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THE NEED FOR CHANGE

Legacy data warehouses are based on technology that is, at its core, decades old. They were designed 

in a time when data was simpler, and the number of people in an organization with the need or desire 
to access the database were few. As analytics has become a company-wide practice, and a larger 
volume of more diverse data is collected, the data warehouse has become the biggest roadblock 
that people are facing in their path to insight. To meet the demands and opportunities of today and 
tomorrow, data warehouses will need to fundamentally change.

WHITEPAPER

Data is becoming more diverse. It used to 

be that data came primarily from internal 
sources (e.g. transactional, ERP, and CRM 
systems) in structured forms at a predictable 
rate and volume. Today, in addition to 
traditional sources, data is being generated 
by a by diverse and rapidly changing set 
of sources, including application logs, web 
interactions, mobile devices, and more. 
That data frequently arrives in flexible semi-
structured formats such as JSON or Avro, at 
highly variable rates and volumes.

Data is being used differently. Data used to 

flow through complex ETL pipelines into a 
data warehouse, where reporting queries 
ran periodically to update fixed dashboards 
and reports. That process often took days. 
Today, a wide array of analysts need to 
explore and experiment with data as quickly 
as possible, without knowing in advance 
where they might find value in it. A growing 
number of applications need immediate 
access to data in order to support new and 
existing business processes.

Technology has evolved. There are 

technologies available today, like the 
cloud, that were not even conceived of 
when conventional data warehouses were 
designed. As such, they weren’t designed to 
take advantage of the unlimited scale and 
convenience of the cloud.

Purchasing has evolved. With the diverse 

and ever changing workload of the modern 
data warehouse, many organizations would 
prefer to pay for their data infrastructure 
and software as a subscription, instead of 
a permanent (and large) one-time capital 
outlay.

“Today’s data warehouses are based on 

technology that is decades old. To meet the 

demands and opportunities of today, data 

warehouses have to fundamentally change.” 

— Jeff Shukis, VP Engineering and Tech Ops, VoiceBase
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IMAGINING A FRESH APPROACH TO 

DATA WAREHOUSING

These limitations can’t be fixed with haphazard feature 

updates; they are fundamental to the inadequate 

architecture of traditional data warehouses and big 

data solutions. To address their shortcomings, a 

complete redesign and reimagining of data warehouse 

architecture and technology is necessary.

If we were to start over, unencumbered by the 

accumulated baggage of data warehousing history, 

what would we build? The ideal data warehouse 

would combine the strengths of data warehousing— 

performance, security, and a broad ecosystem-with 

the flexibility and scalability of “big data” systems.

Traditional data warehouses have been adequate for years, but their architectural baggage is becoming 
more evident as they to fail to evolve to changing needs. They are often quite expensive, as well.

At the same time, newer “big data” offerings and noSQL systems such as Hadoop are failing to provide 
a better alternative. They can be useful tools for data transformation and data science, but they 
weren’t designed for data warehousing. They require difficult-to-find skillsets, are not fully compatible 
with the existing ecosystem of SQL-based tools, and fail to deliver interactive performance. What’s 
more, to deliver the capabilities required to be a data warehouse even partially, they need to be paired 
with other compute and processing tools.

Fig. 1: Snowflake can store any scale of diverse data at a low cost.
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Such a data warehouse would be:

• Able to store any type of business data: Natively 

handle diverse types of data without requiring 

complex transformations before loading that data 

into the data warehouse.

• Instantly scalable for flexible performance 

and concurrency: Able to infinitely scale up 

and instantly scale down at any time without 

disruption. It would also be able to scale out to 

as many different use cases as needed without 

disruption. It goes without saying that complete 

elasticity is difficult to accomplish without an 

unlimited compute resource like the cloud affords. 

• A true service: Management and infrastructure 

would be automatically managed by the 

warehouse so that users could focus on getting 

value from their data.

• A seamless fit with existing skills and tools: The 

data community has been myopically focused 

on supporting tools for a small number of 

data scientists, without addressing the huge 

community of people and tools that understand 

standard SQL. Full support for standard SQL 

makes it possible to offer a better engine for 

those users without the need for new expertise, 

programming paradigms, and training.

