
WHITEPAPER

A Detailed View

Inside Snowflake
THE DATA WAREHOUSE BUILT FOR THE CLOUD

2

THE NEED FOR CHANGE

Legacy data warehouses are based on technology that is, at its core, decades old. They were designed

in a time when data was simpler, and the number of people in an organization with the need or desire
to access the database were few. As analytics has become a company-wide practice, and a larger
volume of more diverse data is collected, the data warehouse has become the biggest roadblock
that people are facing in their path to insight. To meet the demands and opportunities of today and
tomorrow, data warehouses will need to fundamentally change.

WHITEPAPER

Data is becoming more diverse. It used to

be that data came primarily from internal
sources (e.g. transactional, ERP, and CRM
systems) in structured forms at a predictable
rate and volume. Today, in addition to
traditional sources, data is being generated
by a by diverse and rapidly changing set
of sources, including application logs, web
interactions, mobile devices, and more.
That data frequently arrives in flexible semi-
structured formats such as JSON or Avro, at
highly variable rates and volumes.

Data is being used differently. Data used to

flow through complex ETL pipelines into a
data warehouse, where reporting queries
ran periodically to update fixed dashboards
and reports. That process often took days.
Today, a wide array of analysts need to
explore and experiment with data as quickly
as possible, without knowing in advance
where they might find value in it. A growing
number of applications need immediate
access to data in order to support new and
existing business processes.

Technology has evolved. There are

technologies available today, like the
cloud, that were not even conceived of
when conventional data warehouses were
designed. As such, they weren’t designed to
take advantage of the unlimited scale and
convenience of the cloud.

Purchasing has evolved. With the diverse

and ever changing workload of the modern
data warehouse, many organizations would
prefer to pay for their data infrastructure
and software as a subscription, instead of
a permanent (and large) one-time capital
outlay.

“Today’s data warehouses are based on

technology that is decades old. To meet the

demands and opportunities of today, data

warehouses have to fundamentally change.”

— Jeff Shukis, VP Engineering and Tech Ops, VoiceBase

3

IMAGINING A FRESH APPROACH TO

DATA WAREHOUSING

These limitations can’t be fixed with haphazard feature

updates; they are fundamental to the inadequate

architecture of traditional data warehouses and big

data solutions. To address their shortcomings, a

complete redesign and reimagining of data warehouse

architecture and technology is necessary.

If we were to start over, unencumbered by the

accumulated baggage of data warehousing history,

what would we build? The ideal data warehouse

would combine the strengths of data warehousing—

performance, security, and a broad ecosystem-with

the flexibility and scalability of “big data” systems.

Traditional data warehouses have been adequate for years, but their architectural baggage is becoming
more evident as they to fail to evolve to changing needs. They are often quite expensive, as well.

At the same time, newer “big data” offerings and noSQL systems such as Hadoop are failing to provide
a better alternative. They can be useful tools for data transformation and data science, but they
weren’t designed for data warehousing. They require difficult-to-find skillsets, are not fully compatible
with the existing ecosystem of SQL-based tools, and fail to deliver interactive performance. What’s
more, to deliver the capabilities required to be a data warehouse even partially, they need to be paired
with other compute and processing tools.

Fig. 1: Snowflake can store any scale of diverse data at a low cost.

4

WHITEPAPER

Such a data warehouse would be:

• Able to store any type of business data: Natively

handle diverse types of data without requiring

complex transformations before loading that data

into the data warehouse.

• Instantly scalable for flexible performance

and concurrency: Able to infinitely scale up

and instantly scale down at any time without

disruption. It would also be able to scale out to

as many different use cases as needed without

disruption. It goes without saying that complete

elasticity is difficult to accomplish without an

unlimited compute resource like the cloud affords.

• A true service: Management and infrastructure

would be automatically managed by the

warehouse so that users could focus on getting

value from their data.

• A seamless fit with existing skills and tools: The

data community has been myopically focused

on supporting tools for a small number of

data scientists, without addressing the huge

community of people and tools that understand

standard SQL. Full support for standard SQL

makes it possible to offer a better engine for

those users without the need for new expertise,

programming paradigms, and training.

