Produto e tecnologia

Dimensione análises de texto não estruturados em escala com inferência eficiente de LLM em lote

No mundo corporativo, textos não estruturados estão em todos os lugares: avaliações de clientes, tíquetes de suporte, transcrições de chamadas e documentos. Grandes modelos de linguagem (large language models, LLMs) estão transformando a forma como extraímos valor desses dados ao executar tarefas desde a categorização até o resumo e muito mais. Embora a IA tenha provado que conversas em linguagem natural em tempo real são possíveis com LLMs, extrair insights de milhões de conjuntos de dados não estruturados usando esses LLMs pode ser um divisor de águas. É nesse momento que a inferência de LLMs em lote torna-se indispensável.

Neste artigo, você vai obter insights sobre casos de uso comerciais mais comuns para análise de dados de texto em grande escala. Você também vai descobrir por que a implementação de pipelines de LLMs em lote pode ser desafiadora e como a Snowflake otimizou o Snowflake Cortex AI para inferência em lote via funções de SQL. 

Quais são os trabalhos mais comuns de inferência de LLMs em lote?

Diversas equipes de uma organização podem usar a inferência de LLM em lote para extrair insights de grandes volumes de dados de texto. As equipes de inteligência do cliente analisam as avaliações e os comentários do fórum para identificar tendências de percepção, enquanto as equipes de suporte processam tíquetes para descobrir problemas com os produtos e informar as falhas de roteiro de desenvolvimento de um produto. Ao mesmo tempo, as equipes de operações usam a extração de entidades de documentos para automatizar fluxos de trabalho e permitir filtragem analítica com base em metadados. Veja a seguir alguns exemplos de como diferentes equipes podem usar LLMs para extrair insights de grandes volumes de dados de textos não estruturados. 

  • Marcação (tagging) e classificação de texto: categorização automática de tíquetes de suporte, emails, artigos de notícias ou avaliações de produtos com base em sentimento, tópico ou urgência.

  • Extração de entidades: extração de entidades-chave (nomes, datas, locais, dados financeiros) de contratos, faturas ou registros médicos para transformar texto não estruturado em dados estruturados.

  • Análise de tendências e de sentimento: análise de feedback do cliente, respostas de pesquisa ou discussões de mídias sociais em escala para detectar tendências, medir sentimento e tomar decisões de negócios embasadas.

  • Moderação de conteúdo: verificação de grandes conjuntos de dados (publicações em mídias sociais, logs de chat, feedback do cliente) em busca de violações de políticas, conteúdo prejudicial ou problemas de conformidade regulatória.

  • Resumo do documento: gerar resumos concisos para grandes volumes de relatórios, trabalhos de pesquisa, documentos jurídicos ou transcrições de reuniões.

  • Preparação do documento para RAG: ingerir, limpar e fragmentar documentos antes de incorporá-los às representações vetoriais, possibilitando uma recuperação eficiente e melhores respostas de LLM em sistemas de geração aumentada de recuperação (retrieval augmented generation, RAG).

  • Qualidade dos dados de texto: validação de vários campos de texto, como preenchimento de formulários, fornecendo contexto sobre as melhores combinações de entrada, para permitir que os LLMs detectem anomalias e registros incorretos visando melhorar a qualidade dos dados.

  • Engenharia de recursos: extração, categorização e transformação de texto não estruturado em recursos estruturados, aprimorando modelos de aprendizado de máquina com contexto e insights avançados.

Por que pipelines de LLM em lote eficientes são importantes

"Os LLMs estão transformando o local de trabalho" é mais do que apenas um slogan. Pense nisto: categorizar 10.000 tíquetes de suporte levaria cerca de 55 horas (considerando 20 segundos por tíquete) para o funcionário mais rápido da equipe. Com um pipeline de LLM otimizado, a mesma tarefa leva minutos. Não se trata de uma melhoria gradual, mas um ganho na eficiência revolucionário, que economiza milhares de horas de trabalho e otimiza enormemente os tempos de resposta.

Conforme os volumes de dados crescem e a automação de IA expande, a eficiência de custos no processamento com LLMs depende tanto da arquitetura do sistema quanto da flexibilidade do modelo. Um sistema eficiente de processamento em lote é dimensionado de forma econômica para lidar com volumes crescentes de dados não estruturados. Ser capaz de mudar de LLMs de forma flexível ajuda as empresas a otimizar os custos, dimensionando os modelos corretamente em escala para cada caso de uso e atualizando facilmente conforme os modelos melhoram.

