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If you’re an experienced data architect, data 
engineer, or data analyst, you’ve probably 
been exposed to semi-structured data such 
as JSON. IoT devices, social media sites, and 
mobile devices all generate endless streams 
of JSON log files. Handling JSON data is 
unavoidable, but it can’t be managed the same 
way as the more familiar structured data. Yet, 
to thrive in today’s world of data, knowing how 
to manage and derive value from this form of 

semi-structured data is crucial to delivering 
valuable insights to your organization. One 
of the key differentiators in Snowflake Cloud 
Data Platform is the ability to natively ingest 
semi-structured data such as JSON, store it 
efficiently, and then access it quickly using 
simple extensions to standard SQL. This ebook 
will give you a modern approach to produce 
analytics easily and affordably from JSON data 
using SQL.

SEMI-STRUCTURED BRINGS  
NEW INSIGHTS TO BUSINESS C
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SCHEMA?
NO NEED! 

Load your semi-structured data  
directly into a relational table

Over the last several years, we have all heard the 
phrase “Schema-on-Read” to explain the benefit of 
loading semi-structured data, such as JSON, into 
a NoSQL platform such as Hadoop. The idea here: 
Data modeling and schema design could be delayed 
until long after you loaded the data. Delaying these 
tasks avoids slowing down getting the data into 
a repository because you had to wait for a data 
modeler to first design the tables. 

Schema-on-Read implies there is a knowable 
schema. So, even though organizations can quickly 
load semi-structured data into Hadoop or a NoSQL 
platform, there is still more work required to actually 
parse the data into an understandable schema 
before it can be analyzed with a standard SQL-based 
tool. Experienced data professionals often have 
the burden of determining the schema and writing 
code to extract the data. Unlike structured data in 
a relational database, this requirement impedes an 
organization’s ability to access and utilize semi-
structured data in a timely manner. 

 

INSTANTLY QUERY SEMI-STRUCTURED DATA 
WITH SNOWFLAKE

With Snowflake, you can load your semi-structured 
data directly into a relational table. Then, you 
can query that data with a SQL statement and 
join it to other structured data, while not fretting 
about future changes to the “schema” of that data. 
Snowflake keeps track of the self-describing schema 
so you don’t have to; no ETL or fancy parsing 
algorithms are required.

The built-in support to load and query semi-
structured data—including JSON, XML, and AVRO—
is one of the remarkable benefits of Snowflake. 
With most of today’s big data environments and 
traditional, on-premises and cloud-washed data 
warehouses, you have to first load this type of data 
to a Hadoop or NoSQL platform. Then you need to 
parse it, for example, with MapReduce, in order to 
load it into columns in a relational database. Then, 
and only then, can you visualize or transform that 
data using a BI/analytics tool or a Notebook/data 
science tool. All of this means more time, money, 
and headache for you to allow business users to  
see that data.

The idea here: 

Data modeling and schema design 

could be delayed until long after 

you loaded the data. Delaying 

these tasks avoids slowing down 

getting the data into a repository 

because you had to wait for a data 

modeler to first design the tables.
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It’s simple. Snowflake has a new data type 
called VARIANT that allows semi-structured 
data to be loaded, as is, into a column in a 
relational table.

When Snowflake loads semi-structured data, 
it optimizes how it stores that data internally 
by automatically discovering the attributes and 
structure that exist in the data, and using that 
knowledge to optimize how the data is stored. 
Snowflake also looks for repeated attributes 
across records, organizing and storing those 
repeated attributes separately. This enables 
better compression and faster access, similar 
to the way that a columnar database optimizes 
storage of columns of data. 

The upshot: No Hadoop or NoSQL is needed 
in your enterprise data landscape for the sole 
purpose of holding semi-structured data. The 
result is a modern data platform that uses 
SQL, which you and your staff already know 
how to write. And as the data source evolves 
and changes over time with new attributes, 
nesting, or arrays, there’s no need to redo ETL 
or ELT code. The VARIANT data type does not 
care if the schema varies. 