• A flexible subscription and service: Businesses

should be able to pay for all of their services and

infrastructure as a service, and data warehouses

are no different. The flexibility of the subscription

model allows for the ebb and flow of business

needs, and more elegantly supports the rapid

growth and capital expenditure models of

modern organizations.

• Able to facilitate seamless data sharing: With

organizations looking to share data both inside

and outside of their walls, the data warehouse

of the future would enable support for seamless

data sharing.

Unfortunately, traditional data warehouses and

the noSQL systems that are frequently promoted

as their complement or even replacement - are

fundamentally unable to fulfill all these requirements.

THE LIMITS OF TRADITIONAL

DATA WAREHOUSES AND NOSQL

ALTERNATIVES

Traditional data warehouses are fundamentally

unable to deliver this vision. Data warehouse

appliances with fixed configurations are certainly

the most limited, but even software-only products

cannot be truly elastic. Those limitations are driven

by fundamental flaws in the two dominant scalable

database architectures in traditional databases:

shared-disk and shared-nothing.

The Shared-Disk Architecture and its

Limitations

The shared-disk architecture was the first approach

to emerge for scaling beyond the single-node SMP

architectures of early systems. It is designed to scale

processing beyond a single server while keeping

data in a central location. In a shared-disk system,

all of the data is stored on a storage device that

is accessible from all of the nodes in the database

cluster. Any change in the data is updated and

reflected in the single storage location. Shared-disk

architectures are attractive for their simplicity of data

management: all processing nodes in the database

cluster have direct access to all data, and that data is

consistent because all modifications to the data are

written to the shared disk. However, the scalability

of this architecture is severely limited because

5

WHITEPAPER

even a modest number of concurrent queries will

overwhelm the storage device and the network to

it, forcing processing to slow down for data to be

returned from the shared disk. Additional compute

nodes only exacerbate the overloaded shared disk.

Further, complicated on-disk locking mechanisms are

needed to ensure data consistency across the cluster.

Shared-Nothing Architecture and its

Limitations

Shared-nothing databases arose as a solution to

the bottlenecks of the shared-disk architecture. The

shared-nothing architecture scales processing and

compute together by distributing different subsets of

data across all of the processing nodes in the system,

eliminating the bottleneck of communication with

a shared disk. Designed in an era where bandwidth

and network latency to storage was a key bottleneck,

the shared-nothing architecture took advantage of

inexpensive local disk, moving data storage close

to compute.

However, the shared-nothing architecture has its own

limitations, which have become increasingly apparent

as technology and data analytics have advanced.

For one, the shared-nothing architecture has

performance bottlenecks of its own. As the cluster

is scaled to more and more nodes, the fact that data

is distributed across the cluster requires shuffling

data between nodes. That shuffling adds overhead

that reduces performance and makes performance

heavily dependent on how data is distributed across

the nodes in the system.

The challenges of optimizing data distribution

in a shared-nothing system have only grown as

workloads have become more dynamic and varied.

Distribution of data across compute nodes is

typically done through static assignment--data is

distributed at the time it is loaded by either a user-

specified distribution key or by a default algorithm.

Changing the data distribution typically requires

completely redistributing data across the cluster or

even unloading and reloading data. This is a slow

and disruptive operation, often requiring queries to

pause and blocking queries that modify data.

Further, shared-nothing architectures make it very

difficult to select the right balance of storage and

compute. Because the cluster must be sized to

house all data, compute resources may be more than

needed for actual queries or may be insufficient for

the queries run on the system. Because of the time

required to resize the cluster (if even possible to do

so), organizations frequently overprovision these

clusters, resulting in wasted resources and spend.

Limitations of noSQL

The limited flexibility of traditional data warehouse

architectures and their inability to scale cost-

effectively to handle the massive data volumes of the

modern business helped lead to interest in emerging

noSQL alternatives like Hadoop. The ability of noSQL

solutions to store non-relational data without first

requiring transformation, leverage inexpensive

commodity servers for scaling to large data volumes,

and support diverse custom programming led

organizations to experiment with noSQL solutions

Fig. 1: Shared disk architecture is limited by the performance of the disk

Fig. 2: Shared nothing architecture is limited by the need to distribute
and query data across nodes

6

WHITEPAPER

in a variety of use cases. Many wondered whether

noSQL solutions could even replace the data

warehouse.