E para criar eficiências significativas em tecnologia e equipe, as organizações precisam pensar nas oportunidades de integrar pipelines de LLM aos fluxos de trabalho de dados estruturados já existentes. Expandir os atuais investimentos em gerenciamento, processamento e orquestração de pipeline simplifica a arquitetura e reduz a complexidade operacional decorrente do trabalho de integração e manutenção da infraestrutura. Essa unificação também pode permitir aos engenheiros de dados, que já gerenciam pipelines estruturados, integrar e manter facilmente fluxos de trabalho de dados não estruturados.

Executar pipelines de inferência em lote com eficiência com o Cortex AI

A Headset mudou um de seus pipelines de categorização em lote, que estava funcionando com um provedor líder de inferência de LLM API (Fireworks AI), e viu a execução de tarefas passar de 20 minutos para 20 segundos usando a função de inferência do Snowflake Cortex COMPLETE.

Ao usar a função Snowflake Cortex COMPLETE, os desenvolvedores podem executar a inferência de LLM em lote com funções SQL que não precisam de bancos de dados intermediários ou lambdas para obter processamento confiável e de alto rendimento com escolha de modelo flexível.

Figure 1: Comparing automated batch inference pipelines.
Figure 1: Comparing automated batch inference pipelines.
Table 1: Comparing other managed LLM APIs and Snowflake Cortex AI.

Casos de sucesso de clientes

  • Com o Snowflake, a Nissan conseguiu agilizar dois meses do cronograma de projeto de uma aplicação de inteligência voltada para analisar o sentimento dos clientes em avaliações e fóruns para ajudar as empresas de varejo a melhorar seus produtos e serviços. Assista ao webinar sob demanda.

  • Em apenas dois dias, a Skai implementou uma ferramenta de categorização para dar a seus clientes melhores insights sobre os padrões de compra, desenvolvendo categorias que fazem sentido em várias plataformas de comércio eletrônico. Ler o estudo de caso.

  • Leia mais histórias em nosso ebook de casos de sucesso dos clientes.

Começar agora

Confira esses recursos e mantenha-se atualizado sobre a inferência sem servidor para mais tipos de dados.

Share Article

Simplificando a integração de dados corporativos: uma análise detalhada da implementação BYOC do Snowflake Openflow

A implementação do Snowflake Openflow, Bring Your Own Cloud (BYOC), simplifica a integração de dados corporativos com flexibilidade, controle e pipelines seguros e em escala.

Simplificando a análise multimodal de dados com o Snowflake Cortex AI

Combine dados estruturados e não estruturados com facilidade usando o Snowflake Cortex AI. Analise textos, imagens, áudio e vídeo para obter insights mais detalhados com SQL simples.

Apresentando o Cortex AISQL: reimaginando o SQL como uma linguagem de queries de IA voltada para dados multimodais

O Cortex AISQL (em versão preliminar pública) transforma o Snowflake SQL em uma linguagem de query de IA para que os usuários possam criar pipelines de IA usando comandos familiares em dados multimodais.

Como as instituições de serviços financeiros devem pensar em dados não estruturados

Veja por que os dados não estruturados são cruciais para as estratégias de IA para as empresas de serviços financeiros. Saiba como processar e usar dados para gerar mais valor para o cliente com o uso de inteligência artificial.

Os dados da sua empresa precisam de um agente

O Snowflake Cortex Agents, uma estrutura de orquestração totalmente gerenciada, obtém insights de dados estruturados e não estruturados para tomar decisões precisas e dimensionáveis.

Snowflake Intelligence: todo o seu conhecimento + um agente corporativo de confiança.

O Snowflake Intelligence, um agente de inteligência corporativa, ajuda todos os usuários a responder a perguntas complexas em linguagem natural para obter insights práticos a partir de seus dados corporativos.

IA generativa em ação: clientes usam o Cortex AI para obter novos insights e agilizar a inovação

Cortex AI possibilita que empresas como Johnnie-O e IntelyCare usem a IA generativa para obter insights, automação e inovação com a plataforma segura Snowflake.

Lançamento: DeepSeek-R1 agora em versão preliminar no Snowflake Cortex AI

DeepSeek-R1 no Snowflake Cortex AI: um modelo de código aberto de alto desempenho otimizado para tarefas de matemática, código e raciocínio. Acesse por meio de SQL, Python ou REST API.

Análises de dados mais rápidas: Snowflake melhora a duração média das consultas em 40%

Atualizações automáticas do Snowflake melhoram em 40% a média do tempo de consulta, otimizando análises de dados, melhorando a eficiência e oferecendo economia real de custos.

Subscribe to our blog newsletter

Get the best, coolest and latest delivered to your inbox each week

Onde os dados fazem mais

  • Avaliação gratuita de 30 dias
  • Sem precisar de cartão de crédito
  • Cancele a qualquer hora