a sufficient amount of data to Snowflake for 
use by each tool, update the tool connections to redirect 
to Snowflake.

Redirecting tools to Snowflake usually involves creating 
copies of the existing solution that points to Netezza 
within the tool and updating the solution to point to 
Snowflake instead. Compare the output of the tools to 
ensure the results are the same between Netezza and 
Snowflake. In addition, evaluate the performance of the 
tool to verify it’s performing as expected in Snowflake.

FINAL CUTOVER

The cutover from Netezza to Snowflake can occur only 
after you’ve migrated the initial data, enabled processes 
to keep the data current, completed testing that verifies 
you’ve successfully migrated the data, and redirected 
the tools from Netezza to Snowflake.

Make sure you’ve planned and communicated the 
cutover date in advance to your Netezza users. They 
should have the ability to log into Snowflake and run the 
tools they depend on.

To complete the cutover, turn off data processes that 
populate Netezza. In addition, revoke access to Netezza 
so users and tools interact solely with Snowflake.

14

T
E

C
H

N
IC

A
L 

G
U

ID
E



MIGRATION 
SUCCESS 
FACTORS

Paying attention to certain success factors will help 
you to successfully complete the migration. This 
section provides insight into how to increase the 
speed of delivery of a successful migration from 
Netezza to Snowflake.

IDENTIFY AND MITIGATE DIFFERENCES BETWEEN 
NETEZZA AND SNOWFLAKE

Use Appendix D to identify issues early in the migration 
process.

After identifying these issues, present them to the 
business along with available mitigation strategies.  
Then, confirm that your proposed approach will meet 
their requirements.

RESOLVE MIGRATION ISSUES

Issues inevitably arise during and after migration. 
Establish processes to document and escalate migration 
issues, so you can resolve them as quickly as possible.

The escalation process needs to document each issue, 
who is responsible for working on the issue, who is 
responsible for communicating the progress on the 
issue, and a list of contacts from the business, Snowflake, 
and any other parties involved in resolving the issue. Be 
sure everyone logs a support ticket, ask questions, and 
find resources in the Snowflake Lodge Community. 

With the list of issues documented, establish a regular 
cadence for reviewing the issues and getting an updated 
status on resolving each issue. Depending on how severe 
the issue is, you may require daily meetings to review  
the progress.

You may also identify issues during the migration that 
don’t need resolving during the migration. Document 
and prioritize them, so you can work on them 
post-migration.

COMMUNICATE MIGRATION BENEFITS

Using the high-level outcomes captured while preparing 
for the migration, determine which of the outcomes have 
tangible evidence of success  and document the actual, 
corresponding benefits that occurred.

Choose tangible evidence meaningful to the business 
that you can confirm with data (for example, benchmarks 
that compare performance, or cost savings). Publish 
these results to stakeholders, so they clearly understand 
the benefits of the migration and that the time and 
money required was well spent.

15

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://community.snowflake.com/s/


NEED HELP MIGRATING?

Snowflake is available to accelerate your migration, 
structure and optimize your planning and 
implementation activities, and apply customer best 
practices to meet your technology and business 
objectives. Snowflake’s Engagement, Delivery, 
and Advisory Services Team deploys a powerful 
combination of data architecture expertise and 
advanced technical knowledge of the platform to deliver 
high performing data strategies, proofs of concept, and 
migration projects.

Our global and regional solution partners also have 
extensive experience performing proofs of concept and 
platform migrations. They offer services ranging from 
high-level architectural recommendations to manual 
code conversions. Many Snowflake partners  
have also built tools to automate and accelerate the 
migration process.

Whether your organization is fully staffed for a platform 
migration or you need additional expertise, Snowflake 
and our solution partners have the skills and tools to 
accelerate your journey to cloud-built data analytics, so 
you can reap the full benefits of Snowflake quickly. To 
find out more, contact the Snowflake sales team or visit 
Snowflake’s Customer Community Lodge.