However, as organizations have looked more closely

at these solutions, it has become clear that they have

limitations of their own that make them unable to

replace the data warehouse. Most noSQL solutions,

including Hadoop, rely on the same shared-

nothing architecture that underlies traditional data

warehouses. As a result, key limitations of shared-

nothing architectures also hinder these solutions—

data frequently needs to be shuffled among nodes,

compute cannot be sized independently of storage,

and clusters often need to be overprovisioned.

Not only that, but noSQL systems generally don’t

fully support ANSI SQL and are extremely complex

to manage. As a result of their inefficiency, they also

suffer from poor performance and struggle to support

higher levels of concurrency. In short, Hadoop and

noSQL tools are fundamentally poor at analytics.

SNOWFLAKE: DATA WAREHOUSE BUILT

FOR THE CLOUD

At Snowflake, as we considered the limitations

of existing systems, we realized that the cloud

is the perfect foundation to build this ideal data

warehouse. The cloud offers near-infinite resources

in a wide array of configurations, available at any

time, and you only pay for what you use. Public

cloud offerings have matured such that they cannot

support a large and growing set of enterprise

computing needs, often delivering higher data

durability and overall availability than private

datacenters, all without the upfront capital costs.

Although a small number of data warehouses are

marketing themselves as “cloud” solutions, they

weren’t designed for the cloud. These offerings

are either managed service offerings of existing

on-premises products, or simply an installation of

existing software in a public cloud infrastructure.

Conversely, there are cloud vendors offering “cloud

data warehouses” that were never intended to be data

warehouses in the first place, and lack full support

for basic features like ANSI-SQL compatibility.

Snowflake was founded by a team with deep

experience in data warehousing. Guided by their

experiences and frustrations with existing systems,

our team built a completely new data warehouse

designed to deliver dynamic infrastructure,

performance, and flexibility at a fraction of the cost.

Most importantly, they built Snowflake from scratch

for the cloud rather than starting with existing

software like Postgres or Hadoop.

The Snowflake solution? First of all, Snowflake was

built in the cloud and for the cloud to offer completely

unlimited storage and compute. Snowflake is a

massively parallel processing (MPP) database that

is fully relational, ACID compliant, and processes

standard SQL natively without translation or

simulation. It was designed as a software service that

can take full advantage of cloud infrastructure, while

retaining the positive attributes of existing solutions.

“With Snowflake’s speed, we can explore this

information map at the speed of thought, and

move from data, to information, to a decision,

10 times faster.”
— Chris Frederick, Business Intelligence Manager

University of Notre Dame

7

WHITEPAPER

A new architecture: Multi-cluster,

shared data

Snowflake’s novel design physically separates but

logically integrates storage, compute and services

like security and metadata; we call it multi-cluster,

shared data and it consists of 3 components:

• Storage: the persistent storage layer for data

stored in Snowflake

• Compute: a collection of independent compute

resources that execute data processing tasks

required for queries

• Services: a collection of system services that

handle infrastructure, security, metadata, and

optimization across the entire Snowflake system

In a traditional data warehouse, storage, compute, and

database services are tightly coupled. This can stem

from either the configuration of the physical nodes

(even in the cloud), or the architecture of the data

warehouse appliance. Even “big data” platforms tie

storage, compute and services tightly together within

the same nodes. Big data platforms can scale compute

and storage to some degree, but they still suffer from

the same predictable performance limitations as the

number of workloads and users increase.

Snowflake dynamically brings together the storage,

compute and services layers, delivering exactly the

resources needed exactly when they are needed. The

database storage layer resides in a scalable cloud

storage service, such as Amazon S3, which ensures

data replication, scaling and availability without any

management by customers. Snowflake optimizes and

stores data in a columnar format within the storage

layer, organized into databases as specified by the user.