• A flexible subscription and service: Businesses 

should be able to pay for all of their services and 

infrastructure as a service, and data warehouses 

are no different. The flexibility of the subscription 

model allows for the ebb and flow of business 

needs, and more elegantly supports the rapid 

growth and capital expenditure models of 

modern organizations. 

 

 

 

• Able to facilitate seamless data sharing: With 

organizations looking to share data both inside 

and outside of their walls, the data warehouse 

of the future would enable support for seamless 

data sharing.

Unfortunately, traditional data warehouses and 

the noSQL systems that are frequently promoted 

as their complement or even replacement - are 

fundamentally unable to fulfill all these requirements. 

THE LIMITS OF TRADITIONAL 

DATA WAREHOUSES AND NOSQL 

ALTERNATIVES

Traditional data warehouses are fundamentally 

unable to deliver this vision. Data warehouse 

appliances with fixed configurations are certainly 

the most limited, but even software-only products 

cannot be truly elastic. Those limitations are driven 

by fundamental flaws in the two dominant scalable 

database architectures in traditional databases: 

shared-disk and shared-nothing. 

The  Shared-Disk Architecture and its 

Limitations

The shared-disk architecture was the first approach 

to emerge for scaling beyond the single-node SMP 

architectures of early systems. It is designed to scale 

processing beyond a single server while keeping 

data in a central location. In a shared-disk system, 

all of the data is stored on a storage device that 

is accessible from all of the nodes in the database 

cluster. Any change in the data is updated and 

reflected in the single storage location. Shared-disk 

architectures are attractive for their simplicity of data 

management: all processing nodes in the database 

cluster have direct access to all data, and that data is 

consistent because all modifications to the data are 

written to the shared disk. However, the scalability 

of this architecture is severely limited because 
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even a modest number of concurrent queries will 

overwhelm the storage device and the network to 

it, forcing processing to slow down for data to be 

returned from the shared disk. Additional compute 

nodes only exacerbate the overloaded shared disk. 

Further, complicated on-disk locking mechanisms are 

needed to ensure data consistency across the cluster.

Shared-Nothing Architecture and its 

Limitations

Shared-nothing databases arose as a solution to 

the bottlenecks of the shared-disk architecture. The 

shared-nothing architecture scales processing and 

compute together by distributing different subsets of 

data across all of the processing nodes in the system, 

eliminating the bottleneck of communication with 

a shared disk. Designed in an era where bandwidth 

and network latency to storage was a key bottleneck, 

the shared-nothing architecture took advantage of 

inexpensive local disk, moving data storage close  

to compute. 

However, the shared-nothing architecture has its own 

limitations, which have become increasingly apparent 

as technology and data analytics have advanced. 

For one, the shared-nothing architecture has 

performance bottlenecks of its own.  As the cluster 

is scaled to more and more nodes, the fact that data 

is distributed across the cluster requires shuffling 

data between nodes. That shuffling adds overhead 

that reduces performance and makes performance 

heavily dependent on how data is distributed across 

the nodes in the system. 

The challenges of optimizing data distribution 

in a shared-nothing system have only grown as 

workloads have become more dynamic and varied. 

Distribution of data across compute nodes is 

typically done through static assignment--data is 

distributed at the time it is loaded by either a user-

specified distribution key or by a default algorithm. 

Changing the data distribution typically requires 

completely redistributing data across the cluster or 

even unloading and reloading data. This is a slow 

and disruptive operation, often requiring queries to 

pause and blocking queries that modify data. 

Further, shared-nothing architectures make it very 

difficult to select the right balance of storage and 

compute. Because the cluster must be sized to 

house all data, compute resources may be more than 

needed for actual queries or may be insufficient for 

the queries run on the system. Because of the time 

required to resize the cluster (if even possible to do 

so), organizations frequently overprovision these 

clusters, resulting in wasted resources and spend.

Limitations of noSQL

The limited flexibility  of traditional data warehouse 

architectures and their inability to scale cost-

effectively to handle the massive data volumes of the 

modern business helped lead to interest in emerging 

noSQL alternatives like Hadoop. The ability of noSQL 

solutions to store non-relational data without first 

requiring transformation, leverage inexpensive 

commodity servers for scaling to large data volumes, 

and support diverse custom programming led 

organizations to experiment with noSQL solutions 

Fig. 1: Shared disk architecture is limited by the performance of the disk

Fig. 2: Shared nothing architecture is limited by the need to distribute 
and query data across nodes
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in a variety of use cases. Many wondered whether 

noSQL solutions could even replace the data 

warehouse.