16

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://support.snowflake.net/s/


APPENDICES

APPENDIX A 
NETEZZA DATABASES TO EXCLUDE WHEN 
MIGRATING TO SNOWFLAKE

The following list of databases are needed for Netezza 
only but should be excluded from the migration to 
Snowflake:

• SYSTEM

• MASTER_DB

• Query History database

 •  SHOW HISTORY CONFIGURATION ALL;    ->  
Look for CONFIG_DBNAME values

•  Databases that  may exist for the sole purpose 
of establishing user defined functions from the 
Netezza SQL Extensions Toolkit. These are not 
required to follow a standard naming convention. 

• “Admin” databases that hold homegrown defined 
metrics related to the system. 

17

T
E

C
H

N
IC

A
L 

G
U

ID
E



APPENDIX B 
CONVERTING NETEZZA DATA TYPES TO SNOWFLAKE DATA TYPES

NETEZZA DATA TYPE NOTES SNOWFLAKE DATA TYPE NOTES

BOOL/BOOLEAN BOOLEAN

CHAR Max 64,000 CHAR Stored as VARCHAR
Default 1 MB, Max 16 MB

VARCHAR Max 64,000 VARCHAR Max/default is 16 MB

NCHAR Max 16,000 CHAR CHAR handles UTF-8 by default, 
so NCHAR type not needed

NVARCHAR Max 16,000 VARCHAR VARCHAR handles UTF-8 by 
default, so NVARCHAR type not 
needed

DATE DATE

TIMESTAMP TIMESTAMP
TIMESTAMP_LTZ
TIMESTAMP_NTZ
TIMESTAMP_TZ

Snowflake supports timestamps 
stored with and without 
timezone info

TIME TIME

INTERVAL N/A INTERVAL data types aren't 
supported in Snowflake, but 
INTERVAL constants can be used 
for date arithmetic.

TIME WITH TIME ZONE TIMESTAMP_TZ Use timestamp with time zone 
when time zone info is needed

REAL REAL Stored as FLOAT

DOUBLE DOUBLE Stored as FLOAT

FLOAT FLOAT Stored as FLOAT

DECIMAL(p,s)
NUMERIC(p,s)

DECIMAL(p,s)
NUMERIC(p,s)
NUMBER(p,s)

DECIMAL, NUMERIC and 
NUMBER are synonyms

BYTEINT BYTEINT All integer types are stored as 
NUMBER(38,0)

SMALLINT SMALLINT All integer types are stored as 
NUMBER(38,0)

INTEGER INTEGER All integer types are stored as 
NUMBER(38,0)

BIGINT BIGINT All integer types are stored as 
NUMBER(38,0)

Internal data types rowid, 
datasliceid, createxid, deletexid

Not applicable in Snowflake

XML, SPATIAL, VARBINARY, ST_
GEOMETRY other binary types

Max 64 KB. Not strictly data 
types but stored in VARCHAR by 
SQL Extensions Toolkit functions

VARBINARY
VARIANT

Data can be stored in binary form 
or in native semi-structured form 
in Snowflake

18

T
E

C
H

N
IC

A
L 

G
U

ID
E



APPENDIX C 
NETEZZA CLI COMMANDS TO SNOWFLAKE

NETEZZA CLI COMMAND SNOWFLAKE EQUIVALENT NOTES

nzbackup CREATE … CLONE Necessary only if backup needed for longer 
period than Time Travel

nzhw N/A

nzload COPY

nzrestore CREATE... CLONE... AT | BEFORE Using Time Travel, can create new clone or 
use INSERT or UPDATE statements to modify 
existing table

nzrev SELECT current_version();

nzsession SHOW TRANSACTIONS

nzsession -abort Abort from Console

nzsql snowsql

nzstart ALTER WAREHOUSE RESUME

nzstate SHOW WAREHOUSES

nzstats SHOW RESOURCE MONITORS

nzstop ALTER WAREHOUSE SUSPEND

A B C

Netezza a bc

Snowflake cd ab bc

APPENDIX D 
OTHER KNOWN MIGRATION ISSUES FROM 
NETEZZA TO SNOWFLAKE  

Date subtraction

Netezza will subtract one date from another date (for 
example, SELECT ‘2018-12-31’ – ‘2018-12-01’). In 
Snowflake, to do this same type of date comparison, 
use the DATEDIFF function (for example, SELECT 
DATEDIFF(day, ‘2018-12-01’, ‘2018-12-31’)).