To allocate compute resources for tasks like loading,

transformation and querying, users create “virtual

warehouses” which are essentially MPP compute

clusters. These virtual warehouses have the ability

to access any of the databases in the database

storage layer to which they have been granted

access, and they can be created, resized and deleted

dynamically as resource needs change. When virtual

warehouses execute queries, they transparently

and automatically cache data from the database

storage layer. This hybrid architecture combines

the unified storage of a shared-disk architecture

with the performance benefits of a shared-nothing

architecture.

The cloud services layer consists of a set of services

that manage the Snowflake system—metadata,

security, access control, and infrastructure. The

services in this layer seamlessly communicate with

client applications (including the Snowflake web user

interface, JDBC, and ODBC clients) to coordinate

query processing and return results. The services

layer retains metadata about the data stored in

Snowflake and how that data has been used, making

it possible for new virtual warehouses to immediately

use that data.

Unlike a traditional data warehouse, Snowflake

can dynamically bring together the optimal set of

resources to handle a multitude of different usage

scenarios, with the right balance of IO, memory,

CPU, etc. This flexibility is what makes it possible to

Fig. 3: Built from the ground up for the cloud, Snowflake’s unique architecture
physically separates and logically integrates compute, storage and services

8

WHITEPAPER

support data warehouse workloads with different

query and data access patterns in a single service.

Snowflake’s architecture enables the following key

capabilities:

• Support for all of your data in one system

• Support for all of your use cases with dynamic

elasticity

• True ease of use with a self managing service and

automatic adaptation

HOW SNOWFLAKE DELIVERS ON

THE PROMISE OF THE CLOUD DATA

WAREHOUSE

Support all of your data in one system

Snowflake designed a data warehouse that allows

you to store all of your business data in a single

system. That is a sharp contrast from current

products, which are typically optimized for a single

type of data, forcing you to create silos for different

data or use cases.

Native Support for Semi-Structured Data

Traditional database architectures were designed

to store and process data in strictly relational

rows and columns. These architectures built their

processing models and optimizations around the

assumption that this data consistently contained

the set of columns defined by the database schema.

This assumption made performance and storage

optimizations like indices and pruning possible, but

at the cost of a static, costly-to-change data model.

Structured, relational data will always be critical for

reporting and analysis. But a significant share of data

today is machine-generated and delivered in semi-

structured data formats such as JSON, Avro, and XML.

Semi-structured data like this is commonly

hierarchical and rarely adheres to a fixed schema.

Data elements may exist in some records but not

others, while new elements may appear at any

time in any record. Correlating the information in

this semi-structured data with structured data is

important to extract and analyze the information

within it.

Using semi-structured data in a traditional relational

database requires compromising flexibility or

performance. One approach is to transform that

data into a relational format by extracting fields

and flattening hierarchies so that it can be loaded

into a relational database schema. This approach

effectively puts the constraints of a fixed schema on

that semi-structured data, sacrificing information and

flexibility. Fields not specified for extraction are lost,

including new fields that appear in the data. Adding

fields requires a redesign of the data pipeline and

updating all of the data that was previously loaded to

include the new fields.

The alternative to this approach, which some

databases have implemented, is a special datatype

for storing semi-structured data as a complex object

or simply as a string type. Although this approach

preserves the information and flexibility in the semi-

structured data, it sacrifices performance because

the relational database engine can’t optimize

processing for semi-structured data types. For

example, accessing a single element in an object

commonly requires a full scan of the entire object in

order to locate the element.

Because traditional data warehouses do not support

the capabilities needed to effectively store and

process semi-structured data, many customers have

turned to alternative approaches, such as Hadoop,

for processing this type of information. While

Hadoop systems can load semi-structured data

without requiring a defined schema, they require

9

WHITEPAPER

specialized skills and are inefficient at processing

structured data.

With either approach, there are massive sacrifices. In

desperation, many organizations are adopting both

a traditional data warehouse and Hadoop alongside

one another. This creates additional complexity and

subjects them to the negative aspects of both systems.

Storing all types of data in Snowflake

Snowflake took a novel, different approach,

designing a data warehouse that can store and

process diverse types of data in a single system

without compromising flexibility or performance.

Snowflake’s patented approach provides native

storage of semi-structured data together with

native support for the relational model and the

optimizations it can provide.