However, as organizations have looked more closely 

at these solutions, it has become clear that they have 

limitations of their own that make them unable to 

replace the data warehouse. Most noSQL solutions, 

including Hadoop, rely on the same shared-

nothing architecture that underlies traditional data 

warehouses. As a result, key limitations of shared-

nothing architectures also hinder these solutions—

data frequently needs to be shuffled among nodes, 

compute cannot be sized independently of storage, 

and clusters often need to be overprovisioned.

Not only that, but noSQL systems generally don’t 

fully support ANSI SQL and are extremely complex 

to manage. As a result of their inefficiency, they also 

suffer from poor performance and struggle to support 

higher levels of concurrency. In short, Hadoop and 

noSQL tools are fundamentally poor at analytics. 

SNOWFLAKE: DATA WAREHOUSE BUILT 

FOR THE CLOUD

At Snowflake, as we considered the limitations 

of existing systems, we realized that the cloud 

is the perfect foundation to build this ideal data 

warehouse. The cloud offers near-infinite resources 

in a wide array of configurations, available at any 

time, and you only pay for what you use. Public 

cloud offerings have matured such that they cannot 

support a large and growing set of enterprise 

computing needs, often delivering higher data 

durability and overall availability than private 

datacenters, all without the upfront capital costs.

Although a small number of data warehouses are 

marketing themselves as “cloud” solutions, they  

weren’t designed for the cloud. These offerings 

are either managed service offerings of existing 

on-premises products, or simply an installation of 

existing software in a public cloud infrastructure. 

Conversely, there are cloud vendors offering “cloud 

data warehouses” that were never intended to be data 

warehouses in the first place, and lack full support 

for basic features like ANSI-SQL compatibility. 

Snowflake was founded by a team with deep 

experience in data warehousing. Guided by their 

experiences and frustrations with existing systems, 

our team built a completely new data warehouse 

designed to deliver dynamic infrastructure, 

performance, and flexibility at a fraction of the cost. 

Most importantly, they built Snowflake from scratch 

for the cloud rather than starting with existing 

software like Postgres or Hadoop.

The Snowflake solution? First of all, Snowflake was 

built in the cloud and for the cloud to offer completely 

unlimited storage and compute. Snowflake is a 

massively parallel processing (MPP) database that 

is fully relational, ACID compliant, and processes 

standard SQL natively without translation or 

simulation. It was designed as a software service that 

can take full advantage of cloud infrastructure, while 

retaining the positive attributes of existing solutions.

“With Snowflake’s speed, we can explore this 

information map at the speed of thought, and 

move from data, to information, to a decision, 

10 times faster.” 
— Chris Frederick, Business Intelligence Manager 

University of Notre Dame
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A new architecture: Multi-cluster,  

shared data

Snowflake’s novel design physically separates but 

logically integrates storage, compute and services 

like security and metadata; we call it multi-cluster, 

shared data and it consists of 3 components: 

• Storage: the persistent storage layer for data 

stored in Snowflake

• Compute: a collection of independent compute 

resources that execute data processing tasks 

required for queries

• Services: a collection of system services that 

handle infrastructure, security, metadata, and 

optimization across the entire Snowflake system

In a traditional data warehouse, storage, compute, and 

database services are tightly coupled. This can stem 

from either the configuration of the physical nodes 

(even in the cloud), or the architecture of the data 

warehouse appliance. Even “big data” platforms tie 

storage, compute and services tightly together within 

the same nodes. Big data platforms can scale compute 

and storage to some degree, but they still suffer from 

the same predictable performance limitations as the 

number of workloads and users increase.

 

Snowflake dynamically brings together the storage, 

compute and services layers, delivering exactly the 

resources needed exactly when they are needed. The 

database storage layer resides in a scalable cloud 

storage service, such as Amazon S3, which ensures 

data replication, scaling and availability without any 

management by customers. Snowflake optimizes and 

stores data in a columnar format within the storage 

layer, organized into databases as specified by the user. 