No changes should be needed for all other date 
arithmetic expressions, since Snowflake supports the 
use of INTERVAL constants in date arithmetic. See 
Interval Constants for more information.

SUBSTR (start pos < 1)

Netezza: if start is less than 1, it will start counting to the 
left of position 1.  

Snowflake: if start position is 0, then assume 1. If start 
position is negative, its start position is calculated from 
the last position of the string.

select SUBSTR('abcd',-2,2) as A, SUBSTR('abcd',0,2) 
as B, SUBSTR('abcd',2,2) as C;

19

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://docs.snowflake.net/manuals/sql-reference/data-types-datetime.html#interval-constants


AGE – Retrieves the interval between two timestamps/dates and provides precision to the same degree as the data. Use the DATEDIFF function 
in Snowflake to achieve this functionality.

Netezza Snowflake

Select age('10-22-2003', '7-6-2002'); SELECT DATEDIFF(day, ‘2003-10-22’, ‘2002-7-6’);

STRPOS(s,b) – Retrieves the starting position of string “b” in string “s”. Can be achieved via the POSITION function in Snowflake: 

Netezza Snowflake

SELECT STRPOS(“fuzzy wuzzy”,“uzz”); SELECT POSITION(“uzz”,”fuzzy wuzzy”);

CURRENT_PATH – Retrieves the PATH session variables for the current Netezza session. Similar functionality can be achieved in Snowflake by 
taking substrings from CURRENT_SCHEMAS.

Netezza Snowflake

SELECT CURRENT_PATH; SELECT substr(current_schemas(), 3,  
length(current_schemas()) - 4) as CURRENT_PATH;

Concurrency Considerations

Snowflake does not support short query bias (SQB) 
or priorities at a session level. Instead, it uses a single 
FIFO queue for all queries in a single virtual warehouse 
cluster. You can take either of the following two 
approaches:

•  Using a multi-cluster warehouse (MCW) will enable 
additional virtual warehouses (up to 10) to be 
automatically provisioned to handle concurrency 
demands and automatically suspended when 
concurrency demands subside. 

•  Assuming it’s possible to delineate small and large 
queries, run small queries on a smaller warehouse 
and run large queries on a larger (possibly MCW) 
warehouse. This will prevent fast running queries 
from getting queued behind longer running queries.

Netezza-specific syntax

20

T
E

C
H

N
IC

A
L 

G
U

ID
E



APPENDIX F 
NETEZZA TO SNOWFLAKE PRIVILEGES

NETEZZA PRIVILEGE SNOWFLAKE PRIVILEGE NOTES

LIST USAGE Used to view object

SELECT SELECT

INSERT INSERT

UPDATE UPDATE

DELETE DELETE

TRUNCATE TRUNCATE

LOCK N/A

ALTER Role needs Object Ownership

DROP Role needs Object Ownership

ABORT ALTER user ABORT ALL QUERIES

LOAD READ on STAGE COPY command

GENSTATS N/A

GROOM N/A

EXECUTE Authority to execute Stored Procedure 

LABEL ACCESS N/A Used for Row Secure Tables

LABEL RESTRICT N/A Used for Row Secure Tables

LABEL EXPAND N/A Used for Row Secure Tables

APPENDIX E 
COMPARING DATA FROM NETEZZA  
WITH SNOWFLAKE

Use row counts and sums of numeric data to validate 
data matches between Netezza and Snowflake. Another 
way to confirm you’ve successfully loaded all data into 
Snowflake is to get unique values from columns in 
Netezza and compare those to corresponding values  
in Snowflake.