DATA IN, INSIGHT OUT

But that’s only half the equation. Once the data is 
in, how do you get the insight out? Snowflake has 
extensions to SQL to reference the internal schema of 
the data. Because the data is self-describing, you can 
query the components and join the data to columns 
in other tables, as if you already parsed the data into 
a standard relational format, except no coding, ETL, or 
other parsing is required to prep the data.  

In addition, statistics about the subcolumns are 
also collected, calculated, and stored in Snowflake’s 
metadata repository. This gives Snowflake’s advanced 
query optimizer metadata about the semi-structured 
data, to optimize access to it. The collected statistics 
allow the optimizer to use pruning to minimize the 
amount of data needed for access, thus speeding the 
return of data.  

HOW SNOWFLAKE  
SOLVED THIS PROBLEM

DATA WAREHOUSING AND ANALYTICS, 
REIMAGINED FOR THE CLOUD

No other on-premises or cloud-washed solution 
offers Snowflake’s optimized level of support for 
processing semi-structured data. Even though some 
traditional vendors have added features to store and 
access JSON and XML, those are add-ons to legacy 
code, using existing data types such as character large 
objects (CLOBs), and they are not natively optimized.

With these solutions, getting any kind of performance 
optimization requires additional performance tuning 
by DBAs. For example, in its documentation, one of 
the newer, cloud-washed data warehouse providers 
states that customers should not try to use their  
JSON feature at scale. This is yet another example of 
how cloud-washed legacy code can’t magically solve 
data problems.
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ENOUGH THEORY.  
LET’S GET STARTED.

How you can load semi-structured data directly into Snowflake

1. CREATE A TABLE

I already have a Snowflake account, a database, and a multi-cluster warehouse set 
up, so just like I would in any other database, I simply issue a DDL statement to 
create a table:  

Now I have a table with one column (“v”) with a declared data type of VARIANT.

2. LOAD SOME DATA

Now I load a sample JSON document using an INSERT and Snowflake’s PARSE_
JSON function. We’re not simply loading the document as text but rather storing it 
as an object in the VARIANT data type, while at the same time converting it to an 
optimized columnar format (to query later):

create or replace table json_demo (v variant); insert into json_demo
 select
 parse_json(
 '{
     "fullName": "Johnny Appleseed",
     "age": 42,
     "gender": "Male",
     "phoneNumber": {
                     "areaCode": "415",
                     "subscriberNumber": "5551234"
                    },
     "children": [
                  { "name": "Jayden", "gender": "Male", "age": "10" },
                  { "name": "Emma", "gender": "Female", "age": "8" },
                  { "name": "Madelyn", "gender": "Female", "age": "6" }
                 ],
     "citiesLived": [
                    { "cityName": "London",
                      "yearsLived": [ "1989", "1993", "1998", "2002" ]
                    },
                    { "cityName": "San Francisco",
                      "yearsLived": [ "1990", "1993", "1998", "2008" ]
                    },
                    { "cityName": "Portland",
                      "yearsLived": [ "1993", "1998", "2003", "2005" ]
                    },
                    { "cityName": "Austin",
                      "yearsLived": [ "1973", "1998", "2001", "2005" ]
                    }
                   ]
  }');
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While this approach is useful for testing, normally JSON would be loaded into a 
Snowflake table from your Snowflake staging area using a simple COPY command.

  

For more details on the many options and features of the COPY command, see 
Snowflake’s data loading tutorial. 

3. START PULLING DATA OUT

Now that we’ve loaded an example, let’s work through how we access it. We’ll start 
with just getting the data from the NAME subcolumn:

Where:

v = the column name in the json_demo table (from our create table command)

fullName = attribute in the JSON schema

v:fullName = notation to indicate which attribute in column “v” we want to select 

Similar to the table.column notation all SQL people are familiar with, Snowflake 
has the ability to effectively specify a column within the column––a subcolumn. 
However, we cannot use the dot notation for our separator, because SQL syntax 
has already claimed that. So, the Snowflake team chose the next obvious thing: a 
colon to reference the JSON subcolumns and navigate that hierarchy. This structural 
information is dynamically derived based on the schema definition embedded in the 
JSON string. Snowflake’s advanced metadata engine records this information at the 
time it loads the JSON document into the table.

