
HOW TO ANALYZE JSON WITH SQL
Schema-on-Read made easy

Author: Kent Graziano

2 Semi-Structured Brings New Insights to Business

3 Schema? No Need!

4 How Snowflake Solved This Problem

5 Enough Theory. Let’s Get Started.

7 A More Complex Data Load

8 How to Handle Arrays of Data

10 How to Handle Multiple Arrays

12 Aggregations

13 Filtering Your Data

14 Schema-on-Read Is a Reality

15 About Snowflake

2

If you’re an experienced data architect, data
engineer, or data analyst, you’ve probably
been exposed to semi-structured data such
as JSON. IoT devices, social media sites, and
mobile devices all generate endless streams
of JSON log files. Handling JSON data is
unavoidable, but it can’t be managed the same
way as the more familiar structured data. Yet,
to thrive in today’s world of data, knowing how
to manage and derive value from this form of

semi-structured data is crucial to delivering
valuable insights to your organization. One
of the key differentiators in Snowflake Cloud
Data Platform is the ability to natively ingest
semi-structured data such as JSON, store it
efficiently, and then access it quickly using
simple extensions to standard SQL. This ebook
will give you a modern approach to produce
analytics easily and affordably from JSON data
using SQL.

SEMI-STRUCTURED BRINGS
NEW INSIGHTS TO BUSINESS C

H
A

M
P

IO
N

 G
U

ID
E

S

3

SCHEMA?
NO NEED!

Load your semi-structured data
directly into a relational table

Over the last several years, we have all heard the
phrase “Schema-on-Read” to explain the benefit of
loading semi-structured data, such as JSON, into
a NoSQL platform such as Hadoop. The idea here:
Data modeling and schema design could be delayed
until long after you loaded the data. Delaying these
tasks avoids slowing down getting the data into
a repository because you had to wait for a data
modeler to first design the tables.

Schema-on-Read implies there is a knowable
schema. So, even though organizations can quickly
load semi-structured data into Hadoop or a NoSQL
platform, there is still more work required to actually
parse the data into an understandable schema
before it can be analyzed with a standard SQL-based
tool. Experienced data professionals often have
the burden of determining the schema and writing
code to extract the data. Unlike structured data in
a relational database, this requirement impedes an
organization’s ability to access and utilize semi-
structured data in a timely manner.

INSTANTLY QUERY SEMI-STRUCTURED DATA
WITH SNOWFLAKE

With Snowflake, you can load your semi-structured
data directly into a relational table. Then, you
can query that data with a SQL statement and
join it to other structured data, while not fretting
about future changes to the “schema” of that data.
Snowflake keeps track of the self-describing schema
so you don’t have to; no ETL or fancy parsing
algorithms are required.

The built-in support to load and query semi-
structured data—including JSON, XML, and AVRO—
is one of the remarkable benefits of Snowflake.
With most of today’s big data environments and
traditional, on-premises and cloud-washed data
warehouses, you have to first load this type of data
to a Hadoop or NoSQL platform. Then you need to
parse it, for example, with MapReduce, in order to
load it into columns in a relational database. Then,
and only then, can you visualize or transform that
data using a BI/analytics tool or a Notebook/data
science tool. All of this means more time, money,
and headache for you to allow business users to
see that data.

The idea here:

Data modeling and schema design

could be delayed until long after

you loaded the data. Delaying

these tasks avoids slowing down

getting the data into a repository

because you had to wait for a data

modeler to first design the tables.

3

C
H

A
M

P
IO

N
 G

U
ID

E
S

4

It’s simple. Snowflake has a new data type
called VARIANT that allows semi-structured
data to be loaded, as is, into a column in a
relational table.

When Snowflake loads semi-structured data,
it optimizes how it stores that data internally
by automatically discovering the attributes and
structure that exist in the data, and using that
knowledge to optimize how the data is stored.
Snowflake also looks for repeated attributes
across records, organizing and storing those
repeated attributes separately. This enables
better compression and faster access, similar
to the way that a columnar database optimizes
storage of columns of data.

The upshot: No Hadoop or NoSQL is needed
in your enterprise data landscape for the sole
purpose of holding semi-structured data. The
result is a modern data platform that uses
SQL, which you and your staff already know
how to write. And as the data source evolves
and changes over time with new attributes,
nesting, or arrays, there’s no need to redo ETL
or ELT code. The VARIANT data type does not
care if the schema varies.