For use cases that require more in-depth validation, 
add an MD5 hash to the data extracted from Netezza. 
Construct this MD5 hash using columns that won’t 

change when the data is loaded into Snowflake (for 
example, include key columns and attributes in the hash, 
but exclude insert and update dates or timestamps 
that can change based on when the data is loaded into 
Snowflake). As you load data into Snowflake, generate 
another MD5 hash across the same set of columns,  
so you can compared it with the MD5 hash from 
Netezza. This enables you to compare the contents of 
 the row on the MD5 hash from Netezza with the MD5 
hash from Snowflake, rather than comparing each 
column individually.

21

T
E

C
H

N
IC

A
L 

G
U

ID
E



When enough GRA historical data is available, you can 
begin analysis. You can run the queries described in 
this document against the GRA data on the Netezza 
appliance. Or, you can bring the necessary data into 
Snowflake for analysis. Use the following statements to 
capture required data for analysis on Snowflake.

 

CREATE EXTERNAL TABLE ‘/nzscratch/nzgra.sizing.
dat’ USING (DELIMITER ‘|’) AS
SELECT end_time
  , groupname
  , actual_resource_pct
  , rsg_horizon_us
  , busy_secs
  , plans_waiting_long
  , plans_waiting_short
  , plans_running_long
  , plans_running_short  
FROM nz_gra_history;
 
CREATE EXTERNAL TABLE ‘/nzscratch/dslice.sizing.
dat’ USING (DELIMITER ‘|’) AS
SELECT tblid, used_bytes FROM 
_v_sys_object_dslice_info;
 
CREATE EXTERNAL TABLE ‘/nzscratch/object.sizing.
dat’ USING (DELIMITER ‘|’) AS
SELECT objname, objid, objdb, objclass FROM 
_t_object;
 
gzip /nzscratch/*.sizing.dat
 
Send the file 3 gzip files and the Netezza appliance 
model to Snowflake. 

APPENDIX G 
SNOWFLAKE SIZING BASED ON NETEZZA METRICS

Use the following scripts and procedure to capture 
Netezza utilization data to estimate sizing on the 
Snowflake platform.

Gathering Netezza Resource Data

Do the following procedure once for each  
Netezza appliance.

Capture the Netezza model (i.e., N1001-010, N3001-
080, etc.). This provides critical metrics such as 
processor speed, number of cores per blade, and number 
of blades.

/nz/support/bin/nz_get_model

NOTE: Netezza stores guaranteed resource allocation 
(GRA) utilization data in a virtual table called _VT_
SCHED_GRA. This table holds approximately seven 
days of data and will be truncated on database stop and 
start. Because seven days would likely not be sufficient 
for accurate analysis, archive this data by copying it 
periodically (once an hour). Allow history to build for 
enough time to cover a representative workload.
 
/nz/support/bin/nz_gra_history.ddl – one time 
script to create persistent table for this data
/nz/support/bin/nz_gra_history –  periodic copy 
of data from virtual table to persistent table
 
See support documentation for more detail on this 
persisting process.

22

T
E

C
H

N
IC

A
L 

G
U

ID
E

https://docs.snowflake.net/manuals/index.html


ABOUT 
SNOWFLAKE 

© 2019 Snowflake.  All rights reserved. 

Snowflake is the only data warehouse built for the cloud, enabling the data-
driven enterprise with instant elasticity, secure data sharing and per-second 
pricing, across multiple clouds. Snowflake combines the power of data 
warehousing, the flexibility of big data platforms and the elasticity of the cloud 
at a fraction of the cost of traditional solutions. Snowflake: Your data, no limits.  
Find out more at snowflake.com

https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/Snowflake-Computing-709171695819345/