“I can’t say enough about how fantastic the

native JSON support is. Snowflake lets us load

our JSON data as is, flatten it all out, load it

into the event tables, and then parse that into

views. My analysts are really happy about this.”

— Josh McDonald, Director of Analytics Engineering, KIXEYE

Snowflake started by making it possible to flexibly

store semi-structured records inside a relational

table in native form. This is accomplished through a

custom datatype (Snowflake’s VARIANT datatype)

that allows schema-less storage of hierarchical

data, including JSON, Avro, XML and Parquet. This

makes it possible to load semi-structured data

directly into Snowflake without pre-processing,

losing information, or defining a schema. You simply

create a table containing a column with Snowflake’s

VARIANT datatype and then load files containing

semi-structured data into that table.

When Snowflake loads semi-structured data, it

automatically discovers the attributes and structure

that exist in the data to optimize how it’s stored.

It looks for repeated attributes across records, and

then organizes and stores those repeated attributes

separately, enabling better compression and fast

access similar to the way that a columnar database

optimizes column storage. Statistics about these

pseudo-columns are also calculated and stored

in Snowflake’s metadata repository for use in

optimizing queries. This storage optimization is

completely transparent to the user.

Snowflake also enables you to query that data

through extensions to SQL, making it simple to

use relational queries that can combine access to

structured and semi-structured data in a single

query. Because of Snowflake’s approach to storing

semi-structured data, the Snowflake query optimizer

has metadata information about the semi-structured

data that allows it to optimize access to that data.

For example, statistics in the metadata allow the

optimizer to apply pruning to reduce the amount of

data that needs to be read from the storage layer.

Single System for All Business Data

Traditional architectures create isolated silos of data.

Structured data is processed in a data warehouse.

Semi-structured data is processed with Hadoop.

Complex, multi-step operations are required to

bring this data together. Scalability limits force

organizations to separate workloads and data into

separate data warehouses and data marts, essentially

creating islands of data that have limited visibility

and access to data in other database clusters.

All of these silos make it possible to configure a

data warehouse, datamart, or Hadoop cluster that

is tuned for a particular workload, but at greater

cost and overhead. Even with a significant amount

of infrastructure, it is often difficult to actually find

10

WHITEPAPER

insights in the data because each silo of data only

contains a part of the relevant data.

Support all of your use cases elastically

The ideal data warehouse would be able to size

up and down on-demand to provide exactly the

capacity and performance needed, exactly when it is

needed. However, traditional products are difficult

and costly to scale up, and almost impossible to

scale down. That forces an upfront capacity planning

exercise that typically results in an oversized data

warehouse, optimized for the peak workload but

running underutilized at all other times.

Cloud infrastructure uniquely enables full elasticity

because resources can be added and discarded at

any time. That makes it possible to have exactly

the resources you need for all users and workloads,

but only with an architecture designed to take full

advantage of the cloud.

Snowflake’s separation of storage, compute, and

system services makes it possible to dynamically

modify the configuration of the system. Resources can

be sized and scaled independently and transparently,

on-the-fly. This makes it possible for Snowflake to

deliver full elasticity across multiple dimensions:

• Data: The amount of data stored can be increased

or decreased at any time. Unlike shared-nothing

architectures where the ratio of storage to

compute is fixed, the compute configuration is

determined independently of the volume of data

in the system. This architecture also makes it

possible to store data at a very low cost because

no compute resources are required to store data

in the database.

• Compute: The compute resources being used

for query processing can also be scaled up

or down at any time as the intensity of the

workload on the system changes. Because

storage and compute are decoupled, and the data

is dynamically distributed, changing compute

resources does not require reshuffling the data.

Compute resources can be changed on-the-fly,

without disruption.

• Users: With most data warehouses, there’s

a fundamental limit to scaling concurrency

because all of the queries are competing for the

same resources. As more users and workloads

are added, the system gets slower and slower.

Regardless of how large the cluster becomes,

eventually the system cannot support additional

concurrency and the only option is to create

a new datamart. This brings with it the extra

management burden of replicating or migrating

data across systems. Snowflake can scale to

support more users and workloads without

performance impact because multiple virtual

warehouses can be deployed on-demand, all with

access to the same data.