DATA IN, INSIGHT OUT

But that’s only half the equation. Once the data is
in, how do you get the insight out? Snowflake has
extensions to SQL to reference the internal schema of
the data. Because the data is self-describing, you can
query the components and join the data to columns
in other tables, as if you already parsed the data into
a standard relational format, except no coding, ETL, or
other parsing is required to prep the data.

In addition, statistics about the subcolumns are
also collected, calculated, and stored in Snowflake’s
metadata repository. This gives Snowflake’s advanced
query optimizer metadata about the semi-structured
data, to optimize access to it. The collected statistics
allow the optimizer to use pruning to minimize the
amount of data needed for access, thus speeding the
return of data.

HOW SNOWFLAKE
SOLVED THIS PROBLEM

DATA WAREHOUSING AND ANALYTICS,
REIMAGINED FOR THE CLOUD

No other on-premises or cloud-washed solution
offers Snowflake’s optimized level of support for
processing semi-structured data. Even though some
traditional vendors have added features to store and
access JSON and XML, those are add-ons to legacy
code, using existing data types such as character large
objects (CLOBs), and they are not natively optimized.

With these solutions, getting any kind of performance
optimization requires additional performance tuning
by DBAs. For example, in its documentation, one of
the newer, cloud-washed data warehouse providers
states that customers should not try to use their
JSON feature at scale. This is yet another example of
how cloud-washed legacy code can’t magically solve
data problems.

C
H

A
M

P
IO

N
 G

U
ID

E
S

5

ENOUGH THEORY.
LET’S GET STARTED.

How you can load semi-structured data directly into Snowflake

1. CREATE A TABLE

I already have a Snowflake account, a database, and a multi-cluster warehouse set
up, so just like I would in any other database, I simply issue a DDL statement to
create a table:

Now I have a table with one column (“v”) with a declared data type of VARIANT.

2. LOAD SOME DATA

Now I load a sample JSON document using an INSERT and Snowflake’s PARSE_
JSON function. We’re not simply loading the document as text but rather storing it
as an object in the VARIANT data type, while at the same time converting it to an
optimized columnar format (to query later):

create or replace table json_demo (v variant); insert into json_demo
 select
 parse_json(
 '{
 "fullName": "Johnny Appleseed",
 "age": 42,
 "gender": "Male",
 "phoneNumber": {
 "areaCode": "415",
 "subscriberNumber": "5551234"
 },
 "children": [
 { "name": "Jayden", "gender": "Male", "age": "10" },
 { "name": "Emma", "gender": "Female", "age": "8" },
 { "name": "Madelyn", "gender": "Female", "age": "6" }
],
 "citiesLived": [
 { "cityName": "London",
 "yearsLived": ["1989", "1993", "1998", "2002"]
 },
 { "cityName": "San Francisco",
 "yearsLived": ["1990", "1993", "1998", "2008"]
 },
 { "cityName": "Portland",
 "yearsLived": ["1993", "1998", "2003", "2005"]
 },
 { "cityName": "Austin",
 "yearsLived": ["1973", "1998", "2001", "2005"]
 }
]
 }');

C
H

A
M

P
IO

N
 G

U
ID

E
S

6

While this approach is useful for testing, normally JSON would be loaded into a
Snowflake table from your Snowflake staging area using a simple COPY command.

For more details on the many options and features of the COPY command, see
Snowflake’s data loading tutorial.

3. START PULLING DATA OUT

Now that we’ve loaded an example, let’s work through how we access it. We’ll start
with just getting the data from the NAME subcolumn:

Where:

v = the column name in the json_demo table (from our create table command)

fullName = attribute in the JSON schema

v:fullName = notation to indicate which attribute in column “v” we want to select

Similar to the table.column notation all SQL people are familiar with, Snowflake
has the ability to effectively specify a column within the column––a subcolumn.
However, we cannot use the dot notation for our separator, because SQL syntax
has already claimed that. So, the Snowflake team chose the next obvious thing: a
colon to reference the JSON subcolumns and navigate that hierarchy. This structural
information is dynamically derived based on the schema definition embedded in the
JSON string. Snowflake’s advanced metadata engine records this information at the
time it loads the JSON document into the table.

4. CASTE THE DATA

Usually we don’t want to see the double quotes around the data in the report output
unless we’re going to create an extract file. Instead, we can format it as a string and
give it a nicer column alias, similar to what we would do with a normal column:

Next, let’s look at a bit more of the data using the same syntax from above:

Again, we use simple SQL and the output is similar to the results from any table you
might have built in a traditional data warehouse.