To allocate compute resources for tasks like loading, 

transformation and querying, users create “virtual 

warehouses” which are essentially MPP compute 

clusters. These virtual warehouses have the ability 

to access any of the databases in the database 

storage layer to which they have been granted 

access, and they can be created, resized and deleted 

dynamically as resource needs change. When virtual 

warehouses execute queries, they transparently 

and automatically cache data from the database 

storage layer. This hybrid architecture combines 

the unified storage of a shared-disk architecture 

with the performance benefits of a shared-nothing 

architecture. 

The cloud services layer consists of a set of services 

that manage the Snowflake system—metadata, 

security, access control, and infrastructure. The 

services in this layer seamlessly communicate with 

client applications (including the Snowflake web user 

interface, JDBC, and ODBC clients) to coordinate 

query processing and return results. The services 

layer retains metadata about the data stored in 

Snowflake and how that data has been used, making 

it possible for new virtual warehouses to immediately 

use that data.

Unlike a traditional data warehouse, Snowflake 

can dynamically bring together the optimal set of 

resources to handle a multitude of different usage 

scenarios, with the right balance of IO, memory, 

CPU, etc. This flexibility is what makes it possible to 

Fig. 3: Built from the ground up for the cloud, Snowflake’s unique architecture 
physically separates and logically integrates compute, storage and services
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support data warehouse workloads with different 

query and data access patterns in a single service. 

Snowflake’s architecture enables the following key 

capabilities: 

• Support for all of your data in one system

• Support for all of your use cases with dynamic 

elasticity

• True ease of use with a self managing service and 

automatic adaptation

HOW SNOWFLAKE DELIVERS ON 

THE PROMISE OF THE CLOUD DATA 

WAREHOUSE

Support all of your data in one system

Snowflake designed a data warehouse that allows 

you to store all of your business data in a single 

system. That is a sharp contrast from current 

products, which are typically optimized for a single 

type of data, forcing you to create silos for different 

data or use cases.

Native Support for Semi-Structured Data 

Traditional database architectures were designed 

to store and process data in strictly relational 

rows and columns. These architectures built their 

processing models and optimizations around the 

assumption that this data consistently contained 

the set of columns defined by the database schema. 

This assumption made performance and storage 

optimizations like indices and pruning possible, but 

at the cost of a static, costly-to-change data model. 

Structured, relational data will always be critical for 

reporting and analysis. But a significant share of data 

today is machine-generated and delivered in semi-

structured data formats such as JSON, Avro, and XML. 

Semi-structured data like this is commonly 

hierarchical and rarely adheres to a fixed schema. 

Data elements may exist in some records but not 

others, while new elements may appear at any 

time in any record. Correlating the information in 

this semi-structured data with structured data is 

important to extract and analyze the information 

within it.

Using semi-structured data in a traditional relational 

database requires compromising flexibility or 

performance. One approach is to transform that 

data into a relational format by extracting fields 

and flattening hierarchies so that it can be loaded 

into a relational database schema. This approach 

effectively puts the constraints of a fixed schema on 

that semi-structured data, sacrificing information and 

flexibility. Fields not specified for extraction are lost, 

including new fields that appear in the data. Adding 

fields requires a redesign of the data pipeline and 

updating all of the data that was previously loaded to 

include the new fields. 

The alternative to this approach, which some 

databases have implemented, is a special datatype 

for storing semi-structured data as a complex object 

or simply as a string type. Although this approach 

preserves the information and flexibility in the semi-

structured data, it sacrifices performance because 

the relational database engine can’t optimize 

processing for semi-structured data types. For 

example, accessing a single element in an object 

commonly requires a full scan of the entire object in 

order to locate the element. 

Because traditional data warehouses do not support 

the capabilities needed to effectively store and 

process semi-structured data, many customers have 

turned to alternative approaches, such as Hadoop, 

for processing this type of information. While 

Hadoop systems can load semi-structured data 

without requiring a defined schema, they require 
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specialized skills and are inefficient at processing 

structured data. 

With either approach, there are massive sacrifices. In 

desperation, many organizations are adopting both 

a traditional data warehouse and Hadoop alongside 

one another. This creates additional complexity and 

subjects them to the negative aspects of both systems.

Storing all types of data in Snowflake

Snowflake took a novel, different approach, 

designing a data warehouse that can store and 

process diverse types of data in a single system 

without compromising flexibility or performance. 