Fig. 5: Snowflake’s unique architecture enables it to elastically support any scale
of data, processing, and workloads

Fig. 4: Traditional data warehouses must be manually sized to the highest workload,
if they are configurable at all. Cloud warehouses could be more elastic.

11

WHITEPAPER

ENABLE EASE OF USE

The need for a self-managing system

Conventional data warehouses and “big data” platforms

require significant care and feeding. They rely on skilled

administrators constantly exerting themselves to

maintain the data platform: choosing data distribution

schemes, creating and maintaining indices, updating

metadata, cleaning up files, and more.

Manual optimization was feasible in an environment

where queries were predictable and workloads

were few, but it doesn’t scale when there are a

large number of ever-changing workloads. The time

and effort required to optimize the system for all

those different workloads quickly gets in the way of

actually analyzing data.

In contrast, Snowflake set out to build a data

warehouse as a service where users focus on

analyzing data rather than spending time managing

and tuning. That required Snowflake to design a data

warehouse that would:

• Eliminate the management of hardware and

software infrastructure. The data warehouse

should not require users to think about how to

deploy and configure physical hardware. Similarly,

users should not need to worry about installing,

configuring, patching, and updating software.

• Enable the system to learn and adapt. Rather than

requiring users to invest time configuring and

tuning (and retuning) a wide array of parameters,

Snowflake designed a data warehouse that sees

how it is being used and dynamically adapts

based on that information.

Eliminating Software and Infrastructure

Management

The Snowflake data warehouse was designed

to completely eliminate the management of

infrastructure. It is built on cloud infrastructure, which

it transparently manages for the user. Users simply

log in to the Snowflake service and it is immediately

available, without complex setup required.

Ongoing management of the software infrastructure

is also managed by Snowflake. Users do not need to

manage patches, upgrades, and system security. The

Snowflake service automatically manages the system.

Capacity planning, a painful requirement during the

deployment of a conventional on-premises data

warehouse, is all but eliminated because Snowflake

makes it possible to add and subtract resources

on the fly. Because it is easy to scale up and down

based on need, you are not forced into a huge

upfront cost in order to ensure sufficient capacity for

future needs.

Other manual actions within traditional data

warehouses that Snowflake automates include:

• Continuous data protection: Time Travel enables

you to immediately revert any table, database

or schema to a previous state. It’s enabled

automatically and stores data as it’s transformed for

up to 24 hours, or 90 days in enterprise versions.

• Copying to clone: Most data warehouses

require you to copy data to clone, forcing a large

amount of manual effort and a significant time

investment. Snowflake’s multi-cluster, shared

data architecture ensures that you never need

to copy any data, because any warehouse or

database automatically references the same

centralized data store.

WHITEPAPER

12

WHITEPAPERWHITEPAPER

• Data distribution is managed automatically by

Snowflake based on usage. Rather than relying

on a static partitioning scheme based on a

distribution algorithm or key chosen by the user at

load time, Snowflake automatically manages how

data is distributed in the virtual warehouse. Data

is automatically redistributed based on usage to

minimize data shuffling and maximize performance.

• Loading data is dramatically simpler because

complex ETL data pipelines are no longer needed

to prepare data for loading. Snowflake natively

supports and optimizes diverse data, both

structured and semi-structured, while making

that data accessible via SQL.

• Dynamic query optimization ensures that

Snowflake operates as efficiently as possible by

looking at the state of the system when a query is

dispatched for execution, not just when it is first

compiled. That adaptability is a crucial component

within Snowflake’s ability to scale up and down.

• Scaling compute: Autoscaling is a feature that can

be enabled within any Snowflake multi-cluster

data warehouse that will match the number of

compute clusters to the query or load, without

needing manual intervention or input.

“Snowflake is faster, more flexible, and

more scalable than the alternatives on the

market. The fact that we don’t need to do

any configuration or tuning is great because

we can focus on analyzing data instead of on

managing and tuning a data warehouse.”