4. CASTE THE DATA

Usually we don’t want to see the double quotes around the data in the report output 
unless we’re going to create an extract file. Instead, we can format it as a string and 
give it a nicer column alias, similar to what we would do with a normal column:

Next, let’s look at a bit more of the data using the same syntax from above:

 
Again, we use simple SQL and the output is similar to the results from any table you 
might have built in a traditional data warehouse.

At this point, you could look at a table in Snowflake with a VARIANT column and quickly 
start “shredding” the JSON with SQL. You can query semi-structured data without 
learning a new programming language or using a framework required with Hadoop or 
NoSQL. Instead, you have a much lower learning curve to get the same result. 

copy into myjsontable
  from @my_json_stage/tutorials/dataloading/contacts.json
  on_error = 'skip_file';

select v:fullName from json_demo;

1 row produced

row# V:FULLNAME

1 "Johnny Appleseed"

select v:fullName::string as full_name
from json_demo;

1 row produced

row# FULL_NAME

1 Johnny Appleseed

select
   v:fullName::string as full_name,
   v:age::int as age,
   v:gender::string as gender
from json_demo;

1 row produced

row# FULL_NAME AGE GENDER

1 Johnny Appleseed 42 Male
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A MORE COMPLEX DATA LOAD Nested data and adding new attributes

Yes, those examples are very simple. So let’s look at something a bit more complex. 
Notice that the original sample document contains some nesting of the data:

How do we pull that apart? We use a very familiar table.column dot notation:

Just as fullName, age and gender are subcolumns, so too is phoneNumber. And 
subsequently, areaCode and subscriberNumber are subcolumns of the subcolumn. 
We can pull apart nested objects like this and easily adapt if the schema changes and 
we add another subcolumn.

WHAT HAPPENS IF THE STRUCTURE CHANGES?

One of the benefits of storing data in JSON is that the schema can easily change. But 
imagine if, in a subsequent load, the data provider changed the specification to this:

A new attribute, extensionNumber, was added to phoneNumber! What happens to 
the load? Nothing. It keeps working because we ingest the string into the VARIANT 
column in the table. 

You may ask, “What about the ETL/ELT code?” What code? There is no code, so 
there’s nothing to break. And what about existing reports? They keep working, too. 
The previous query will work just fine. If you want to see the new column, the SQL 
needs to be refactored to account for the change:

In addition, if the reverse happens and an attribute is dropped, the query will not fail. 
Instead, it simply returns a NULL value. In this way, Snowflake insulates all the code 
you write from these types of dynamic changes.

{
    "fullName": "Johnny Appleseed",
    "age": 42,
    "gender": "Male",
    "phoneNumber": {
                    "areaCode": "415",
                    "subscriberNumber": "5551234"
                },
...

select
   v:phoneNumber.areaCode::string as area_code,
   v:phoneNumber.subscriberNumber::string as subscriber_number
from json_demo;

{
    "fullName": "Johnny Appleseed",
    "age": 42,
    "gender": "Male",
    "phoneNumber": {
                 "areaCode": "415",
                "subscriberNumber": "5551234",
                        "extensionNumber": "24"
                },
...

select
   v:phoneNumber.areaCode::string as area_code,
   v:phoneNumber.subscriberNumber::string as subscriber_number,
   v:phoneNumber.extensionNumber::string as extension_number
from json_demo;

A MORE COMPLEX
DATA LOAD C
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HOW TO HANDLE ARRAYS OF DATA
One of JSON’s many cool features is the ability to specify and embed an array of 
data within the document. In this example, one such array is children:  