At this point, you could look at a table in Snowflake with a VARIANT column and quickly
start “shredding” the JSON with SQL. You can query semi-structured data without
learning a new programming language or using a framework required with Hadoop or
NoSQL. Instead, you have a much lower learning curve to get the same result.

copy into myjsontable
 from @my_json_stage/tutorials/dataloading/contacts.json
 on_error = 'skip_file';

select v:fullName from json_demo;

1 row produced

row# V:FULLNAME

1 "Johnny Appleseed"

select v:fullName::string as full_name
from json_demo;

1 row produced

row# FULL_NAME

1 Johnny Appleseed

select
 v:fullName::string as full_name,
 v:age::int as age,
 v:gender::string as gender
from json_demo;

1 row produced

row# FULL_NAME AGE GENDER

1 Johnny Appleseed 42 Male

C
H

A
M

P
IO

N
 G

U
ID

E
S

https://docs.snowflake.net/manuals/user-guide/data-load-external-tutorial.html

7

A MORE COMPLEX DATA LOAD Nested data and adding new attributes

Yes, those examples are very simple. So let’s look at something a bit more complex.
Notice that the original sample document contains some nesting of the data:

How do we pull that apart? We use a very familiar table.column dot notation:

Just as fullName, age and gender are subcolumns, so too is phoneNumber. And
subsequently, areaCode and subscriberNumber are subcolumns of the subcolumn.
We can pull apart nested objects like this and easily adapt if the schema changes and
we add another subcolumn.

WHAT HAPPENS IF THE STRUCTURE CHANGES?

One of the benefits of storing data in JSON is that the schema can easily change. But
imagine if, in a subsequent load, the data provider changed the specification to this:

A new attribute, extensionNumber, was added to phoneNumber! What happens to
the load? Nothing. It keeps working because we ingest the string into the VARIANT
column in the table.

You may ask, “What about the ETL/ELT code?” What code? There is no code, so
there’s nothing to break. And what about existing reports? They keep working, too.
The previous query will work just fine. If you want to see the new column, the SQL
needs to be refactored to account for the change:

In addition, if the reverse happens and an attribute is dropped, the query will not fail.
Instead, it simply returns a NULL value. In this way, Snowflake insulates all the code
you write from these types of dynamic changes.

{
 "fullName": "Johnny Appleseed",
 "age": 42,
 "gender": "Male",
 "phoneNumber": {
 "areaCode": "415",
 "subscriberNumber": "5551234"
 },
...

select
 v:phoneNumber.areaCode::string as area_code,
 v:phoneNumber.subscriberNumber::string as subscriber_number
from json_demo;

{
 "fullName": "Johnny Appleseed",
 "age": 42,
 "gender": "Male",
 "phoneNumber": {
 "areaCode": "415",
 "subscriberNumber": "5551234",
 "extensionNumber": "24"
 },
...

select
 v:phoneNumber.areaCode::string as area_code,
 v:phoneNumber.subscriberNumber::string as subscriber_number,
 v:phoneNumber.extensionNumber::string as extension_number
from json_demo;

A MORE COMPLEX
DATA LOAD C

H
A

M
P

IO
N

 G
U

ID
E

S

8

HOW TO HANDLE ARRAYS OF DATA
One of JSON’s many cool features is the ability to specify and embed an array of
data within the document. In this example, one such array is children:

You will notice there are three rows in the array and each row has three subcolumns:
name, gender, and age. Each of those rows constitutes the value of that array entry,
which includes all the subcolumn labels and data. (Remember this for later.) So how do
you know how many rows there are if you don’t have access to the raw data? Like this:

The function ARRAY_SIZE determines it for us. To pull the data for each row in the
array, we can use the previous dot notation, but with the added specification for the
row number of the array located inside the brackets:

 "children": [
 { "name": "Jayden", "gender": "Male", "age": "10" },
 { "name": "Emma", "gender": "Female", "age": "8" },
 { "name": "Madelyn", "gender": "Female", "age": "6" }
]

select array_size(v:children) from json_demo;

select v:children[0].name from json_demo
union all
select v:children[1].name from json_demo
union all
select v:children[2].name from json_demo;

3 rows produced

row# V:CHILDREN[0].NAME

1 "Jayden"

2 "Emma"

3 "Madelyn"

If another element is added to the array, such as a fourth child, we will not have to
change the SQL. FLATTEN allows us to determine the structure and content of the
array on the fly. This makes the SQL resilient to changes in the JSON document.