Snowflake’s patented approach provides native 

storage of semi-structured data together with 

native support for the relational model and the 

optimizations it can provide.

“I can’t say enough about how fantastic the 

native JSON support is. Snowflake lets us load 

our JSON data as is, flatten it all out, load it 

into the event tables, and then parse that into 

views. My analysts are really happy about this.” 

— Josh McDonald, Director of Analytics Engineering, KIXEYE 

 

Snowflake started by making it possible to flexibly 

store semi-structured records inside a relational 

table in native form. This is accomplished through a 

custom datatype (Snowflake’s VARIANT datatype) 

that allows schema-less storage of hierarchical 

data, including JSON, Avro, XML and Parquet. This 

makes it possible to load semi-structured data 

directly into Snowflake without pre-processing, 

losing information, or defining a schema. You simply 

create a table containing a column with Snowflake’s 

VARIANT datatype and then load files containing 

semi-structured data into that table. 

When Snowflake loads semi-structured data, it 

automatically discovers the attributes and structure 

that exist in the data to optimize how it’s stored. 

It looks for repeated attributes across records, and 

then organizes and stores those repeated attributes 

separately, enabling better compression and fast 

access similar to the way that a columnar database 

optimizes column storage. Statistics about these 

pseudo-columns are also calculated and stored 

in Snowflake’s metadata repository for use in 

optimizing queries. This storage optimization is 

completely transparent to the user. 

Snowflake also enables you to query that data 

through extensions to SQL, making it simple to 

use relational queries that can combine access to 

structured and semi-structured data in a single 

query. Because of Snowflake’s approach to storing 

semi-structured data, the Snowflake query optimizer 

has metadata information about the semi-structured 

data that allows it to optimize access to that data. 

For example, statistics in the metadata allow the 

optimizer to apply pruning to reduce the amount of 

data that needs to be read from the storage layer.

Single System for All Business Data

Traditional architectures create isolated silos of data. 

Structured data is processed in a data warehouse. 

Semi-structured data is processed with Hadoop. 

Complex, multi-step operations are required to 

bring this data together. Scalability limits force 

organizations to separate workloads and data into 

separate data warehouses and data marts, essentially 

creating islands of data that have limited visibility 

and access to data in other database clusters. 

All of these silos make it possible to configure a 

data warehouse, datamart, or Hadoop cluster that 

is tuned for a particular workload, but at greater 

cost and overhead. Even with a significant amount 

of infrastructure, it is often difficult to actually find 
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insights in the data because each silo of data only 

contains a part of the relevant data.

Support all of your use cases elastically

The ideal data warehouse would be able to size 

up and down on-demand to provide exactly the 

capacity and performance needed, exactly when it is 

needed. However, traditional products are difficult 

and costly to scale up, and almost impossible to 

scale down. That forces an upfront capacity planning 

exercise that typically results in an oversized data 

warehouse, optimized for the peak workload but 

running underutilized at all other times. 

Cloud infrastructure uniquely enables full elasticity 

because resources can be added and discarded at 

any time. That makes it possible to have exactly 

the resources you need for all users and workloads, 

but only with an architecture designed to take full 

advantage of the cloud.

Snowflake’s separation of storage, compute, and 

system services makes it possible to dynamically 

modify the configuration of the system. Resources can 

be sized and scaled independently and transparently, 

on-the-fly. This makes it possible for Snowflake to 

deliver full elasticity across multiple dimensions:  

• Data: The amount of data stored can be increased 

or decreased at any time. Unlike shared-nothing 

architectures where the ratio of storage to 

compute is fixed, the compute configuration is 

determined independently of the volume of data 

in the system. This architecture also makes it 

possible to store data at a very low cost because 

no compute resources are required to store data 

in the database.

• Compute: The compute resources being used 

for query processing can also be scaled up 

or down at any time as the intensity of the 

workload on the system changes. Because 

storage and compute are decoupled, and the data 

is dynamically distributed, changing compute 

resources does not require  reshuffling the data. 

Compute resources can be changed on-the-fly, 

without disruption. 

• Users: With most data warehouses, there’s 

a fundamental limit to scaling concurrency 

because all of the queries are competing for the 

same resources. As more users and workloads 

are added, the system gets slower and slower. 