You will notice there are three rows in the array and each row has three subcolumns: 
name, gender, and age. Each of those rows constitutes the value of that array entry, 
which includes all the subcolumn labels and data. (Remember this for later.) So how do 
you know how many rows there are if you don’t have access to the raw data? Like this:

The function ARRAY_SIZE determines it for us. To pull the data for each row in the 
array, we can use the previous dot notation, but with the added specification for the 
row number of the array located inside the brackets:   

   "children": [
         { "name": "Jayden", "gender": "Male", "age": "10" },
         { "name": "Emma", "gender": "Female", "age": "8" },
         { "name": "Madelyn", "gender": "Female", "age": "6" }
     ]

select array_size(v:children) from json_demo;

select v:children[0].name from json_demo
union all
select v:children[1].name from json_demo
union all
select v:children[2].name from json_demo;

3 rows produced

row# V:CHILDREN[0].NAME

1 "Jayden"

2 "Emma"

3 "Madelyn"

If another element is added to the array, such as a fourth child, we will not have to 
change the SQL. FLATTEN allows us to determine the structure and content of the 
array on the fly. This makes the SQL resilient to changes in the JSON document.

You can now get all the array sub-columns and format them just like a relational table:

select
   f.value:name::string as child_name,
   f.value:gender::string as child_gender,
   f.value:age::string as child_age
from json_demo, table(flatten(v:children)) f;

3 rows produced

row# CHILD_NAME CHILD_GENDER CHILD_AGE

1 Jayden Male 10

2 Emma Female 8

3 Madelyn Female 6
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Putting all this together, you can write a query to get the parent’s name and the 
children’s names:

select
   v:fullName::string as parent_name,
   f.value:name::string as child_name,
   f.value:gender::string  as child_gender,
   f.value:age::string as child_age
from json_demo, table(flatten(v:children)) f;

3 rows produced

row# PARENT_NAME CHILD_NAME CHILD_GENDER CHILD_AGE

1 Johnny Appleseed Jayden Male 10

2 Johnny Appleseed  Emma Female 8

3 Johnny Appleseed  Madelyn Female 6

If you just want a quick count of children by parent, you do not need to use 
FLATTEN but instead you refer back to ARRAY_SIZE:

Notice no GROUP BY clause is needed because the nested structure of the JSON 

has naturally grouped the data for us.

select
   v:fullName::string as Parent_Name,
   array_size(v:children) as Number_of_Children
from json_demo;

1 row produced

row# PARENT_NAME NUMBER_OF_CHILDREN 

1 Johnny Appleseed 3
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HOW TO HANDLE MULTIPLE ARRAYS
Simplifying an array with an array

You may recall there are multiple arrays in the sample JSON string. You can pull from 
several arrays at once with no problem:

What about an array within an array? Snowflake can handle that, too. From the 
sample data, you can see yearsLived is an array nested inside the array described  
by citiesLived:

select
   v:fullName::string as Parent_Name,
   array_size(v:citiesLived) as Cities_lived_in,
   array_size(v:children) as Number_of_Children
from json_demo;

1 row produced

row# PARENT_NAME CITIES_LIVED_IN NUMBER_OF_CHILDREN

1 Johnny Appleseed 4 3

"citiesLived": [
 { "cityName": "London",
   "yearsLived": [ "1989", "1993", "1998", "2002" ]
 },
 { "cityName": "San Francisco",
   "yearsLived": [ "1990", "1993", "1998", "2008" ]
 },
 { "cityName": "Portland",
   "yearsLived": [ "1993", "1998", "2003", "2005" ]
 },
 { "cityName": "Austin",
   "yearsLived": [ "1973", "1998", "2001", "2005" ]
 }
 ]

To pull that data out, we add a second FLATTEN clause that transforms the 
yearsLived array within the FLATTENed citiesLived array.

In this case the second FLATTEN (alias “yl”) transforms, or pivots, the yearsLived 
array for each value returned from the first FLATTEN of the citiesLived array (“cl”).