You can now get all the array sub-columns and format them just like a relational table:

select
 f.value:name::string as child_name,
 f.value:gender::string as child_gender,
 f.value:age::string as child_age
from json_demo, table(flatten(v:children)) f;

3 rows produced

row# CHILD_NAME CHILD_GENDER CHILD_AGE

1 Jayden Male 10

2 Emma Female 8

3 Madelyn Female 6

C
H

A
M

P
IO

N
 G

U
ID

E
S

9

Putting all this together, you can write a query to get the parent’s name and the
children’s names:

select
 v:fullName::string as parent_name,
 f.value:name::string as child_name,
 f.value:gender::string as child_gender,
 f.value:age::string as child_age
from json_demo, table(flatten(v:children)) f;

3 rows produced

row# PARENT_NAME CHILD_NAME CHILD_GENDER CHILD_AGE

1 Johnny Appleseed Jayden Male 10

2 Johnny Appleseed Emma Female 8

3 Johnny Appleseed Madelyn Female 6

If you just want a quick count of children by parent, you do not need to use
FLATTEN but instead you refer back to ARRAY_SIZE:

Notice no GROUP BY clause is needed because the nested structure of the JSON

has naturally grouped the data for us.

select
 v:fullName::string as Parent_Name,
 array_size(v:children) as Number_of_Children
from json_demo;

1 row produced

row# PARENT_NAME NUMBER_OF_CHILDREN

1 Johnny Appleseed 3

C
H

A
M

P
IO

N
 G

U
ID

E
S

10

HOW TO HANDLE MULTIPLE ARRAYS
Simplifying an array with an array

You may recall there are multiple arrays in the sample JSON string. You can pull from
several arrays at once with no problem:

What about an array within an array? Snowflake can handle that, too. From the
sample data, you can see yearsLived is an array nested inside the array described
by citiesLived:

select
 v:fullName::string as Parent_Name,
 array_size(v:citiesLived) as Cities_lived_in,
 array_size(v:children) as Number_of_Children
from json_demo;

1 row produced

row# PARENT_NAME CITIES_LIVED_IN NUMBER_OF_CHILDREN

1 Johnny Appleseed 4 3

"citiesLived": [
 { "cityName": "London",
 "yearsLived": ["1989", "1993", "1998", "2002"]
 },
 { "cityName": "San Francisco",
 "yearsLived": ["1990", "1993", "1998", "2008"]
 },
 { "cityName": "Portland",
 "yearsLived": ["1993", "1998", "2003", "2005"]
 },
 { "cityName": "Austin",
 "yearsLived": ["1973", "1998", "2001", "2005"]
 }
]

To pull that data out, we add a second FLATTEN clause that transforms the
yearsLived array within the FLATTENed citiesLived array.

In this case the second FLATTEN (alias “yl”) transforms, or pivots, the yearsLived
array for each value returned from the first FLATTEN of the citiesLived array (“cl”).

The resulting output shows the year lived by city name:

select
 cl.value:cityName::string as city_name,
 yl.value::string as year_lived
from json_demo,
 table(flatten(v:citiesLived)) cl,
 table(flatten(cl.value:yearsLived)) yl;

16 rows produced

row# CITY_NAME Year_Lived

1 London 1989

2 London 1993

3 London 1998

4 London 2002

5 San Francisco 1990

6 San Francisco 1993

7 San Francisco 1998

8 San Francisco 2008

9 Portland 1993

10 Portland 1998

11 Portland 2003

12 Portland 2005

C
H

A
M

P
IO

N
 G

U
ID

E
S

11

Similar to the previous example, you can augment this result by adding the parent’s
name to show who lived where:

select
 v:fullName::string as parent_name,
 cl.value:cityName::string as city_name,
 yl.value::string as year_lived
from json_demo,
 table(flatten(v:citiesLived)) cl,
 table(flatten(tf.value:yearLived)) yl;

16 rows produced

row# PARENT_NAME CITY_NAME Year_Lived

1 Johnny Appleseed London 1989

2 Johnny Appleseed London 1993

3 Johnny Appleseed London 1998

4 Johnny Appleseed London 2002

5 Johnny Appleseed San Francisco 1990

6 Johnny Appleseed San Francisco 1993

7 Johnny Appleseed San Francisco 1998

8 Johnny Appleseed San Francisco 2008

9 Johnny Appleseed Portland 1993

10 Johnny Appleseed Portland 1998

11 Johnny Appleseed Portland 2003

12 Johnny Appleseed Portland 2005

11

C
H

A
M

P
IO

N
 G

U
ID

E
S

12

AGGREGATIONS
How to execute standard SQL aggregations on
semi-structured data

To answer the question you’re probably thinking: Yes! You can even execute
standard SQL aggregations on the semi-structured data. So, just as with ANSI SQL,
you can do a COUNT(*) and a GROUP BY:

You can also create much more complex analyses using the library of standard SQL
aggregation and windowing functions including LEAD, LAG, RANK, and STDDEV.

select
 cl.value:cityName::string as city_name,
 count(*) as year_lived
from json_demo,
 table(flatten(v:citiesLived)) cl,
 table(flatten(tf.value:yearLived)) yl
group by 1;

4 rows produced

row# CITY_NAME Year_Lived

1 London 4

2 San Francisco 4

3 Portland 4

4 Austin 4

12

C
H

A
M

P
IO

N
 G

U
ID

E
S

13

FILTERING YOUR DATA
How to focus your data analytics to only the data you need

What if you don’t want to return every row in an array? Similar to standard SQL,
you add a WHERE clause:

To make it easier to read the SQL, notice you can even reference the sub-column
alias city_name in the predicate. You can also use the full, subcolumn
specification cl.value:cityName.

select
 cl.value:cityName::string as city_name,
 count(*) as years_lived
from json_demo,
 table(flatten(v:citiesLived)) cl,
 table(flatten(tf.value:yearsLived)) yl
where city_name = ‘Portland’
group by 1;

4 rows produced

row# CITY_NAME Year_Lived

1 Portland 4

13

C
H

A
M

P
IO

N
 G

U
ID

E
S

14
14

SCHEMA-ON-READ IS A REALITY

Get access to all your data with the ease
of SQL

The examples we’ve walked through show how very
easy it is to load and analyze semi-structured data
with SQL, using Snowflake as both your big data
and data warehouse solution. Snowflake invented a
new, optimized data type, VARIANT, which lives in
a relational table structure in a relational database.
VARIANT offers native support for querying JSON
without the need to analyze the structure ahead
of time or design appropriate database tables and
columns, subsequently parsing the data string into
that predefined schema.

VARIANT provides the same performance as all the
standard relational data types. In the examples, you
saw easy-to-learn extensions to ANSI-standard SQL
for accessing that data in a very flexible, resilient
manner. With Snowflake, you get the bonus of on-
demand resource scalability that no traditional or
cloud-washed data warehouse solution delivers.

With these features, Snowflake gives you a fast
path to the enterprise endgame: the true ability to
quickly and easily load semi-structured data into a
modern cloud data platform and make it available
for immediate analysis

C
H

A
M

P
IO

N
 G

U
ID

E
S

ABOUT SNOWFLAKE

© 2021 Snowflake Inc. All rights reserved. Snowflake, the Snowflake logo, and all other Snowflake product, feature and service
names mentioned herein are registered trademarks or trademarks of Snowflake Inc. in the United States and other countries. All
other brand names or logos mentioned or used herein are for identification purposes only and may be the trademarks of their

respective holder(s). Snowflake may not be associated with, or be sponsored or endorsed by, any such holder(s).
snowflake.com #MobilizeYourData

Snowflake delivers the Data Cloud—a global network where thousands of organizations mobilize data with near-unlimited
scale, concurrency, and performance. Inside the Data Cloud, organizations unite their siloed data, easily discover and

securely share governed data, and execute diverse analytic workloads. Wherever data or users live, Snowflake delivers a
single and seamless experience across multiple public clouds. Snowflake’s platform is the engine that powers and provides

access to the Data Cloud, creating a solution for data warehousing, data lakes, data engineering, data science, data
application development, and data sharing. Join Snowflake customers, partners, and data providers already taking their

businesses to new frontiers in the Data Cloud. snowflake.com.

About the author
Kent Graziano is a recognized industry expert, keynote speaker, and published author in the areas of data modeling, data
warehousing, and agile data. He has over 30 years of experience in information technology, including data modeling, data
analysis, and relational database design, as well as large scale data warehouse architecture, design, and implementation.

http://snowflake.com
https://twitter.com/SnowflakeDB
https://www.linkedin.com/company/snowflake-computing/
https://www.youtube.com/user/snowflakecomputing
https://www.facebook.com/Snowflake-Computing-709171695819345/