Regardless of how large the cluster becomes, 

eventually the system cannot support additional 

concurrency and the only option is to create 

a new datamart. This brings with it the extra 

management burden of replicating or migrating 

data across systems. Snowflake can scale to 

support more users and workloads without 

performance impact because multiple virtual 

warehouses can be deployed on-demand, all with 

access to the same data.

Fig. 5: Snowflake’s unique architecture enables it to elastically support any scale 
of data, processing, and workloads

Fig. 4: Traditional data warehouses must be manually sized to the highest workload, 
if they are configurable at all. Cloud warehouses could be more elastic.
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ENABLE EASE OF USE

The need for a self-managing system

Conventional data warehouses and “big data” platforms 

require significant care and feeding. They rely on skilled 

administrators constantly exerting themselves to 

maintain the data platform: choosing data distribution 

schemes, creating and maintaining indices, updating 

metadata, cleaning up files, and more. 

Manual optimization was feasible in an environment 

where queries were predictable and workloads 

were few, but it doesn’t scale when there are a 

large number of ever-changing workloads. The time 

and effort required to optimize the system for all 

those different workloads quickly gets in the way of 

actually analyzing data. 

In contrast, Snowflake set out to build a data 

warehouse as a service where users focus on 

analyzing data rather than spending time managing 

and tuning. That required Snowflake to design a data 

warehouse that would: 

• Eliminate the management of hardware and 

software infrastructure. The data warehouse 

should not require users to think about how to 

deploy and configure physical hardware. Similarly, 

users should not need to worry about installing, 

configuring, patching, and updating software. 

• Enable the system to learn and adapt. Rather than 

requiring users to invest time configuring and 

tuning (and retuning) a wide array of parameters, 

Snowflake designed a data warehouse that sees 

how it is being used and dynamically adapts 

based on that information. 

Eliminating Software and Infrastructure 

Management 

The Snowflake data warehouse was designed 

to completely eliminate the management of 

infrastructure. It is built on cloud infrastructure, which 

it transparently manages for the user. Users simply 

log in to the Snowflake service and it is immediately 

available, without complex setup required. 

Ongoing management of the software infrastructure 

is also managed by Snowflake. Users do not need to 

manage patches, upgrades, and system security. The 

Snowflake service automatically manages the system.

Capacity planning, a painful requirement during the 

deployment of a conventional on-premises data 

warehouse, is all but eliminated because Snowflake 

makes it possible to add and subtract resources 

on the fly. Because it is easy to scale up and down 

based on need, you are not forced into a huge 

upfront cost in order to ensure sufficient capacity for 

future needs. 

Other manual actions within traditional data 

warehouses that Snowflake automates include:

• Continuous data protection: Time Travel enables 

you to immediately revert any table, database 

or schema to a previous state. It’s enabled 

automatically and stores data as it’s transformed for 

up to 24 hours, or 90 days in enterprise versions. 

• Copying to clone:  Most data warehouses 

require you to copy data to clone, forcing a large 

amount of manual effort and a significant time 

investment. Snowflake’s multi-cluster, shared 

data architecture ensures that you never need 

to copy any data, because any warehouse or 

database automatically references the same 

centralized data store. 

WHITEPAPER
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• Data distribution is managed automatically by 

Snowflake based on usage. Rather than relying 

on a static partitioning scheme based on a 

distribution algorithm or key chosen by the user at 

load time, Snowflake automatically manages how 

data is distributed in the virtual warehouse. Data 

is automatically redistributed based on usage to 

minimize data shuffling and maximize performance. 

• Loading data is dramatically simpler because 

complex ETL data pipelines are no longer needed 

to prepare data for loading. Snowflake natively 

supports and optimizes diverse data, both 

structured and semi-structured, while making 

that data accessible via SQL. 

• Dynamic query optimization ensures that 

Snowflake operates as efficiently as possible by 

looking at the state of the system when a query is 

dispatched for execution, not just when it is first 

compiled. That adaptability is a crucial component 

within Snowflake’s ability to scale up and down.

• Scaling compute: Autoscaling is a feature that can 

be enabled within any Snowflake multi-cluster 

data warehouse that will match the number of 

compute clusters to the query or load, without 

needing manual intervention or input.