 —Craig Lancaster, CTO, Jana

PAY AS YOU GO

Up front capital expenditures no longer

make sense

As technology changes at an ever increasing pace,

the old model of paying for licensed software and

hardware in a massive up-front expenditure no longer

makes sense. Data warehouses can be particularly

painful to pay for in this model, as many traditional

systems can cost tens of millions of dollars.

Newer cloud models that charge by the query aren’t

any better. Query based pricing can lead to runaway,

unpredictable charges and frequent query failures

as cost limits are hit. What’s more, there isn’t any

way to define the compute power dedicated to

each query, so you have to trust that the system is

choosing the resource sizing that makes the most

sense for your query.

Enabling the data warehouse as a usage-

based service

Snowflake is paid for as a usage based service Each

month, you pay for the data you store (at a cost

similar to the raw storage costs of Amazon S3),

and the number of Snowflake Compute Credits

you use for compute. Each Credit costs around

$2, and one Credit provides enough usage for

an XS data warehouse for one hour. A Small data

warehouse -the next size up- costs 2 credits per

hour and delivers approximately twice the compute

horsepower. Each successive size of data warehouse

continues to double both the compute horsepower

and price in credits. This linear model makes it easy

to plan for your expenditures, and keep them low in

the first place.

13

WHITEPAPER

Snowflake also addresses the limitations of the query

based pricing model. Since you pay for each warehouse

by the hour, costs are always known and understood.

What’s more, your query will never fail due to cost

limits, it’ll just take longer. The basic premise is that

you have ultimate control over every piece of the

warehouse, so if you want your query to move faster

you can choose to move to a larger warehouse. Again,

these are choices that you aren’t given with inflexible

query based models.

Seamless sharing of data

Snowflake’s architecture vastly simplifies the process

of sharing data, particularly between different

organizations. Instead of needing to manually create

copies of data and sending them over FTP, EDI, or

cloud file services, Snowflake Data Sharing allows

any Snowflake customer to share access to their data

with any other Snowflake customer.

Instead of sending a file, you send access to the

underlying data. The schema and database structure

can be imported automatically by the consumer so

there’s very little manual effort involved in using the

shared data. What’s more, when the data updates

in the provider account, it’s automatically and

immediately visible in the consumer account. Detailed

permissions and role based access can be applied to

that data, ensuring that information is only shared

with the people who it is meant to be shared with.

Use the SQL that you already know

The last benefit of Snowflake’s architecture is the

simplest, but in many ways the most important:

you can use the SQL that your team already knows.

noSQL systems and query based data stores have

become more common recently, but they both fail to

fully support standard ANSI SQL. This not only limits

the way you interact with your data and transform it,

but it requires you to hire people familiar with those

systems, or train your existing people to use these

new systems.

Snowflake allows your team to use the SQL they

already know and love to transform and query all

of your data. This simplicity pays endless dividends

over time as you save time and resources you

would otherwise devote to supporting bespoke and

“oddball” systems.

WHITEPAPER

By reimagining and reinventing the data warehouse, Snowflake has addressed all of the key
limitations of today’s technology. Doing so required a new architecture that was completely
different from data warehouses of the past. As a result, you can easily store all your data,
enable all your users with zero management, paying the way you want to and using the
SQL you already rely on. Rather than being bottlenecked waiting for the availability of
overstretched IT and data science resources, analysts get rapid access to data in a service
that can operate at any scale of data, users, and workloads.

To learn more about Snowflake, join us for a live demo at https://www.snowflake.net/
webinar/snowflake-livedemo/

THE IMPACT OF REINVENTION

WHITEPAPER

Snowflake Computing, the cloud data warehousing company, has
reinvented the data warehouse for the cloud and today’s data.
Snowflake is built from the cloud up with a patent-pending new
architecture that delivers the power of data warehousing, the flexibility
of big data platforms and the elasticity of the cloud – at a fraction of
the cost of traditional solutions. Snowflake is headquartered in Silicon
Valley and can be found online at snowflake.net.

Copyright © 2017 Snowflake Computing, Inc. All rights reserved. SNOWFLAKE COMPUTING, the Snowflake
Logo, and SNOWFLAKE ELASTIC DATA WAREHOUSE are trademarks of Snowflake Computing, Inc.