The resulting output shows the year lived by city name:

select
  cl.value:cityName::string as city_name,
  yl.value::string as year_lived
from json_demo,
     table(flatten(v:citiesLived)) cl,
     table(flatten(cl.value:yearsLived)) yl;

16 rows produced

row# CITY_NAME Year_Lived

1 London 1989

2 London 1993

3 London 1998

4 London 2002

5 San Francisco 1990

6 San Francisco 1993

7 San Francisco 1998

8 San Francisco 2008

9 Portland 1993

10 Portland 1998

11 Portland 2003

12 Portland 2005
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Similar to the previous example, you can augment this result by adding the parent’s 
name to show who lived where:

select
  v:fullName::string as parent_name,
  cl.value:cityName::string as city_name,
  yl.value::string as year_lived
from json_demo,
     table(flatten(v:citiesLived)) cl,
     table(flatten(tf.value:yearLived)) yl;

16 rows produced

row# PARENT_NAME CITY_NAME Year_Lived

1 Johnny Appleseed London 1989

2 Johnny Appleseed London 1993

3 Johnny Appleseed London 1998

4 Johnny Appleseed London 2002

5 Johnny Appleseed San Francisco 1990

6 Johnny Appleseed San Francisco 1993

7 Johnny Appleseed San Francisco 1998

8 Johnny Appleseed San Francisco 2008

9 Johnny Appleseed Portland 1993

10 Johnny Appleseed Portland 1998

11 Johnny Appleseed Portland 2003

12 Johnny Appleseed Portland 2005

11
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AGGREGATIONS
How to execute standard SQL aggregations on  
semi-structured data

To answer the question you’re probably thinking: Yes! You can even execute 
standard SQL aggregations on the semi-structured data. So, just as with ANSI SQL, 
you can do a COUNT(*) and a GROUP BY:

You can also create much more complex analyses using the library of standard SQL 
aggregation and windowing functions including LEAD, LAG, RANK, and STDDEV.

select
   cl.value:cityName::string as city_name,
   count(*) as year_lived
from json_demo,
     table(flatten(v:citiesLived)) cl,
     table(flatten(tf.value:yearLived)) yl
group by 1;

4 rows produced

row# CITY_NAME Year_Lived

1 London 4

2 San Francisco 4

3 Portland 4

4 Austin 4

12
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FILTERING YOUR DATA
How to focus your data analytics to only the data you need

What if you don’t want to return every row in an array? Similar to standard SQL,  
you add a WHERE clause:

To make it easier to read the SQL, notice you can even reference the sub-column 
alias city_name in the predicate. You can also use the full, subcolumn  
specification cl.value:cityName.

select
  cl.value:cityName::string as city_name,
  count(*) as years_lived
from json_demo,
     table(flatten(v:citiesLived)) cl,
     table(flatten(tf.value:yearsLived)) yl
where city_name = ‘Portland’
group by 1;

4 rows produced

row# CITY_NAME Year_Lived

1 Portland 4

13
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SCHEMA-ON-READ IS A REALITY

Get access to all your data with the ease 
of SQL

The examples we’ve walked through show how very 
easy it is to load and analyze semi-structured data 
with SQL, using Snowflake as both your big data 
and data warehouse solution. Snowflake invented a 
new, optimized data type, VARIANT, which lives in 
a relational table structure in a relational database. 
VARIANT offers native support for querying JSON 
without the need to analyze the structure ahead 
of time or design appropriate database tables and 
columns, subsequently parsing the data string into 
that predefined schema.

VARIANT provides the same performance as all the 
standard relational data types. In the examples, you 
saw easy-to-learn extensions to ANSI-standard SQL 
for accessing that data in a very flexible, resilient 
manner. With Snowflake, you get the bonus of on-
demand resource scalability that no traditional or 
cloud-washed data warehouse solution delivers.

With these features, Snowflake gives you a fast 
path to the enterprise endgame: the true ability to 
quickly and easily load semi-structured data into a 
modern cloud data platform and make it available 
for immediate analysis
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