“Snowflake is faster, more flexible, and 

more scalable than the alternatives on the 

market. The fact that we don’t need to do 

any configuration or tuning is great because 

we can focus on analyzing data instead of on 

managing and tuning a data warehouse.” 

 —Craig Lancaster, CTO, Jana

PAY AS YOU GO

Up front capital expenditures no longer 

make sense

As technology changes at an ever increasing pace, 

the old model of paying for licensed software and 

hardware in a massive up-front expenditure no longer 

makes sense. Data warehouses can be particularly 

painful to pay for in this model, as many traditional 

systems can cost tens of millions of dollars. 

Newer cloud models that charge by the query aren’t 

any better. Query based pricing can lead to runaway, 

unpredictable charges and frequent query failures 

as cost limits are hit. What’s more, there isn’t any 

way to define the compute power dedicated to 

each query, so you have to trust that the system is 

choosing the resource sizing that makes the most 

sense for your query.

Enabling the data warehouse as a usage-

based service

Snowflake is paid for as a usage based service Each 

month, you pay for the data you store (at a cost 

similar to the raw storage costs of Amazon S3), 

and the number of Snowflake Compute Credits 

you use for compute. Each Credit costs around 

$2, and one Credit provides enough usage for 

an XS data warehouse for one hour. A Small data 

warehouse -the next size up- costs 2 credits per 

hour and delivers approximately twice the compute 

horsepower. Each successive size of data warehouse 

continues to double both the compute horsepower 

and price in credits. This linear model makes it easy 

to plan for your expenditures, and keep them low in 

the first place. 
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Snowflake also addresses the limitations of the query 

based pricing model. Since you pay for each warehouse 

by the hour, costs are always known and understood.  

What’s more, your query will never fail due to cost 

limits, it’ll just take longer. The basic premise is that 

you have ultimate control over every piece of the 

warehouse, so if you want your query to move faster 

you can choose to move to a larger warehouse. Again, 

these are choices that you aren’t given with inflexible 

query based models. 

Seamless sharing of data

Snowflake’s architecture vastly simplifies the process 

of sharing data, particularly between different 

organizations. Instead of needing to manually create 

copies of data and sending them over FTP, EDI, or 

cloud file services, Snowflake Data Sharing allows 

any Snowflake customer to share access to their data 

with any other Snowflake customer. 

Instead of sending a file, you send access to the 

underlying data. The schema and database structure 

can be imported automatically by the consumer so 

there’s very little manual effort involved in using the 

shared data. What’s more, when the data updates 

in the provider account, it’s automatically and 

immediately visible in the consumer account. Detailed 

permissions and role based access can be applied to 

that data, ensuring that information is only shared 

with the people who it is meant to be shared with.

Use the SQL that you already know

The last benefit of Snowflake’s architecture is the 

simplest, but in many ways the most important: 

you can use the SQL that your team already knows. 

noSQL systems and query based data stores have 

become more common recently, but they both fail to 

fully support standard ANSI SQL. This not only limits 

the way you interact with your data and transform it, 

but it requires you to hire people familiar with those 

systems, or train your existing people to use these 

new systems. 

Snowflake allows your team to use the SQL they 

already know and love to transform and query all 

of your data. This simplicity pays endless dividends 

over time as you save time and resources you 

would otherwise devote to supporting bespoke and 

“oddball” systems. 
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By reimagining and reinventing the data warehouse, Snowflake has addressed all of the key 
limitations of today’s technology. Doing so required a new architecture that was completely 
different from data warehouses of the past. As a result, you can easily store all your data, 
enable all your users with zero management, paying the way you want to and using the 
SQL you already rely on. Rather than being bottlenecked waiting for the availability of 
overstretched IT and data science resources, analysts get rapid access to data in a service 
that can operate at any scale of data, users, and workloads. 

To learn more about Snowflake, join us for a live demo at https://www.snowflake.net/
webinar/snowflake-livedemo/

THE IMPACT OF REINVENTION 
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Snowflake Computing, the cloud data warehousing company, has 
reinvented the data warehouse for the cloud and today’s data. 
Snowflake is built from the cloud up with a patent-pending new 
architecture that delivers the power of data warehousing, the flexibility 
of big data platforms and the elasticity of the cloud – at a fraction of 
the cost of traditional solutions. Snowflake is headquartered in Silicon 
Valley and can be found online at snowflake.net.
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